Низкоразмерные малочастичые системы в физике ультрахолодных квантовых газов

В.С.Мележик

ЛТФ ОИЯИ, Дубна

Дубна, 6-7 февраля 2014

- Quantum gas, what is this? Why it is interesting?
- Low-dimensional quantum systems in confining traps
- Theoretical models (pseudopotential approach)
- Confinement-induced resonances in atomic traps
- Resonance mechanism of molecule formation in 1D trap with CM excitation
- Dipolar confinement-induced resonances
- "Fermionization of two distinguishable fermions"
- Outlook

Pseudopotential approximation in quasi-1D ("zero-range" potentials Yu.N.Demcov & V.N.Ostrovskii)

M.Olshanii, Phys. Rev. Lett. 81(1998)938

$$\begin{split} \hat{H} &= \hat{H}_{z} + \hat{H}_{\perp} + \hat{V}, \\ \hat{H}_{z} &= -\frac{\hbar^{2}}{2\mu} \frac{\partial^{2}}{\partial z^{2}}; \ \hat{V}(\mathbf{r}) = \frac{2\pi\hbar^{2}a}{\mu} \delta^{3}(\mathbf{r}) \\ \hat{H}_{\perp} &= -\frac{\hbar^{2}}{2\mu} \Big[\frac{\partial^{2}}{\partial \rho^{2}} + \frac{1}{\rho} \frac{\partial}{\partial \rho} \Big] + \frac{\mu}{2} \omega_{\perp}^{2} \rho^{2}, \\ a_{\perp} &= \sqrt{\frac{\hbar}{\mu\omega_{\perp}}} \\ a_{\perp} &= \sqrt{\frac{\hbar}{\mu\omega_{\perp}}} \end{split}$$

C = 1.46...

Pseudopotential approximation in quasi-1D (gas of impenetrable bosons at $a_{\perp}/a = C$)

$$g_{1D} = -\frac{\hbar^2}{\mu a_{1D}} = \frac{2\hbar^2 a}{\mu a_1^2} \frac{1}{(1 - Ca/a_1)} = \frac{\hbar^2 k \operatorname{Re}\{f_0^+\}}{\mu \operatorname{Im}\{f_0^+\}}$$

$$CIR: g_{1D} \to \pm \infty \quad a_{1D} \to 0 \qquad f_0^+ = -\frac{1}{1 + ika_{1D}} \to -1$$

$$CIR \qquad T = |1 + f_0^+|^2 \to 0 \quad !!$$

$$F_{[ho]} \qquad \int_{1}^{0} \frac{F_r}{E_b} \qquad \int_{1}^{0} \frac{1}{C^2 - 3} \int_{1}^{2} \frac{1}{C^2 -$$

Experimental observation of CIR

T. Kinoshita, T. Wenger, D. S. Weiss, Science 305, 1125 (2004).B. Paredes *et al.*, Nature 429, 277 (2004).

strongly-correlated Tonks-Girardeau gas

E. Haller et al., Science 325, 1224 (2009)

Confinement-Induced Resonances in Low-Dimensional Quantum Systems

Elmar Haller,¹ Manfred J. Mark,¹ Russell Hart,¹ Johann G. Danzl,¹ Lukas Reichsöllner,¹ Vladimir Melezhik,² Peter Schmelcher,³ and Hanns-Christoph Nägerl¹

¹Institut für Experimentalphysik and Zentrum für Quantenphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria ²Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, 141980 Dubna, Russia ³Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany (Received 19 February 2010; published 14 April 2010)

In experiment performed in Innsbruck in collaboration with theoreticians from JINR and Hamburg, properties of ultracold Cs were studied by measuringthe atom loss in a 2D lattice formed by two retro-reflected laser beams

Tuning the interaction in 3D

Tuning the interaction in 3D

single-channel pseudopotential

$$\frac{2\pi\hbar^2 a_{3\mathrm{D}}(\mathrm{B})}{\mu}\delta(\mathrm{r})$$

Tuning the interaction in 1D: B and \odot

single-channel pseudopotential

$$\frac{2\pi\hbar^2 a_{3\mathrm{D}}(\mathrm{B})}{\mu}\delta(\mathrm{r})$$

single-channel pseudopotential with renormalized interaction constant

$$g_{1D} = \frac{2\hbar^2 a_{3D}(B)}{\mu a_{\perp}^2} \frac{1}{1 - C a_{3D}/a_{\perp}}$$

M. Olshanii, PRL 81, 938 (1998).

E.Haller, M.J. Mark, R. Hart, J.G. Danzl, L. Reichsoellner, V.Melezhik, P. Schmelcher and H.-C. Naegerle, Phys.Rev.Lett. 104 (2010)153203

isotropic traps $\omega_1 = \omega_2 = \omega_{\perp}$

E.Haller, M.J. Mark, R. Hart, J.G. Danzl, L. Reichsoellner, V.Melezhik, P. Schmelcher and H.-C. Naegerle, Phys.Rev.Lett. 104 (2010)153203

E.Haller, M.J. Mark, R. Hart, J.G. Danzl, L. Reichsoellner, V.Melezhik, P. Schmelcher and H.-C. Naegerle, Phys.Rev.Lett. 104 (2010)153203

tensorial structure of the interatomic interaction V(r)

Feshbach Resonanzen

Figure 2.7.: Scattering length as a function of magnetic field for the state F = 3, $m_F = 3$. There is a Feshbach resonance at 48.0 G due to coupling to a *d*-wave molecular state. Several very narrow resonances at 11.0, 14.4, 15.0, 19.9 and 53.5 G are visible, which result from coupling to *g*-wave molecular states. The quantum numbers characterizing the molecular states are indicated, here as (l, f, m_f) .

two-channel problem

two-channel problem

tensorial sructure of molecular state

two-channel problem

tensorial sructure of molecular state

Innsbruck experiment with Cs atoms:

Feshbach Resonanzen

two-channel model of Lange et. al. Phys.Rev.79,013622(2009)

 $\Gamma = \delta \mu \Delta$

TABLE I. Fitting parameters for the s-, d-, and g-wave Feshbach resonances, determining the scattering length in the magnetic-field range of interest; see Fig. 3. The background scattering length $a_{bg} = 1875a_0$, the mean scattering length of cesium, $\bar{a}=95.7a_B$, and the bare s-wave state magnetic moment $\delta \mu_1 = 2.50 \mu_B$ [28] are set constant. Poles $B_{0,i}$ and zeros B_i^* of the scattering length are derived; see text. Uncertainties in the parentheses are statistical. The systematic uncertainty of the magnetic field is 10 mG.

Res.	Γ_i/h (MHz)	$\delta \mu_i / \mu_B$	$B_{c,i}$ (G)	$B_{0,i}$ (G)	B_i^* (G)
S-WV.	11.6(3)	2.50	19.7(2)	-11.1(6)	18.1(6)
d-wv.	0.065(3)	1.15(2)	47.962(5)	47.78(1)	47.944(5)
<i>g</i> -wv.	0.0042(6)	1.5(1)	53.458(3)	53.449(3)	53.457(3)

extension of two-channel model of Lange et. al. to 1D geometry

Sh.Saeidian, V.S. Melezhik ,and P.Schmelcher, Phys.Rev. A86, 062713 (2012)

A four-channel square-well potential

$$\hat{V} = \begin{pmatrix} -V_{c,3} & 0 & 0 & \hbar\Omega_3 \\ 0 & -V_{c,2} & 0 & \hbar\Omega_2 \\ 0 & 0 & -V_{c,1} & \hbar\Omega_1 \\ \hbar\Omega_3 & \hbar\Omega_2 & \hbar\Omega_1 & -V_e \end{pmatrix} \qquad |\psi\rangle = \sum_{\alpha} \psi_{\alpha}(\mathbf{r})|\alpha\rangle = \sum_{\alpha} \phi_{\alpha}(r)Y_{l_{\alpha}0}(\hat{r})|\alpha\rangle$$

$$\omega_{\perp} = 0$$

$$\begin{bmatrix} -\frac{\hbar^2}{2\mu} \frac{d^2}{dr^2} + \frac{\hbar^2 l_{\alpha}(l_{\alpha}+1)}{2\mu r^2} + B_{\alpha\alpha} \end{bmatrix} \phi_{\alpha}(r) + \sum_{\beta} V_{\alpha\beta}(r)\phi_{\beta}(r) = E\phi_{\alpha}(r)$$

$$\psi_{e}(\mathbf{r}) \to \exp\{ikz\} + f(k,\theta)/r \exp\{ikr\}, \quad \psi_{c,i}(\mathbf{r}) \to 0$$

4-coupled radial equations

extension of two-channel model of Lange et. al. to 1D geometry

Sh.Saeidian, V.S. Melezhik ,and P.Schmelcher, Phys.Rev. A86, 062713 (2012)

A four-channel square-well potential

$$\hat{V} = \begin{pmatrix} -V_{c,3} & 0 & 0 & \hbar\Omega_3 \\ 0 & -V_{c,2} & 0 & \hbar\Omega_2 \\ 0 & 0 & -V_{c,1} & \hbar\Omega_1 \\ \hbar\Omega_3 & \hbar\Omega_2 & \hbar\Omega_1 & -V_e \end{pmatrix} \qquad |\psi\rangle = \sum_{\alpha} \psi_{\alpha}(\mathbf{r})|\alpha\rangle = \sum_{\alpha} \phi_{\alpha}(r)Y_{l_{\alpha}0}(\hat{r})|\alpha\rangle$$

$$\omega_{\perp} = 0$$

$$\begin{bmatrix} -\frac{\hbar^2}{2\mu} \frac{d^2}{dr^2} + \frac{\hbar^2 l_{\alpha}(l_{\alpha}+1)}{2\mu r^2} + B_{\alpha\alpha} \end{bmatrix} \phi_{\alpha}(r) + \sum_{\beta} V_{\alpha\beta}(r)\phi_{\beta}(r) = E\phi_{\alpha}(r)$$
4-coupled radial equations
$$\psi_{e}(\mathbf{r}) \to \exp\{ikz\} + f(k,\theta)/r \exp\{ikr\}, \quad \psi_{c,i}(\mathbf{r}) \to 0$$

$$\omega_{\perp} \neq 0$$

$$\left(\left[-\frac{\hbar^2}{2\mu} \nabla^2 + \frac{1}{2} \mu \omega_{\perp}^2 \rho^2 \right] \hat{I} + \hat{B} + \hat{V}(r) \right) |\psi\rangle = E |\psi\rangle$$

4-coupled 2D equations in the plane $\{r, heta\}$

 $\psi_{e}(\mathbf{r}) = [\cos(k_0 z) + f_{e} \exp\{ik_0|z|\}]\Phi_0(\rho), \quad \psi_{c,i}(\mathbf{r}) \to 0$

 $T(B) = |1 + f_e(B)|^2$

extension of two-channel model of Lange et. al. to 1D geometry

Sh.Saeidian, V.S. Melezhik ,and P.Schmelcher, Phys.Rev. A86, 062713 (2012)

A four-channel square-well potential

$$\hat{V} = \begin{pmatrix} -V_{c,3} & 0 & 0 & \hbar\Omega_3 \\ 0 & -V_{c,2} & 0 & \hbar\Omega_2 \\ 0 & 0 & -V_{c,1} & \hbar\Omega_1 \\ \hbar\Omega_3 & \hbar\Omega_2 & \hbar\Omega_1 & -V_e \end{pmatrix} \qquad |\psi\rangle = \sum_{\alpha} \psi_{\alpha}(\mathbf{r})|\alpha\rangle = \sum_{\alpha} \phi_{\alpha}(r)Y_{l_{\alpha}0}(\hat{r})|\alpha\rangle$$

$$\omega_{\perp} = 0$$

10

$$\begin{bmatrix} -\frac{\hbar^2}{2\mu} \frac{d^2}{dr^2} + \frac{\hbar^2 l_{\alpha}(l_{\alpha}+1)}{2\mu r^2} + B_{\alpha\alpha} \end{bmatrix} \phi_{\alpha}(r) + \sum_{\beta} V_{\alpha\beta}(r)\phi_{\beta}(r) = E\phi_{\alpha}(r) \qquad \text{4-coupled radial equations}$$

$$\psi_{e}(\mathbf{r}) \to \exp\{ikz\} + f(k,\theta)/r \exp\{ikr\}, \qquad \psi_{c,i}(\mathbf{r}) \to 0$$

$$\omega_{\perp} \neq 0$$

$$\left(\left[-\frac{\hbar^2}{2\mu} \nabla^2 + \frac{1}{2} \mu \omega_{\perp}^2 \rho^2 \right] \hat{I} + \hat{B} + \hat{V}(r) \right) |\psi\rangle = E |\psi\rangle$$

4-coupled 2D equations in the plane $\{r, \theta\}$

 $\psi_{e}(\mathbf{r}) = [\cos(k_0 z) + f_{e} \exp\{ik_0|z|\}]\Phi_0(\rho), \quad \psi_{c,i}(\mathbf{r}) \to 0$

 $T(B)=|1+f_{\epsilon}(B)|^2$

scattering problem \rightarrow boundary-value problem

V.Melezhik, C.Y.Hu, Phys.Rev.Lett.90(2003)083202 S.Saeidian, V.Melezhik, P.Schmelcher, Phys.Rev.A77(2008)042701

Sh.Saeidian, V.S. Melezhik ,and P.Schmelcher, Phys.Rev. A86, 062713 (2012)

region of Innsbruck experiment (d-wave Feshbach resonance)

Sh.Saeidian, V.S. Melezhik ,and P.Schmelcher, Phys.Rev. A86, 062713 (2012)

M.Olshanii, Phys.Rev.Lett.81,938 (1998) : $a_{3D} = 0.64a_{\perp}$

experiment: E.Haller et.al. Phys.Rev.Lett.104, 153203 (2010)

Sh.Saeidian, V.S. Melezhik ,and P.Schmelcher, Phys.Rev. A86, 062713 (2012)

our multi-channel theory coincides with single-channel theory of M.Olshanii, Phys.Rev.Lett.81,938 (1998) : $a_{3D} = 0.64a_{\perp}$

experiment: E.Haller et.al. Phys.Rev.Lett.104, 153203 (2010)

region of Innsbruck experiment (d-wave Feshbach resonance)

Sh.Saeidian, V.S. Melezhik ,and P.Schmelcher, Phys.Rev. A86, 062713 (2012)

region of Innsbruck experiment (d-wave Feshbach resonance)

Innsbruck data, E.Haller (unpublished)

Sh.Saeidian, V.S. Melezhik ,and P.Schmelcher, Phys.Rev. A86, 062713 (2012)

region of Innsbruck experiment (d-wave Feshbach resonance)

- 1) d-wave shape resonance
- 2) Efimov like resonance (3 body) :

anisotropic traps $\omega_1 - \omega_2 = \Delta \neq 0$

?

CIR splitting

?

anisotropic traps $\omega_1 - \omega_2 = \Delta \neq 0$

Two attempts to describe the CIR splitting at $\omega_1 = \omega_2$ in pseudopotential approach

S.-G.Peng, S. Bohloul, X.J. Liu, H. Hu, P. Drummond, Phys.Rev.A82(2010) W.Zhang, P.Zhang, Phys.Rev.A83(2011)

$$\mathcal{H}_{rel} = -\frac{\hbar^2}{2\mu} \frac{\partial^2}{\partial z^2} + \mathcal{H}_{\perp} + g_{3D} \delta(\mathbf{r}) \frac{\partial}{\partial r} r,$$

where $g_{3D} = 4\pi \hbar^2 a_{3D} / m$
 $\mathcal{H}_{\perp} = -\frac{\hbar^2}{2\mu} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + \frac{1}{2} \mu \omega_y^2 \left(\eta^2 x^2 + y^2 \right)$

 $\mathcal{H}_{1D} = -\frac{\hbar^2}{2\mu} \frac{\partial^2}{\partial z^2} + g_{1D}\delta(z)$ $g_{1D} = \frac{2\hbar^2 a_{3D}}{\mu d^2} \frac{\sqrt{\eta}}{1 - \sqrt{\eta}C(a_{3D}/d)}$

no CIR splitting !

Multichannel scattering problem in harmonic waveguide (1D geometry)

Hamiltonian (atom-atom relative motion)

$$H(x, y, z) = -\frac{\hbar^2}{2\mu} \triangle_{\mathbf{r}} + \frac{1}{2}\mu \omega_1^2 x^2 + \frac{1}{2}\mu \omega_2^2 y^2 + V(r)$$

scattering wave function at $|z| \rightarrow +\infty$

$$\psi_{n_1,n_2}(\mathbf{r}) = \cos(k_{n_1,n_2}z)\phi_{n_1,n_2}(x,y) + \sum_{\substack{n_1,n_2=0\\n_1',n_2'=0}}^{m_1,m_2} f_{n_1,n_2}^{n_1',n_2'}$$

 $\times \exp\{i\kappa_{n_1',n_2'} \mid z \mid\} \varphi_{n_1',n_2'}(x,y)$.

 $f_{n_1,n_2}^{n'_1,n'_2}(E)$ cattering amplitude describes transition

from
$$E_{\perp}^{(n_1,n_2)} = \hbar [\omega_1 (n_1 + \frac{1}{2}) + \omega_2 (n_2 + \frac{1}{2})]$$

to $E = E_{\perp}^{(n'_1,n'_2)} + E'_{\parallel}$ V.Melezhik &P.Schmelcher,

V.Melezhik & P.Schmelcher, Phys.Rev.A84(2011)

Multichannel scattering problem in harmonic waveguide (1D geometry)

partial transmission coefficients

$$T_{n_1,n_2} = \sum_{n'_1,n'_2} \frac{k_{n'_1,n'_2}}{k_{n_1,n_2}} | \delta_{n_1,n'_1} \delta_{n_2,n'_2} + f_{n_1,n_2}^{n'_1,n'_2} |^2$$

describe transition probabilities from initial transverse state (n_1, n_2) to all possible final states (n'_1, n'_2)

total transmission coefficient
$$T = \sum W_n T_n$$

initial population W_n of the state n={n₁,n₂}

dependence of total transmission coefficient $T(a_{\perp}/a_s, W_2/W_0)$ on population W_2/W_0

necessary ingredient for the splitting of the minimum of T is a population at least a few percent of the transversally excited state

region of Innsbruck experiment (d-wave Feshbach resonance)

energy release ?

• triple collisions $A + A + A \rightarrow (AA) + A$:

energy release ?

• triple collisions $A + A + A \rightarrow (AA) + A$:

detection of the CIR by an increase of three-body loss:

E.Haller, M.J. Mark, R. Hart, J.G. Danzl, L. Reichsoellner, V.Melezhik, P. Schmelcher and H.-C. Naegerl, Phys.Rev.Lett. 104 (2010)153203

• triple collisions $A + A + A \rightarrow (AA) + A$:

detection of the CIR by an increase of three-body loss:

energy release ?

E.Haller, M.J. Mark, R. Hart, J.G. Danzl, L. Reichsoellner, V.Melezhik, P. Schmelcher and H.-C. Naegerl, Phys.Rev.Lett. 104 (2010)153203

• pair collisions with CM excitation $A_{n1=0}+B_{n2=0} \rightarrow (AB)_{n=0,N=1}$

Mechanism of molecule formation with transferring the energy release to CM excitation of forming molecule was considered in:

E.Bolda et.al. Phys.Rev. A71,033404 (2004) (in anharmonic lattices)

V.Melezhik & P.Schmelcher, New J.Phys.11,073031 (2009) (distinguishable atoms in harmonic waveguides)

V. Melezhik & P. Schmelcher, New J. of Phys. 11, 073031 (2009)

V. Melezhik & P. Schmelcher, New J. of Phys. 11, 073031 (2009)

zhik & P. Schmelcher, New J. of Phys. 11, 073031 (2009)

$$i\frac{\partial}{\partial t}\psi(\rho_R, \mathbf{r}, t) = H(\rho_R, \mathbf{r})\psi(\rho_R, \mathbf{r}, t)$$

 $H(\rho_R, \mathbf{r}) = H_{CM}(\rho_R) + H_{rel}(\mathbf{r}) + W(\rho_R, \mathbf{r})$
 $H_{CM} = -\frac{1}{2M} \left(\frac{\partial^2}{\partial \rho_R^2} + \frac{1}{\rho_R^2}\frac{\partial^2}{\partial \phi^2} + \frac{1}{4\rho_R^2}\right) + \frac{1}{2}(m_1\omega_1^2 + m_2\omega_2^2)\rho_R^2$
 $H_{rel} = -\frac{1}{2\mu}\frac{\partial^2}{\partial r^2} + \frac{L^2(\theta, \phi)}{2\mu r^2} + \frac{\mu^2}{2}\left(\frac{\omega_1^2}{m_1} + \frac{\omega_2^2}{m_2}\right)\rho^2 + V(r)$
 $\frac{L^2(\theta, \phi)}{2\mu r^2} = -\frac{1}{2\mu r^2}\sin\theta \left(\frac{\partial}{\partial \theta}\sin\theta\frac{\partial}{\partial \theta} + \frac{1}{\sin\theta}\frac{\partial^2}{\partial \phi^2}\right)$
 $\overline{\psi_1^2 - \omega_2^2}r\rho_R\sin\theta\cos\phi \longrightarrow AD TDSE: \rho_R, r, \theta, \phi$

$$i\frac{\partial}{\partial t}\psi(\rho_{R},\mathbf{r},t) = H(\rho_{R},\mathbf{r})\psi(\rho_{R},\mathbf{r},t)$$

$$H(\rho_{R},\mathbf{r}) = H_{CM}(\rho_{R}) + H_{rel}(\mathbf{r}) + W(\rho_{R},\mathbf{r})$$

$$H_{CM} = -\frac{1}{2M}\left(\frac{\partial^{2}}{\partial\rho_{R}^{2}} + \frac{1}{\rho_{R}^{2}}\frac{\partial^{2}}{\partial\phi^{2}} + \frac{1}{4\rho_{R}^{2}}\right) + \frac{1}{2}(m_{1}\omega_{1}^{2} + m_{2}\omega_{2}^{2})\rho_{R}^{2}$$

$$H_{rel} = -\frac{1}{2\mu}\frac{\partial^{2}}{\partial r^{2}} + \frac{L^{2}(\theta,\phi)}{2\mu r^{2}} + \frac{\mu^{2}}{2}\left(\frac{\omega_{1}^{2}}{m_{1}} + \frac{\omega_{2}^{2}}{m_{2}}\right)\rho^{2} + V(r)$$

$$\frac{L^{2}(\theta,\phi)}{2\mu r^{2}} = -\frac{1}{2\mu r^{2}}\frac{\partial}{\sin\theta}\left(\frac{\partial}{\partial\theta}\sin\theta\frac{\partial}{\partial\theta} + \frac{1}{\sin\theta}\frac{\partial^{2}}{\partial\phi^{2}}\right)$$

$$u(\omega_{1}^{2} - \omega_{2}^{2})r\rho_{R}\sin\theta\cos\phi \longrightarrow \mathbf{4D} \mathbf{TDSE:} \rho_{R}, r, \theta, \phi$$

New J of Phys 11 073031 (2009)

 $A_{n1=0} + B_{n2=0} \rightarrow (AB)_{n=0,N=1}$

5D TDSE

Discretization of the angular subspace:
 2D nondirect product discrete variable representation (npDVR)

$$\begin{split} \psi(\rho_R, r, \Omega, t) &= \sum_{j=1}^N f_j(\Omega) \psi_j(\rho_R, r, t) \qquad \sum_{\nu=1}^N = \sum_{m=-(N_\phi - 1)/2}^{(N_\phi - 1)/2} \sum_{l=|m|}^{|m|+N_\theta - 1} \\ f_j(\Omega) &= \sum_{\nu=1}^N Y_\nu(\Omega) (Y^{-1})_{\nu j} \qquad \qquad \Omega_j = (\theta_{j_\theta}, \phi_{j_\phi}) \qquad \underbrace{N_\phi}_{l=|m|} \\ Y_\nu(\Omega) &= Y_{lm}(\Omega) = e^{im\phi} \sum_{\nu} C_l^{l'} \times P_{l'}^m(\theta) \qquad \qquad Y_{j\nu} = Y_\nu(\Omega_j) \qquad \underbrace{N_\phi}_{l=|m|} \\ \end{split}$$

• Computational scheme: component-by-component split operator method $i \frac{\partial}{\partial t} \psi_j(\rho_R, r, t) = \sum_{j'}^N H_{jj'}(\rho_R, r) \psi_{j'}(\rho_R, r, t) \quad t_n \to t_{n+1} = t_n + \Delta t$

interaction is diagonal in ndDVR $f_j(\Omega) \longleftarrow S_{j\nu} = \lambda_j^{1/2} Y_{j\nu}$ kinetic energy operator is diagonal in $Y_{\nu}(\Omega) = Y_{lm}(\Omega)$

V.Melezhik, Phys.Lett.A230(1997)203 V.Melezhik, J.I.Kim, P.Schmelcher, Phys.Rev.A76(2007)053611

economic computational scheme

V.Melezhik, Phys.Lett.A230(1997)203 V.Melezhik, AIP Conf.Proc.1479(2012)1200 V.Melezhik, J.I.Kim, P.Schmelcher, Phys.Rev.A76(2007)053611

BLTP JINR two-core Intel processor Xenon 5160 with 3GHz frequency

$$A_{n1=0} + B_{n2=0} \rightarrow (AB)_{n=0,N=1}$$

Time evolution of the probability density distribution during collision

 $W(\rho_{\rm R}, r, t) = \int |\psi(\rho_{\rm R}, r, \theta, \phi, t)|^2 (r^2 \rho_{\rm R})^{-1} \sin\theta \, \mathrm{d}\theta \, \mathrm{d}\phi$

CM coupling with interatomic motion:

$$A_{n1=0} + B_{n2=0} \rightarrow (AB)_{n=0,N=1}$$

Time evolution of the probability density distribution during collision

 $W(\rho_{\rm R}, r, t) = \int |\psi(\rho_{\rm R}, r, \theta, \phi, t)|^2 (r^2 \rho_{\rm R})^{-1} \sin\theta \, \mathrm{d}\theta \, \mathrm{d}\phi$

CM coupling with interatomic motion:

CM decouples from interatomic motion:

Resonant Formation of Ultracold Molecules in Waveguides

V. Melezhik & P. Schmelcher, New J. of Phys. 11, 073031 (2009)

coupling of the deatomic continuum with the CM of excited molecule at (N=1) in closed transverse channels:

 $W(\rho_{\mathbf{R}}, \mathbf{r}) = \mu \left(\omega_{1}^{2} - \omega_{2}^{2}\right) r \rho_{\mathbf{R}} \sin \theta \cos \phi$

if the atoms in the colliding pair are identical, then coupling term goes to zero and the effect disappears.

TDSE: 4D

 $A_{n1=0} + B_{n2=0} \rightarrow (AB)_{n=0,N=1}$

Time evolution of the molecular states (N=0 and 1) population P_A(t) during a pair collision:

in Heidelberg experiment, S.Sala et. al. Phys.Rev.Lett.110,203202 (2013), the mechanism of molecule formation with transferring energy release to CM molecule excitation was observed in anharmonic waveguide

P.Giannakeas, V. Melezhik & P.Schmelcher, PRL, 111(2013)

 $\stackrel{d}{\rightarrow} \stackrel{d}{\rightarrow}$

$$H = -\frac{\hbar^2}{2\mu} \nabla^2 + \underbrace{\frac{C_{12}}{r^{12}} - \frac{C_6}{r^6}}_{V_{sr}} + \underbrace{\frac{d^2}{r^3} [1 - 3(\hat{z} \cdot \hat{r})]}_{V_{gr}}$$

$$V_{dd}$$

$$\downarrow$$

$$\underbrace{K^{3D}}_{K_{ds}} = \begin{pmatrix} K_{ss} & K_{sd} & 0 \\ K_{ds} & K_{dd} & K_{dg} \\ 0 & K_{gd} & K_{gg} \end{pmatrix}$$

$$a_{ll'} = -\frac{K_{ll'}}{k}$$

$$l_d = \frac{\mu d^2}{\hbar^2}$$

P.Giannakeas, V. Melezhik & P.Schmelcher, PRL,111(2013)

$$H = -\frac{\hbar^2}{2\mu}\nabla^2 + \frac{\mu}{2}\omega_{\perp}^2\rho^2 + \frac{C_{12}}{r^{12}} - \frac{C_6}{r^6} + \frac{d^2}{r^3}[1 - 3(\hat{z} \cdot \hat{r})]$$

$$\int V_{sr} \qquad V_{dd}$$

$$\downarrow$$

$$\tilde{K}_{oo}^{1D} = \underline{K}_{oo}^{1D} + i\underline{K}_{oc}^{1D}(\mathcal{I} - i\underline{K}_{cc}^{1D})^{-1}\underline{K}_{co}^{1D} \qquad \underline{K}^{3D} = \begin{pmatrix} K_{ss} & K_{sd} & 0\\ K_{ds} & K_{dd} & K_{dg}\\ 0 & K_{gd} & K_{gg} \end{pmatrix}$$

$$\det(\mathcal{I} - i\underline{K}_{cc}^{1D}) = 0$$

$$a_{ll'} = -\frac{K_{ll'}}{k} \qquad \bar{a}_{ll'} = \frac{a_{ll'}}{a_{\perp}}$$

$$l_d = \frac{\mu d^2}{\hbar^2} \qquad \bar{l}_d = \frac{l_d}{a_1}$$

P.Giannakeas, V. Melezhik & P.Schmelcher, PRL,111(2013)

$$\begin{array}{c}
\rho\\
\hline
d & -d & -d \\
\hline
d & -d &$$

$$\mathcal{F}_{BA} = -\frac{1 + \eta_1 \bar{l}_d + \eta_2 \bar{l}_d^2 + \eta_3 \bar{l}_d^3}{\sigma_0 + \sigma_1 \bar{l}_d + \sigma_2 \bar{l}_d^2}$$

For $l_d = 0$, the resonance condition $\bar{a}_{ss} = \mathcal{F}_{BA}$ reduces to $\bar{a}_s = -1/\sigma_0 = 0.68$ $a_s = 0.68 a_{\perp}$

Quantum simulation with fully controlled few-body systems

control over: quantum states

particle number

interaction

G.Zurn et. al. Phys. Rev. Lett. 108, 075303 (2012)

Fermionization of two distinguishable Fermions

G.Zurn et. al. Phys. Rev. Lett. 108, 075303 (2012)

How one can measure this?

Prepare the systems with high fidelity in the ground state

modify the interaction strength

• measure the energy of the systems

Measurement of the energy: Tunneling with interaction

G.Zurn et. al. Phys. Rev. Lett. 108, 075303 (2012)

Determine tunneling time

fixed barrier height, different magnetic field values

G.Zurn et. al. Phys. Rev. Lett. 108, 075303 (2012)

- Same tunneling time → Same energy
- Same energy → in 1D only one unique solution for the wavefunction square
 - → Experimental proof of the mapping:

Fermionisation of two distinguishable fermions

Deduce energy from tunneling time

WKB: Determination of the potential

- Tunneling exponentially sensitive to potential shape
- Calibration of the potential
- Obtain energies from tunneling time

Compare to theory for harmonic trap

 Improvement: theory of Quasiparticle tunneling

M.Rontani, arXiv: 1111.3611

Achievement:

- few-particle systems in well defined quantum states
- Control over the interaction strength of 2 particles
- Tested various spectroscopic methods

<u>Opened the door for Quantum simulation of few body systems</u>

G.Zurn et. al. Phys. Rev. Lett. 108, 075303 (2012)

Experimental setups in:

MIT (Boston), Boulder, NIST (Washington), Munich, Heidelberg, Shtutgart, Hamburg, Innsbruck, Vienna, Paris, Firenze, Barselona, N.Novgorod, Troitsk ...

 Rb, Cs, K, Sr, Li ...

 $Rb_2, Cs_2, RbK ...$

 1D, 2D, 3D

~ 80 experimental groups worldwide

time of simple models is over

Quantum simulation with fully controlled few-body systems

control over: quantum states, particle number, interaction

- attractive interactions **→** BCS-like pairing in finite systems
- repulsive int.+splitting of trap → entangled pairs of atoms (quantum information processing)
- + periodic potential

 quantum many-body physics (systems with low entropy to explore such as quantum magnetism)
- ..

From Artificial Quantum Matter to Real Materials

Ultracold Quantum Gases in Optical Lattices 10¹⁴/cm³ • Densities: (100000 times thinner than air) • Temperatures: few nK (100 millionen times lower than outer space) Crystal Structures and Material Parameters can be changed dynamically and in-situ.

Real Materials

e.g. High-T_c Superconductors (YBCO)

• Densities:

10²⁴-10²⁵/cm³

• Temperatures:

mK – several hundred K

• Crystal Structures and Material Parameters given by Material (Tuning possible via e.g. external parameters like e.g. pressure, B-fields or via synthesis)

New tunable model systems for many body systems!

R. P. Feynman's Vision

A Quantum Simulator to study the quantum dynamics of another system.

R.P. Feyman, Int. J. Theo. Phys. (1982) R.P. Feynman, Found. Phys (1986) Fermions in Lattices (Hubbard Model, Superconductivity)

Bose-Fermi mixtures

Disordered Systems

Quantum Magnets (in spin mixtures, Ising, XY model, Heisenberg model)

Nonequilibrium Dynamics

Spin-Liquid Systems & Topological Quantum Phases

Condensed Quantum **Matter Physics** Information Atomic-Molecular Physics

Towards (One Way) Quantum Computing

Large Scale Entanglement, Nonclassical Field States

Decoherence

Single Site Addressing

Spin Squeezing

Quantum Metrology

High precision spectroscopy, Search for EDM Controlled Molecule Formation in arbitrary quantum states Formation of heteronuclear molecules with dipole moments Control interaction properties (mag. & opt. Feshbach resonances)

Results were obtained in collaboration with

Peter Schmelcher (ZOQ,Hamburg) Panagiotis Giannakeas (ZOQ,Hamburg) Shahpoor Saeidian (IASBS,Zanjan,Iran)

Innsbruck experiment: Elmar Haller Hans-Chrisroph Nagerl