Решение квантовых задач рассеяния на основе дискретизации континуума

О.А. Рубцова,

Лаборатория теории атомного ядра НИИЯФ МГУ

XII Зимняя школа по теоретической физике Малочастичные системы: теория и приложения ОИЯИ, 3 февраля 2014 г.

Содержание

- 1. Решение задач рассеяния на основе подходов L₂ типа.
- 2. Формализм стационарных волновых пакетов.
- 3. Связь между стационарными волновыми пакетами и псевдосостояниями.
- 4. Описание рассеяния в малочастичных системах в дискретном по энергии представлении.
- 5. Построение эффективных потенциалов взаимодействия составных частиц.

Заключение.

Собственные состояния гамильтониана

Дискретный спектр

Решения уравнения Шредингера существует при дискретных энергиях

$$H|\psi_k\rangle = E_k|\psi_k\rangle, \ k = 1,\ldots,M$$

Асимптотическое граничное условие для связанных состояний

$$\Psi_k(r) \sim_{r \to \infty} \exp(-\kappa r), \ \kappa = \sqrt{-2mE_k / \hbar^2}$$

Непрерывный спектр

Решение уравнения Шредингера

$$H\left|\psi\right\rangle = E\left|\psi\right\rangle$$

существует при любом положительном Е.

Волновые функции непрерывного спектра не убывают на асимптотике.

$$\psi_l(r) \xrightarrow[r \to \infty]{} A(E) \sin\left(kr + \delta_l - \frac{l\pi}{2}\right)$$

Подходы L₂ типа

Разложение собственных волновых функций гамильтониана по некоторому базису конечной размерности приводит к дискретизации непрерывного спектра этого гамильтониана.

$$H |\Psi\rangle = E |\Psi\rangle = \sum_{n=1}^{N} C_n |\phi_n\rangle$$

Задача на собственные значения матрицы гамильтониана:

$$\det || H_{nn'} - E || = 0 \implies \left\{ \varepsilon_n \right\}_{n=1}^N, |\Psi_n \rangle$$

Функции псевдосостояний во внутренней области взаимодействия могут хорошо воспроизводить поведение точных функций непрерывного спектра.

Два способа решения задачи рассеяния

«Дифференциальный» подход

 $H|\psi(E)\rangle = E|\psi(E)\rangle$

Асимптотическое поведение в.ф.:

$$\psi(E,r) \xrightarrow[r \to \infty]{} e^{-i\left(kr - \frac{l\pi}{2}\right)} + S_l(E)e^{i\left(kr - \frac{l\pi}{2}\right)}$$

Элементы S-матрицы находятся из сшивки волновой функции во внутренней области с асимптотикой. $S_{I}(E) = e^{2i\delta_{I}(E)}$

Интегральный подход

$$\psi^{(+)}(E) \rangle = |\psi_0(E)\rangle + G_0^{(+)}V|\psi^{(+)}(E)\rangle$$

Элементы S-матрицы находятся из интегральной формулы $T_l(E) = \langle \psi_{0l}(E) | V | \psi_l^{(+)}(E) \rangle$ $S_l(E) = 1 + 2\pi i T_l(E)$

В случае короткодействующего потенциала взаимодействия для нахождения наблюдаемых достаточно знать волновую функцию в его внутренней области.

Подходы L₂-типа

 Асимптотическое поведение волновой функции

 Методы на основе вариационного принципа Кона–Хюльтена.

– Метод R-матрицы.

 Метод связанных каналов дискретизованного континуума. • Интегральный подход

 Методы на основе вариационного принципа Швингера.

 Метод моментов для построения резольвенты гамильтониана.

– Метод интегральных преобразований (Lorentz Integral Transform)

-Метод Ј-матрицы (Осцилляторное представление).

Проблемы:

Явный учет граничных условий

Построение конечномерных аппроксимаций операторов в L2 базисах.

Метод собственных дифференциалов Вейля

Собственный дифференциал функции непрерывного спектра:

$$|\Psi(E, E + \Delta)\rangle = \int_{E}^{E+\Delta} |\Psi(E')\rangle dE'.$$

Такие состояния являются нормируемыми.

Тогда, согласно методу Вейля, полная система ортогональных функций гамильтониана состоит из связанных состояний и собственных дифференциалов

$$\left\{ \left| \Psi_k \right\rangle_{k=1}^{N_b}, \left| \Psi(E, E + \Delta) \right\rangle \right|_{E=0}^{\infty} \right\}$$

Разложение произвольной волновой функции имеет следующий вид

$$\left|\Phi\right\rangle = \sum_{k=1}^{N_{b}} C_{k} \left|\Psi_{k}\right\rangle + \sum C(E,\Delta) \left|\Psi(E,E+\Delta)\right\rangle$$

Предельный переход

$$\left|\Phi\right\rangle_{\Delta\to 0} \sum_{k=1}^{N_b} C_k \left|\Psi_k\right\rangle + \int_0^\infty C(E) \left|\Psi(E)\right\rangle dE$$

Нормировка волновой функции:

$$N = \int_{E}^{E+\Delta} \langle \Psi(E) | \Psi(E') \rangle dE' = \langle \Psi(E) | \Psi(E, E+\Delta) \rangle \longrightarrow \langle \Psi(E) | \Psi(E') \rangle = \delta(E-E')$$

Формализм стационарных волновых пакетов

Стационарные волновые пакеты и их свойства

Дискретизация непрерывного спектра свободного гамильтониана ho

$$E_{j} = f(j\alpha), \ \alpha \sim 1/N$$
$$\mathcal{D}_{j} \equiv \left[E_{j-1}, E_{j}\right] \left(\left[q_{j-1}, q_{j}\right]\right)$$
$$q_{j} = \sqrt{2mE_{j}}, \ d_{j} = q_{j} - q_{j-1}$$

Стационарный ВП:

$$\left|x_{i}^{l}\right\rangle = \frac{1}{\sqrt{B_{i}}} \int_{\mathcal{D}_{i}} w(q) \left|\psi_{0q}^{l}\right\rangle dq, \quad B_{i} = \int_{\mathcal{D}_{i}} |w(q)|^{2} dq$$

Волновые пакеты образуют ортонормированный набор:

$$\left\langle \psi_{0q}^{l} \left| \psi_{0q'}^{l} \right\rangle = \delta(q-q') \implies \left\langle x_{i}^{l} \left| x_{j}^{l} \right\rangle = \delta_{ij}$$

Собственные значения гамильтониана:

$$\langle x_i | h_0 | x_j \rangle = \frac{(q_i^*)^2}{2m} \left(1 + \frac{d_i^2}{12(q_i^*)^2} \right) \delta_{ij}$$

$$q_i^* = \frac{1}{2} (q_{i-1} + q_i)$$

Свойства стационарных волновых пакетов

Перекрывание с исходной волновой функцией непрерывного спектра:

$$\left\langle \psi_{0q} \left| x_{i} \right\rangle = \frac{1}{\sqrt{B_{i}}} \int_{\mathcal{D}_{i}} \left\langle \psi_{0q} \left| \psi_{0q'} \right\rangle w(q') dq' = \frac{w(q)\theta(q \in \mathcal{D}_{i})}{\sqrt{B_{i}}} \right\rangle$$

Рассмотрим оператор, функционально зависящий от h_0

Проекция в пакетное пространство имеет диагональный вид

$$\mathbb{P} = \sum_{i=1}^{N} |x_i\rangle\langle x_i| \qquad \mathbb{R} = \mathbb{P}R(h_0)\mathbb{P} = \sum_{i=1}^{N} |x_i\rangle \left[\frac{1}{B_i} \int_{\mathcal{D}_i} R\left(\frac{q^2}{2m}\right) |w(q)|^2 dq\right] \langle x_i|$$

Конечномерное представление резольвенты свободного гамильтониана

$$g_0(E) = [E + i0 - h_0]^{-1} \longrightarrow G_0(E) = \sum_{i=1}^N |x_i\rangle g_i(E)\langle x_i|$$
$$g_i(E) = \frac{m}{qd_i} \left[\ln \left| \frac{q - q_{i-1}}{q - q_i} \right| + \ln \left| \frac{q + q_i}{q + q_{i-1}} \right| - i\pi\theta (q \in \mathcal{D}_i) \right] \qquad q = \sqrt{2mE}$$

Поведение пакетных функций в координатном представлении $x_i(r) \approx \sqrt{d_i} \psi_{0q_i^*}(r) \frac{\sin(d_i r/2)}{d_i r/2}$

Координатные зависимости волновых пакетов для разных соотношений между ширинами d_i и средними импульсами q_i*

$$\frac{d_i}{q_i^*} = \begin{cases} 0.25 \text{ (a);} \\ 0.1 \text{ (b);} \\ 0.05 \text{ (c).} \end{cases}$$

Чем меньше ширина пакетного состояния, тем медленнее убывает его волновая функция.

Характерный радиус, на котором пакетная функция совпадает с точной функцией непрерывного спектра (с точностью до множителя $\sqrt{d_i}$), равен

$$r_i = \frac{2}{d_i}$$

Импульсное представление

$$|\Psi^{\text{disk}}\rangle \equiv \mathbb{P}|\Psi\rangle = \sum_{i=1}^{N} C_i |x_i\rangle$$

$$\psi^{\text{disk}}(q)$$

Дополнительное усреднение по энергии

Собственные значения резольвенты $G_0(E)$, имеют особенности в граничных точках интервалов при вещественных значениях энергии *E*. Чтобы сгладить эти особенности, сделаем дополнительное усреднение по энергии.

$$G_0(E) \to G_0^k \equiv \frac{1}{D_k} \int_{\mathcal{D}_k} G_0(E) dE, \quad E \in \mathcal{D}_k \qquad D_k = E_k - E_{k-1}$$

Процедура дискретизации состоит из следующих шагов:

- 1. Разбиение спектра на интервалы.
- 2. Проектирование операторов и волновых функций в пакетный базис.
- 3. Дополнительное усреднение по энергии для резольвенты.

Уравнение Липпмана-Швингера для оператора перехода

$$t(E) = v + vg_0(E)t(E)$$

В импульсном представлении имеет вид:

$$t(E;q,q') = v(q,q') + 4\pi \int dq'' \frac{v(q,q'')t(q'',q')}{E + i0 - (q'')^2 / 2m}$$

После проектирования в пакетное представление получается чисто матричное уравнение: $\mathbf{t}^k = \mathbf{v} + \mathbf{v} \mathbf{g}_0^k \mathbf{t}^k, \ E \in \mathcal{D}_k$

 $\mathbf{v}_{ij} \equiv \left\langle x_i \left| v \right| x_j \right\rangle$
матрица потенциала взаимодействия в пакетном базисе

Элемент t-матрицы вне массовой поверхности:

$$t(E;q,q') \sim \mathbf{t}_{ij}^k$$

Парциальный фазовый сдвиг находится из on-shell элемента

$$-\frac{e^{i\delta_l(E)}\sin\delta_l(E)}{\pi} \approx \frac{\mathbf{t}_{kk}^k}{D_k}, \quad E \in \mathcal{D}_k, \quad D_k = E_k - E_{k-1}$$

Дискретное представление объектов теории рассеяния

В пакетном подпространстве операторы имеют конечномерное матричное представление.

Рассеяние нейтронов на ядре ⁵⁶Fe

Нелокальный комплексный потенциал

$$V(x) = \frac{V_0}{e^{(\frac{x-R}{a_s})} + 1} + i\frac{4V_d \cdot e^{(\frac{x-R}{a_d})}}{\left[e^{(\frac{x-R}{a_d})} + 1\right]^2}, \quad R = r_0 A^{\frac{1}{3}}$$

<u>S-волновые фазовые сдвиги</u> и параметры неупругости

 $U(\mathbf{r}, \mathbf{r}') = V\left(\frac{1}{2}|\mathbf{r} + \mathbf{r}'|\right) \cdot W(|\mathbf{r} - \mathbf{r}'|),$

$$W(|\mathbf{r} - \mathbf{r}'|) = \frac{\exp[-(|\mathbf{r} - \mathbf{r}'|/\beta)^2]}{\pi^{3/2}\beta^3},$$

Связь между стационарными волновыми пакетами и псевдосостояниями

Псевдосостояния как аппроксимации для СВП

Псевдосостояния в некотором базисе $\left|\overline{Z}_{k}\right\rangle = \sum_{i=1}^{N} C_{ki} \left|\phi_{i}\right\rangle$

Свойства:

$$\left\langle \overline{z}_{k} \left| \overline{z}_{k'} \right\rangle, \quad \left\langle \overline{z}_{k} \left| h \right| \overline{z}_{k'} \right\rangle = E_{k}^{*} \delta_{kk'}$$

Стационарные волновые пакеты

 $\langle z_k | z_{k'} \rangle, \langle z_k | h | z_{k'} \rangle = E_k^* \delta_{kk'}$

$$\left|z_{k}\right\rangle = \frac{1}{\sqrt{d_{k}}} \int_{\mathcal{D}_{k}} \left|\psi_{q}\right\rangle dq$$

Свойства:

Псевдосостояния следует рассматривать как аппроксимации именно стационарных волновых пакетов, а не точных функций рассеяния.

Построение базиса для двухчастичного гамильтониана h

Базис свободных волновых пакетов можно использовать для построения базиса возмущенных волновых пакетов

Представление кулоновских ВП в базисе свободных ВП

Из-за бесконечного радиуса действия кулоновских сил, точные кулоновские функции нельзя разложить по собственным функциям оператора кинетической энергии

Однако, кулоновские стационарные волновые пакеты можно разложить по конечному набору свободных.

Рассеяние заряженных частиц

Полный гамильтониан в случае заряженных частиц имеет вид

$$h = h_0 + v_C + v_S$$
 $v_C(r) = Z_1 Z_2 e^{2/r}, v_S(r)$ – короткодействующий потенциал h_C

В качестве «свободного» используется гамильтониан $h_{\rm C.}$ Базисные функции строятся из регулярных кулоновских функций (собственных функций гамильтониана).

 $\left|x_{i}^{C}\right\rangle = \frac{1}{\sqrt{d_{i}}} \int_{\mathcal{D}_{i}} \left|F_{l}(q)\right\rangle dq$ кулоновские волновые пакеты (КВП)

Уравнение для кулоновско-ядерной части оператора перехода

$$\mathbb{T}_{k}^{\text{add}} = \mathbb{V}_{S} + \mathbb{V}_{S} \mathbb{G}_{k}^{C} \mathbb{T}_{k}^{\text{add}}, \quad \mathbb{G}_{k}^{C} = \sum_{i=1}^{N} |x_{i}^{C}\rangle g_{i}^{k} \langle x_{i}^{C}|, \qquad \mathbb{V}_{S} = \sum_{i,j=1}^{N} |x_{i}^{C}\rangle \langle x_{i}^{C}|V_{S}|x_{j}^{C}\rangle \langle x_{j}^{C}|.$$
конечномерное представление кулоновской резольвенты
конечномерное представление оператора взаимодействия

Парциальные фазовые сдвиги а-а рассеяния

Малочастичные системы

Решеточный базис для системы нескольких частиц

Трех- (и более-) частичный гамильтониан является прямой суммой двухчастичных субгамильтонианов. Поэтому его волновые функции представляются в виде прямого произведения двухчастичных.

$$H_{0} = h_{p}^{0} \oplus h_{q}^{0} \implies |X_{ij}\rangle \equiv |x_{i}\rangle \otimes |y_{j}\rangle$$

Решение задачи рассеяния в пакетном базисе соответствует ее формулировке на конечной многомерной решетке в импульсном пространстве. Поэтому многочастичный базис свободных волновых пакетов называется решеточным.

В пакетной схеме вместо непрерывных интегральных ядер K(E;p,q) используются дискретные матричные функции K^k_{ij} , при этом энергетические и импульсные особенности сглаживаются за счет усреднения по ячейкам решетки.

Собственные пакетные представления для гамильтонианов каналов

Полный гамильтониан трехчастичной задачи

$$H = H_0 + \sum_{a=1}^{3} v_a, \quad v_a \equiv v_{bc}$$

Гамильтонианы парных подсистем (канальные)

$$H_a = H_0 + v_a = h_0^a \oplus h_a$$

Собственные пакетные базисы канальных гамильтонианов определяются через пакетные базисы для двухчастичных субгамильтонианов и h_a h_0^a

$$\left|Z_{ij}^{(a)}\right\rangle \equiv \left|z_{i}^{(a)}\right\rangle \otimes \left|y_{j}^{(a)}\right\rangle$$

(свободный базис $\left|X_{ij}^{(a)}\right\rangle = \left|x_{i}^{(a)}\right\rangle$

$$\left| \right\rangle = \left| x_{i}^{(a)} \right\rangle \otimes \left| y_{j}^{(a)} \right\rangle$$

Свойства такого трехчастичного базиса аналогичны свойствам двухчастичных. В частности, можно получить явное выражение для резольвенты

$$G_{a} = \left[E + i0 - H_{a}\right]^{-1}, \quad G_{a}^{(+)}(E) = \sum \left[G_{a}\right]_{ij} \left|Z_{ij}^{(a)}\right\rangle \left\langle Z_{ij}^{(a)}\right|$$

Если разложить двухчастичные ВП по свободным

$$\left| z_{i}^{(a)} \right\rangle = \sum_{i'} C_{ii'}^{(a)} \left| x_{i'}^{(a)} \right\rangle$$

$$\left|Z_{ij}^{(a)}\right\rangle = \sum C_{ii'}^{(a)} \left|X_{i'j}^{(a)}\right\rangle$$

Finite-dimensional approximation for the channel resolvent

The channel resolvent $G_a = [E + i0 - H_a]^{-1}$: $G_a^{(+)}(E) = \frac{1}{2\pi i} \int_{-\infty}^{+\infty} d\epsilon g_a^{(+)}(E - \epsilon) g_0^{(+)}(\epsilon).$ Using the spectral expansions for g_a and g_0 operators, one gets $G_a = G_a^{BC} + G_a^{CC}.$ $G_a^{BC} = \sum_{\Lambda,M} \sum_{l_a,L_a} \sum_{k=1}^{K_{l_a}} \int_0^{\infty} dE_2 \frac{|\hat{\psi}_k^{l_a}, \psi_{0E_2}^{L_a}, \Lambda M\rangle \langle \hat{\psi}_k^{l_a}, \psi_{0E_2}^{L_a}, \Lambda M|}{E + i0 - \epsilon_k^{l_a} - E_2}$ $G_a^{CC} = \sum_{\Lambda,M} \sum_{l_a,L_a} \int_0^{\infty} dE_1 \int_0^{\infty} dE_2 \frac{|\psi_{E_1}^{l_a}, \psi_{0E_2}^{L_a}, \Lambda M\rangle \langle \psi_{E_1}^{l_a}, \psi_{0E_2}^{L_a}, \Lambda M|}{E + i0 - E_1 - E_2}$

The WP projections have diagonal forms. The bound-continuum part:

$$\mathbb{G}_a^{BC} = \sum_{l_a, L_a} \sum_{k, j} |Z_k^{l_a}, X_j^{L_a}, \Lambda M\rangle \langle Z_k^{l_a}, X_j^{L_a}, \Lambda M| [G_a(E)]_{S_a}$$

with eigenvalues

$$[G_a(E)]_{S_a} = \frac{1}{\Delta_j^{L_a}} \int_{E_{j-1}^{L_a}}^{E_j^{L_a}} \frac{\mathrm{d}E_2}{E + \mathrm{i}0 - \epsilon_k^{l_a} - E_2}.$$

The continuum-continuum part:

$$\mathbb{G}_a^{CC} = \sum_{l_a, L_a} \sum_{i, j} |Z_i^{l_a}, X_j^{L_a}, \Lambda M\rangle \langle Z_i^{l_a}, X_j^{L_a}, \Lambda M| [G_a(E)]_{S'_a}$$

with eigenvalues

$$[G_a(E)]_{S'_a} = \frac{1}{\Delta_i^{l_a} \Delta_j^{L_a}} \int_{E_{i-1}^{l_a}}^{E_i^{l_a}} \int_{E_{j-1}^{L_a}}^{E_j^{L_a}} \frac{\mathrm{d}E_1 \mathrm{d}E_2}{E + \mathrm{i}0 - E_1 - E_2}.$$

Общая задача рассеяния трех тел

Разложение волновой функции на фадеевские компоненты:

$$\left|\Psi(E)\right\rangle = \left|\psi^{(1)}\right\rangle + \left|\psi^{(2)}\right\rangle + \left|\psi^{(3)}\right\rangle$$

Уравнения Фаддеева для компонент волновой функции

$$|\psi^{(a)}\rangle = |\Phi_{01}\rangle\delta_{a1} + G_a v_a \sum_{b\neq a} |\psi^{(b)}\rangle, \ a = 1, 2, 3$$

Разложим каждую компоненту в.ф. по своему пакетному базису

$$\overline{\psi}^{(a)} \rangle = \sum O_{ik}^{(a)} \left| Z_{ik}^{(a)} \right\rangle$$

Уравнение для проектированных компонент:

$$\begin{split} \left| \overline{\psi}^{(a)} \right\rangle &= \left| Z_0^{(1)} \right\rangle \delta_{a1} + G_a V_a \sum_{b \neq a} \left| \overline{\psi}^{(b)} \right\rangle, a = 1, 2, 3 \\ O_{ik}^{(a)} &= \delta_{a1} \delta_{ik,0} + \sum_{i'} [G_a]_{ik} [v_a]_{ii'} \sum_{b \neq a} \sum_{jn} \left\langle Z_{i'k}^{(a)} \left| Z_{jn}^{(b)} \right\rangle O_{jn}^{(b)} \right. \\ \left. \left[P_{ab} \right]_{i'k,jn} \right]_{i'k,jn} \end{split}$$

Матрица оператора перестановки в пакетном базисе

Элементы матрицы оператора перестановки в пакетном базисе вычисляются через перекрывания базисных функций

$$\left[P_{ab}\right]_{ij,i'j'} \equiv \left\langle Z_{ij}^{(a)} \left| Z_{i'j'}^{(b)} \right\rangle = \sum_{ii'} C_{ik}^{*(a)} C_{i'k'}^{(b)} \left\langle X_{kj}^{(a)} \left| X_{k'j'}^{(b)} \right\rangle =$$

$$= \sum_{ii'} C_{ik}^{*(a)} C_{i'k'}^{(b)} \left[P_0^{ab} \right]_{kj,k'j'}$$

матрица перекрывания для решеточного базиса

Матрица оператора перестановки

Матрица оператора перестановки в решеточном базисе

$$\left\langle X_{ij}^{(a)} \left| P_{ab} \left| X_{i'j'}^{(b)} \right\rangle = \left\langle X_{ij}^{(a)} \left| X_{ij}^{(b)} \right\rangle \right.$$

Например, для системы трех тождественных частиц оператор перестановки имеет вид

$$P = P_{12}P_{23} + P_{13}P_{32}$$

$$\left\langle X_{ij} \left| P \right| X'_{i'j'} \right\rangle = \int_{\mathcal{D}_{ij}} dp dq \int_{\mathcal{D}_{i'j'}} dp' dq' \frac{P(p,q,p',q')}{\sqrt{d_i d_j d_{i'} d_{j'}}}$$

Здесь P(p,q,p',q') –ядро оператора перестановки в импульсном представлении.

Система трех тождественных частиц (n-d рассеяние)

Уравнение АГС для оператора перехода

 $U = PG_0^{-1} + PtG_0U$

Используем аналогичную форму этого уравнения, которую будет удобно решать в базисе канального гамильтониана

$$U = Pv_1 + Pv_1G_1U$$

Проектируя все операторы в пакетный базис получаем чисто матричное уравнение:

$\mathbf{U} = \mathbf{P}\mathbf{V}_1 + \mathbf{P}\mathbf{V}_1\mathbf{G}_1\mathbf{U},$

где Р матрица оператора перестановки, V₁ матрица NN взаимодействия, G₁ – матрица резольвенты канального гамильтониана.

Амплитуда упругого рассеяния находится как диагональный элемент матрицы U

$$e^{2i\delta(q_0)} - 1 \approx \frac{2m}{3q_0} \frac{U_{0j_0,0j_0}}{d_{j_0}}, \ q_0 \in \mathcal{D}_{j_0}$$

Амплитуда развала

Формула для амплитуды развала

$$T(p,q) = \langle p,q | tG_0 U | \phi_0, q_0 \rangle$$

Эта же амплитуда может быть определена как матричный элемент оператора перехода ${\cal U}$

$$T(p,q) = \left\langle \phi_0, q_0 \left| U \right| \psi_p^{(+)}, q \right\rangle$$

состояние непрерывного спектра NN гамильтониана

Таким образом, амплитуды упругого рассеяния и развала можно определить используя только собственный пакетный базис канального гамильтониана.

Амплитуда развала находится из недиагональных элементов матрицы U

$$T(p,q) \sim e^{i\delta_{NN}(p)} \frac{U_{0j_0,ij}}{\sqrt{d_{j_0}d_id_j}}, \quad q \in \mathcal{D}_j$$
$$q_0 \in \mathcal{D}_{j_0}$$

Упругое n-d рассеяние

Расчеты для локального МТ NN потенциала

standard Faddeev calc.

Амплитуды n+d→n+n+р развала

Асимптотика фаддеевской компоненты волновой функции

$$\psi(K,\rho) \xrightarrow{\rho \to \infty} \frac{A(\theta)}{(K\rho)^{5/2}} \qquad A(\theta) \sim T(p,q), \quad tg(\theta) = \frac{\sqrt{3}}{2} \frac{q}{p}$$

The hyperspherical breakup amplitudes in the spin-doublet channel

The hyperspherical breakup amplitudes in the spin-quartet channel

- Benchmark calculations (Friar et al., PRC 1995)
- -- Wave-packet calculation for N=100x100
- Wave-packet calculation for N=200x200

n-d breakup cross sections for the Yamaguchi potential

Дифференциальные сечения упругого nd рассеяния (Nijmegen I NN potential).

Построение эффективных потенциалов взаимодействия

Рассеяние составной частицы на ядре

Гамильтониан системы имеет вид:

$$H = h_{\text{int}} + h_C(\mathbf{R}) + V_{\text{ext}}, \quad h_{\text{int}} = h_0 + \sum_{i < j} v_{ij}(r_{ij}),$$

 $V_{ext} = \sum_{i} v_{iA}(r_i)$

Канальный гамильтониан

$$H_{ch} = h_{int} \oplus h_C(\mathbf{R})$$

Пакетный базис строится из пакетных состояний для субгамильтонианов h_{int} и h_C

$$\left|Z_{p,k}\right\rangle = \left|z_{p}, x_{k}^{C}\right\rangle = \left|z_{p}\right\rangle \otimes \left|x_{k}^{C}\right\rangle$$

В таком базисе получается аналитическая аппроксимация для канальной резольвенты

$$G_{ch} \approx \sum_{p,k} G_{pk}(E) \left| Z_{pk} \right\rangle \left\langle Z_{pk} \right|$$

Амплитуда упругого рассеяния находится из матричного аналога уравнения Липпмана-Швингера

$$\mathcal{T} = V_{ext} + V_{ext} \mathcal{G}_{ch} \mathcal{T}$$

Построение эффективных потенциалов взаимодействия составных частиц

Рассмотрим упругое рассеяние составной частицы в связанном состоянии $h_{\rm int} |\phi_0\rangle = \varepsilon_0 |\phi_0\rangle$

 $P = \left| \phi_0 \right\rangle \left\langle \phi_0 \right|, \ Q = 1 - P$ проекторы на упругий и неупругий каналы

 $P|\Psi
angle$ волновая функция упругого рассеяния

Проекционный формализм Фешбаха

$$H |\Psi\rangle = E |\Psi\rangle, |\Psi\rangle = P |\Psi\rangle + Q |\Psi\rangle$$

Уравнение для упругой компоненты в.ф.

$$(PHP - E)P|\Psi\rangle = -PV_{ext}QG_{Q}QV_{ext}P|\Psi\rangle$$

эффективный оператор взаимодействия

Резольвента в ортогональном подпространстве

$$G_Q(E) = \left[E + i0 - QHQ\right]^{-1}$$

Проблема нахождения этого оператора еще более сложная, чем решение исходной задачи с гамильтонианом Н. Однако в пакетной технике этот оператор легко находится в матричном виде.

Таким образом, полученный в пакетном представлении оператор эффективного взаимодействия составной частицы с мишенью имеет вид:

$$U(E,\mathbf{R},\mathbf{R'}) = \sum_{ki,k'i'} \left[G_Q \right]_{ki,k'i'} B_{ki}(\mathbf{R}) B_{k'i'}^*(\mathbf{R'}), \quad B_{ki}(\mathbf{R}) = \left\langle \phi_0 \left| V_{\text{ext}} \right| Z_{ki} \right\rangle$$

Потенциал Фешбаха

d+ ⁵⁸Ni elastic cross section at Ed=80 MeV

Для построения эффективного потенциала требуется базис значительно меньшей размерности чем для решения исходной трехчастичной задачи.

Новые вычислительные возможности

Матричный пакетный подход имеет очень хорошее сопряжение с новыми вычислительными техниками, такими как вычисления на графических процессорах (GPU).

Возможные направления обобщения пакетной техники

Описание резонансов в многоканальных и малочастичных системах.

Дискретная версия нестационарной теории рассеяния.

Дискретизация релятивистских уравнений Бете-Солпитера.

Квантовая статистика.

Применение техники дискретизации к фейнмановскому формализму континуальных интегралов.

Литература

А. Мессиа, Квантовая механика.

Р. Ньютон, Теория рассеяния волн и частиц.

O.A. Rubtsova, V.N. Pomerantsev, V.I. Kukulin, A. Faessler, Phys. Rev. C 86, 034003 (2012).
V.N. Pomerantsev, V.I. Kukulin, O.A. Rubtsova, Phys. Rev. C 79, 034001 (2009).
O.A. Rubtsova, V.I. Kukulin, V.N. Pomerantsev, Phys. Rev. C 79, 064602 (2009).
В.И. Кукулин, О.А. Рубцова, ТМФ 134, 459 (2003).

Спасибо за внимание!