Горение атомных ядер:

Гидростатическое горение

FBS2014

В.Н. Кондратьев

Киевский национальный университет имени Тараса Шевченко, UA-03022 Киев, Украина ЛТФ, ОИЯИ, 141980, Дубна Россия

Energy vs Work in Comparison

– Energy (joules) 1.3 10³ Average daytime solar energy on Earth/m² sec 106 Energy from metabolism of a candy bar 1 Energy spend at 1 hour walking (adult) 1 10^{6} Kinetic energy of a car at 100 km/hr 106 1 • Daily energy needs of an adult 10^{7} 1 1.2 10⁷ Energy released at burning 1 liter oil Energy released at fission of 1kg ²³⁵U **5.6** 10¹³ Energy from fusion of hydrogen in 1I water 7 **10**¹³ 5 10¹⁵ Energy released by 1 megaton H-bomb 2.5 10¹⁶ Energy at major earthquake (magnitude 8) 10³⁴ Annual energy generation by Sun 1044--1046 Energy released at supernova (star explosion)

Nuclear Reactors

Fusion

Fission

Nuclear Binding Energy Map

Solar Abundances

Hertzsprung- Russell (H-R) diagram

Stefan-Boltzmann Law for flux

of a star with radius R & surface temperature T L~(Surface)T⁴~R²T⁴

Solar System

- Sun(star) + 9 planets M, V, E, Mars, J S N U
- (P= dwarf planet) Distance Earth to Sun= $1.5x \ 10^{11} \ m= 1AU$

Pluto-Sun= 39. 5 AU

Structure of low mass star,

- Nuclear fusion in core with high temperature & pressure
- released energy that is transported to photosphere & emitted

 $4p \rightarrow ^{4}He + 2e^{+} + 2v_{e}$ pp chains $p + p \longrightarrow d + e^+ + v_e + 0.42 \text{ MeV}$ (99.75%) 5.8 Byears $p + e^{-} + p \longrightarrow d + v_e$ (0.25%). \rightarrow ³He + γ + 5,49 MeV \Box^{3} He (86%) 2. One proton decay +p → ⁴He+2p - **ppl** to a neutron, for $1,5 \times 10^5$ years deuterium (Q = 24.7 MeV)• $^{\prime}Be + \gamma$ \Box^{4} He (14%) Proton $6,5 \times 10^5$ years fusion □ p (0.1%) 71

Competition pp chains vs temperature

pp & CNO cycles vs temperature

solar neutrino spectrum

Solar (& other) Neutrino different fluxes observations expectations from standard solar model (**SSM**) Fluxes $\phi(^7Be) \approx 0 \quad \phi(^8B) \approx 0.43\phi^{\text{SSM}}(^8B)$

Neutrino masses & vacuum neutrino Oscillations

weak interaction eigenstates $v_e \leftrightarrow \rightarrow positron$ NEUTRINO $v_{\mu} \leftrightarrow muon$ MASS eigenstates $|\nu_1\rangle \& |\nu_2\rangle$ with masses $m_1 \& m_2$ $|\upsilon_{\rm e}\rangle = \cos\theta_{\rm p} |\upsilon_{\rm 1}\rangle + \sin\theta_{\rm p} |\upsilon_{\rm 2}\rangle$ $|\upsilon_{\mu}\rangle = \sin\theta_{\nu} |\upsilon_{1}\rangle + \cos\theta_{\nu} |\upsilon_{2}\rangle$ (vacuum) mixing angle

time t=0 \rightarrow $|\upsilon(t=0)\rangle = |\upsilon_{e}\rangle = \cos\theta_{\upsilon} |\upsilon_{1}\rangle + \sin\theta_{\upsilon} |\upsilon_{2}\rangle$

Each eigenstate propagates with a phase

$$\exp\left\{i\left(\vec{k}\vec{x}-\omega t\right)\right\} = \exp\left\{i\left(\vec{k}\vec{x}-t\sqrt{m_i^2+k^2}\right)\right\}$$

neutrino mass<\mathbf{v}^{\sqrt{m_i^2 + k^2}} \approx k \left(1 + \frac{m_i^2}{2k^2} \right)
$$|\upsilon(t)\rangle = \exp\left\{ i \left(\vec{k} \vec{x} - kt - \frac{m_1^2 + m_2^2}{2k} t \right) \right\}$$
$$\left[\cos \theta_{\upsilon} |\upsilon_1\rangle \exp\left\{ i \delta m^2 t / 4k \right\} + \sin \theta_{\upsilon} |\upsilon_2\rangle \exp\left\{ -i \delta m^2 t / 4k \right\} \right]$$
$$\mathbf{BEAT PHASE} \quad \delta m^2 = m_2^2 - m_1^2$$

PROBABILITY for neutrino state

to remain
$$|\upsilon_e\rangle$$
 at time I
 $P_{\upsilon_e}(t) = |\langle \upsilon_e | \upsilon(t) \rangle|^2$
 $= 1 - \sin^2 2\theta_{\upsilon} \sin^2 \left(\frac{\delta m^2 t}{4k}\right) \Rightarrow 1 - \sin^2 2\theta_{\upsilon}$
 $m << E \sim k \Rightarrow P_{\upsilon}(x) = 1 - \sin^2 2\theta_{\upsilon} \sin^2 \left(\frac{\delta m^2 c^4 x}{4\hbar cE}\right)$
oscillation length $L_o = \frac{4\pi \hbar cE}{\delta m^2 c^4}$
 $E \sim 1$ MeV: sensitivity to $\delta m_{\upsilon}^2 \ge 10^{-12} \text{ eV}^2$

SuperKamiokande

Parameters from CI/Ga/Kamiokande/Super-Kamiokande neutrino data

LIGHT & HEAVY local mass eigenstates $|\upsilon_{\rm L}\rangle = \cos\theta(x) |\upsilon_{e}\rangle - \sin\theta(x) |\upsilon_{\mu}\rangle$ $|\upsilon_{\rm H}\rangle = \sin\theta(x) |\upsilon_{e}\rangle + \cos\theta(x) |\upsilon_{\mu}\rangle$

local mixing angle

$$\sin 2\theta(x) = \frac{\sin 2\theta_{v}}{\sqrt{X^{2}(x) + \sin^{2} 2\theta_{v}}}$$
$$\cos 2\theta(x) = \frac{-X(x)}{\sqrt{X^{2}(x) + \sin^{2} 2\theta_{v}}}$$
$$X(x) = 2E\sqrt{2}G_{F}\rho(x)E/\delta m^{2} - \cos 2\theta_{v}$$
$$\theta(x) \in \theta_{v} \Rightarrow \pi/2 \text{ as density } \rho(x) \xrightarrow{0} \infty$$

splitting minimum value: -- $\sin 2\theta_{v} \delta m^{2} / 2E_{,}$ at *critical density* $\rho_{c} = \rho(x_{c}) \leftarrow 2\sqrt{2}EG_{F}\rho_{c} = \delta m^{2} \cos 2\theta_{v}$ cross point for diagonal elements of original flavor matrix

HR diagr evolution: low-mass star at exhausted H in core

Main sequence star COTE/reactor fusing H to He at T>10^{7 O}K

- Subgiant /Red Giant star (inert He core and Hydrogen- fusing shell)
- All the core H converted to He. To fuse He-->Carbon $T_c > 10^8$ K
- inert He core shrinks, heats up H-Shell bringing fusion of H to Helium starts
- star expands & enters subgiant/red giant phase: large and luminous

The Supergiant Star Betelgeuse

Red giants and helium burning

- helium core densities $\sim 10^6$ g/cm³
- core densities and temperatures allow --> helium burning
- ${}^{4}\text{He} + {}^{4}\text{He} + {}^{4}\text{He} \rightarrow {}^{12}\text{C} + \Gamma$ -ray
- red giants evolve along
 - the "horizontal branch"
- Form Planetary nebulae & white dwarf

HELIUM-BURNING REACTIONS IN RED GIANTS

I THE START OF NUCLEOSYNTHESIS OF HEAVY ELEMENTS)

Planetary Nebula Formation

Cosmic Rays flux vs solar activity

Massive Star, *M* > 8 M_o onion

 $4H \rightarrow {}^{4}_{2}He$ $3^{4}_{2}\text{He} \rightarrow {}^{12}_{6}\text{C}$ ${}^{12}_{6}C + {}^{12}_{6}C \rightarrow {}^{20}_{10}Ne + {}^{4}_{2}He$ $^{12}_{6}C + ^{12}_{6}C \rightarrow ^{24}_{12}Mg + \gamma$ $^{12}_{6}C + ^{16}_{8}O \rightarrow ^{28}_{14}Si + \gamma$ $^{16}_{8}O + ^{16}_{8}O \rightarrow ^{32}_{16}S + \gamma$ $^{28}_{14}\text{Si} + ^{16}_{8}\text{O} \rightarrow ^{44}_{22}\text{Ti}(\beta^+)$ $^{44}_{21}$ Sc(β ⁺) $^{44}_{20}$ Ca $^{28}_{14}\text{Si} + ^{28}_{14}\text{Si} \rightarrow ^{56}_{28}\text{Ni}(\beta^+)$ ${}^{56}_{27}Co(\beta^+) {}^{56}_{26}Fe$

Crab

Supernova remnant called Crab Nebula; VLT/Optical

X-ray (blue) and optical (red) radiation from <u>Crab Nebula</u>'s core region. A <u>pulsar</u> near the center propels particles.

Горение атомных ядер: взрывное горение

Дубна.2014

В.Н. Кондратьев

ЛТФ, ОИЯИ, 141980, Дубна Россия

Киевский национальный университет имени Тараса Шевченко, UA-03022 Киев, Украина

Before and after pictures of SN1987a

Hertzsprung- Russell (H-R) diagram

Stefan-Boltzmann Law for flux

luminosity L of a star with radius R & surface temperature T L~(Surface)T⁴~R²T⁴

Massive Star, $M > 8 M_0$ onion

 $4H \rightarrow {}^{4}_{2}He$ 3^{4} ₂He \rightarrow 12 ₆C ${}^{12}_{6}C + {}^{12}_{6}C \rightarrow {}^{20}_{10}Ne + {}^{4}_{2}He$ $^{12}_{6}C + ^{12}_{6}C \rightarrow ^{24}_{12}Mg + \gamma$ $^{12}{}_{6}C + ^{16}{}_{8}O \rightarrow ^{28}{}_{14}Si + \gamma$ $^{16}_{8}O + ^{16}_{8}O \rightarrow ^{32}_{16}S + \gamma$ $^{28}_{14}$ Si + $^{16}_{8}$ O $\rightarrow ^{44}_{22}$ Ti(β +) ⁴⁴₂₁Sc(β⁺) ⁴⁴₂₀Ca $^{28}_{14}\text{Si} + ^{28}_{14}\text{Si} \rightarrow ^{56}_{28}\text{Ni}(\beta^+)$ ⁵⁶₂₇Co(β+) ⁵⁶₂₆Fe

Stellar Collapse and Supernova Explosion

Stellar Collapse and Supernova Explosion

Stellar Collapse and Supernova Explosion

Gravitational binding energy $E_{b} \approx 10^{53,5} \text{ erg } \approx 20\% \text{ M}_{\text{SUN}} \text{ c}^{2}$

This is distributed as99%Neutrinos

1% Kinetic energy of explosion(1% of this into cosmic rays)

0.01% Photons, outshine host galaxy

Core-collapse supernova

*high-mass(M>8M_o)*star *Evolution* on HR diagram

explosive nucleosynthesis origin of Heavy Nuclides

Explosive nucleosynthesis

INTEGRAL VIRGO.UA

IBIS/ISGRI

Energy range	20 keV – 1 MeV	
Energy resolution (FWHM)	7% at 100 keV	
Detector area	960 cm2 at 50 keV	

SPI		
Energy range	20 keV – 8 MeV	
Energy resolution (FWHM)	2.35 keV at 1.33 MeV	
Detector area	\sim 500 cm ²	

Integral IBIS/ISGRI

INTEGRAL Exposure of sky in Galactic coordinates (ksec)

CAS A(3.4+0.3-0.1)kpc, TYCHO(2.2+/-0.3)kpc

Investigated Supernovas

NameCoordinateSN 1987A- 279.7 -31.9,Cas A- 111.7 -2.1,TYCHO- 120.1 +1.4,Vela Junior- 266.3 -1.2

Age 20 y 330 y 440 y ?

The scheme of the ⁴⁴Ti decay *Earth environment*

Cassiopeia A (3.4+0.3-0.1)kpc Energy range (keV): 20-62-72-82-100

F The direction (i.e., pixel number) dependence of the registered gamma-ray flux at different energy ranges: 20-62 keV - a, 62-72 keV - b, 72-82 keV - c; for the angle region containing the Cassiopeia A SN remnant. The right bottom panel (d) represents the spectrum from the Cassiopeia A in the energy range 20–95 keV, the solid line shows the fit with the power law energy *E* dependence, .

SPI detector data

Fit results

$E = 1157.20 \pm 0.26 \ keV$ $FWHM = 3.1 \pm 0.7 \ keV$

 $Flux = (5.1 + -1.0) \ 10^{-5} \text{ph/cm}^2 \text{ s}$

T=1.5 Ms

mass of ⁴⁴Ti synthesized at Cassiopeia A explosion [VNK et al '*Nucleus2004'; PhAN (2009)*]

$$m = \frac{4\pi R^2 \cdot T_{1/2} \cdot M \cdot I}{\ln 2 \cdot N_a \cdot p} \cdot 2^{-\frac{t}{T_{1/2}}}$$

R-distance to the object, $T_{1/2}$ -the element half-life, N_a -theAvogadro constant, M-mola rmass, I- γ -quanta flux, p-quantum yield, t-remnant age

E, keV	$I \pm \Delta I$, 10 ⁻⁵ photons/cm ² s	m ± Δ m, 10 ⁻⁴ M _o
67.9 keV	6.0 ± 1.0	4.0 ± 0.7
78.3 keV	4.0 ± 1.0	2.6 ± 0.7
1157.1 keV	5.1 ± 1.1	3.3 ± 0.7

SN1987 A (50kpc) Energy range (keV): 20-62-72-82-100

S.A.Grebenev et al Nature, 490, 373-375 (2012).

THEORY

$(0.02-2.5) imes 10^{-4}$ M_{\odot}

Thielemann, F.-K., Hashimoto, M. & Nomoto, K. Explosive nucleosynthesis in SN1987A. II. Composition, radioactivities, and the neutron star mass. *Astrophys. J.* **349**, **222–240** (1990)

Woosley, S.E., & Hoffman, R. D. 57Co and 44Ti production in SN1987A. *Astrophys. J.*, *368, L31-L34* (1991).

State Equation (SE): Nuclear Matter vs Regular Liquid (Noble Gas)

Van der Waals SE (1875) & Nuclear Matter SE (1983)(relative units: V/Vc; p/pc; T/Tc)

Instability region

 $\left. \partial p \right/ \partial V \right|_{T} > 0$

H. Jaqaman et al., Phys. Rev. C 27 (1983)2782

equation of state vs phase diagram

equation of state vs phase diagram

explosion proceeds through convection processes

V-sphere

magneto-rotational instabilities & dynamo-action → amplifying

Magnetic fields up to strengths hundred *tera-tesla*

The magnetic field evaluation

(S.G.Moiseenko, G.S.Bisnovatyj-Kogan, N.V.Ardeljan, MNRAS 370 (2006) 501)

Magnetic field estimates

predominant energy component of shock wave $E_{\rm S}$ originates from the magnetic pressure

$$R_{v}^{2}\Delta R \sim 2E_{s} \sim 10^{51.5} \text{ ergs}$$

R,,~ 40Km; □*R*~ 1Km 200 $B_{v} \sim 10^{1} - 10^{2}$ TeraTesla 9.6 8.9 8.2 (km $B(R) \sim B_v R_v / R$ 6.8 6.1 -1005.4 4.7 -200200 400 0 300 x (km)

Magnetic field estimates

Magnetic and gravitational forces

 $dB_v^2/dR \sim 8\Pi GM n(R)/R^2$

 $4\square R^2 n(R) = dM/dR$

 $B \sim 10^{1.5}$ TeraTesla (M/M_o)(10km/R)²

 $R_{v} \sim 40 \text{Km}; \square R \sim 1 \text{Km}$

 $B_v \sim 10^1 - 10^2$ TeraTesla

NUCLEAR STATISTICAL EQUILIBRIUM in Ultra-Strong Magnetic Fields

Entropy *S* extremum
$$\rightarrow$$
 $TdS = \sum_{i} \lambda_i dY_i = 0$

Nuclear composition at temperature T

$$Y \propto \frac{G_A}{G_n^N G_p^Z} \exp\{-B/kT\}$$

Binding Energy **B**

spin-magnetic part in partition function

$$G_i = \sum_{M} \exp\{g_i M \omega_L / kT\} / (2I_i + 1) \qquad \omega_L = \mu_N H$$

Nuclear Shell Effects at Ultra-Strong Magnetic Fields

V.N.K. //PRL 2002. V.88, 221101 // J.Nucl.Sci.Technol. V.1 Sup.2. P.550 // J.Nucl.Radiochem.Sci. 2002. V.3. P.205 // PRC 2004 V.69, 038801/ЯΦ. 2012

$$N = \int_{-\infty}^{\varepsilon_F} d\varepsilon \cdot \rho(\varepsilon) \qquad Nucleons$$

Binding Energy
$$B = \int_{-\infty}^{\infty} d\varepsilon \varepsilon \rho(\varepsilon) = B^{sm} + B^{sh}$$

Level density $\rho = \sum_{n}^{-\infty} \delta(\varepsilon - \varepsilon_n) = \rho^{sm} + \rho^{sh}$

With Single particle levels \mathcal{E}_n filled up to the Fermi energy

the Hartree self-consistent mean field approach in magnetic field : h

- Single particle Hamiltonian
- $\mathbf{H} = \mathbf{H}_{\mathbf{MF}} + (\mathbf{so})^*(ls) + (Magnetic terms)$
- Pauli–spin (S) \rightarrow M (hS)
- Landau–orbital $(l) \rightarrow -M(hl)$:protons

Neutrons

Магнитное поле
Binding energy of even-even symmetric nuclei *at magnetic fields h*

relative yield y=Y(H)/Y(0)⁵⁶Ni(solid) i ⁴⁴Ti(dashed line)

Explosive nucleosynthesis: S-Process

- The s-process (slow-process) proceeds via neutron-capture (n, y) reaction chains at low neutron flux.
- Process definition: T_{beta-decay} < T_(n, y) -new nucleus decays to stable nuclide before further neutron is captured: (sec vs ~10³ yrs)
- s-process works through chain of stable nuclides ('beta stability valley') & n-capture much *slower* decay times
- Famous s-element Technetium (Z = 43) has no stable isotopes - the longest lived ~10⁶ years -- must be produced recently in stars where observed.
- Tc was first observed by Merrill (1952) and provided the first real proof that nucleosynthesis was indeed happening in stars!

slow- or s-process. Beta-decay faster n-capture rate weak interactions keep the proton&neutron Fermi levels at equilibrium

Sample of the s-process:

neutron capture:

Nuclear Magics in s-process:

- For certain neutron numbers -- N = 28, 50, 82, 126 -- neutron capture cross-sections are much smaller than others.
- When one of these "magic" numbers is reached, the nucleus hardly captures more neutrons.
- significant number of nuclei will build up at magic numbers
- more abundant Elements corresponding to neutron "magic" numbers produce peaks in the observations.
- Solar System as abundance peaks at ⁸⁸Sr, ¹³⁸Ba, & ²⁰⁸Pb.

small capture cross sections at neutron magic numbers⇔ pronounced abundance peaks

Rolfs & Rodney: Cauldrons in the Cosmos, 1

<u>NOTE</u>

a superposition of many neutron irradiations is needed to correctly reproduce the abundance curve

main component (A=88-209)

➤ weak component (A<90)</p>

s-process: best understood nucleosynthesis process from nuclear point of view

The s (& r) processes explain the production of higher mass nuclei (beyond the Fe peak).

Ð

<u>**r**-process</u> (r = rapid) neutron capture process)

typical lifetimes for unstable nuclei far from the valley of β stability: $10^{-6} - 10^{-2}$ s

requiring: $\tau_n \sim 10^{-4} \text{ s} \iff N_n \sim 10^{20} \text{ n/cm}^3$

<u>explosive scenarios</u> needed to account for such high neutron fluxes

R-process←|exceptionally explosive conditions N(n)~ 10²⁰/cc : T~ 10⁹K : t~ 1sec

Transmutations of ultramagnetized atomic nuclei under intensive neutron

nuclear reaction rate

$$r = \int \sigma v dD_x dD_x$$

radiative *neutron*-capture (n, γ) reaction

Hauser-Feshbach statistical approach

$$\sigma_{(n,\gamma)} \Box \Gamma / \kappa^2 \Box 1 / v_n$$

Relative rate

$$r(H)/r(0) = \sigma(H)/\sigma(0)$$

Neutron-capture rate

SUMMARY

•We analyze the synthesis and decay of ⁿ nuclides in SNRs

•Obtained the spectra and flux for the specific lines of decay products

SUMMARY

- Magnetism of Atomic Nuclei Thermodynamic formalism
- Magnetic field effect on Nuclear Shell Structure Phase-shift in shell oscillations of Nuclear Masses
- Pauli type Paramagnetic Response
- Landau-type Orbital Magnetism
- Magnetic fields of Tera-Tesla shift Nuclear Magics of Iron region towards Smaller Masses approaching Ti-44
- Enhancement in Yield at nucleosynthesis

SUMMARY

- •We analyze the synthesis and decay of ⁴⁴Ti in SNRs
- •Obtained the spectra and flux for the lines of ⁴⁴Sc

Models explaining titanium excess

Motizuki Yuko, Kumagai Shiomi, ⁴⁴Ti radioactivity in young supernova remnants: Cas A and SN 1987A., New Astr. Rev. 2004. V. 48. P. 69

Kondratyev V.N., Kadenko I.M., Nucleosynthesis in strong magnetic fields at statistical equilibrium; MNRAS 2005. V.359, P.927 The radioactivity suppression is induced by the high level of ionization of matter. As a result – decreasing of the activity at the early phases of the evolution of the SNR.

Increasing of the Ti-44 synthesis due to astrophysics environment

$1 \text{kpc} = 3.08567758 \times 10^{19} \text{ метра}$