Analysis of models of the resonance quantum tunneling of composite systems through potential barriers

A.A. Gusev,

(Joint Institute for Nuclear Research, Dubna, Russia),

03 February 2014

XII Winter school on theoretical physics. Few-body systems: theory and applications.

Lection 1

- Close-coupling and Kantorovich (Adiabatic) methods
- The statement of the problem
- Jacobi and Symmetrized coordinates
- Symmetrized coordinates representation
 - Symmetrization with respect to permutation of A-1 particles
 - \blacktriangleright Symmetrization with respect to permutation of A particles
- Close-coupling equations in the SCR
- Asymptotic boundary conditions & multichannel scattering problem
- Resonance transmission of a few coupled particles

Lection 2

- The quasistationary states
- Resonance tunnelling of diatomic molecule

Close-coupling and Kantorovich (Adiabatic) methods

The Schrödinger equation reads as

$$\left(\frac{1}{g_{3s}(x_s)}\hat{H}_2(x_f;x_s)+\hat{H}_1(x_s)+\hat{V}_{fs}(x_f,x_s)-2E\right)\Psi(x_f,x_s)=0, \\ \hat{H}_2=-\frac{1}{g_{1f}(x_f)}\frac{\partial}{\partial x_f}g_{2f}(x_f)\frac{\partial}{\partial x_f}+\hat{V}_f(x_f;x_s), \quad \hat{H}_1=-\frac{1}{g_{1s}(x_s)}\frac{\partial}{\partial x_s}g_{2s}(x_s)\frac{\partial}{\partial x_s}+\hat{V}_s(x_s).$$

 $\hat{H}_2(x_f; x_s)$ is the Hamiltonian of the fast subsystem, $\hat{H}_1(x_s)$ is the Hamiltonian of the slow subsystem, $V_{fs}(x_f, x_s)$ is interaction potential.

The Kantorovich expansion of the desired solution of BVP:

$$\Psi(x_t, x_s) = \sum_{j=1}^{j_{\text{max}}} \Phi_j(x_t; x_s) \chi_j(x_s).$$

Example: prolate spheroid, ρ is fast variable, z is slow variable

BVP for **fast** subsystem

The equation for the basis functions of the fast variable x_t and the potential curves, $E_i(x_s)$ continuously depend on the slow variable x_s as a parameter

$$\left[\hat{H}_2(x_f;x_s)-E_i(x_s)\right]\Phi_i(x_f;x_s)=0,$$

The boundary conditions

$$\lim_{x_f \to x_f^{t}(x_s)} \left(N_f(x_s) g_{2f}(x_s) \frac{d\Phi_j(x_f; x_s)}{dx_f} + D_f(x_s) \Phi_j(x_f; x_s) \right) = 0.$$

The normalization condition

$$\langle \Phi_i | \Phi_j \rangle = \int_{x_f^{\min}(x_s)}^{x_f^{\max}(x_s)} \Phi_i(x_f; x_s) \Phi_j(x_f; x_s) g_{1f}(x_f) dx_f = \delta_{ij}.$$

BVP for **slow** subsystem

The effective potential matrices of dimension $j_{max} \times j_{max}$:

$$\begin{split} U_{ij}(x_{s}) &= \frac{1}{g_{3s}(x_{s})} \hat{E}_{i}(x_{s}) \delta_{ij} + \frac{g_{2s}(x_{s})}{g_{1s}(x_{s})} W_{ij}(x_{s}) + V_{ij}(x_{s}), \\ V_{ij}(x_{s}) &= \int_{x_{f}^{max}}^{x_{f}^{max}} \Phi_{i}(x_{f}; x_{s}) V_{fs}(x_{f}, x_{s}) \Phi_{j}(x_{f}; x_{s}) g_{1f}(x_{f}) dx_{f}, \\ W_{ij}(x_{s}) &= \int_{x_{f}^{min}}^{x_{f}^{max}} \frac{\partial \Phi_{i}(x_{f}; x_{s})}{\partial x_{s}} \frac{\partial \Phi_{j}(x_{f}; x_{s})}{\partial x_{s}} g_{1f}(x_{f}) dx_{f}, \\ Q_{ij}(x_{s}) &= -\int_{x_{f}^{min}}^{x_{f}^{max}} \Phi_{i}(x_{f}; x_{s}) \frac{\partial \Phi_{j}(x_{f}; x_{s})}{\partial x_{s}} g_{1f}(x_{f}) dx_{f}. \end{split}$$

A. Gusev (JINR)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

BVP for **slow** subsystem

The SDE for the slow subsystem (the adiabatic approximation is a diagonal approximation for the set of ODEs)

$$\begin{aligned} \mathbf{H}\chi^{(i)}(x_{s}) &= 2E_{i}\,\mathbf{I}\chi^{(i)}(x_{s}), \\ \mathbf{H} &= -\frac{1}{g_{1s}(x_{s})}\mathbf{I}\frac{d}{dx_{s}}g_{2s}(x_{s})\frac{d}{dx_{s}} + \hat{V}_{s}(x_{s})\mathbf{I} + \mathbf{U}(x_{s}) \\ &+ \frac{g_{2s}(x_{s})}{g_{1s}(x_{s})}\mathbf{Q}(x_{s})\frac{d}{dx_{s}} + \frac{1}{g_{1s}(x_{s})}\frac{dg_{2s}(x_{s})\mathbf{Q}(z)}{dx_{s}} \end{aligned}$$

with the boundary conditions

$$\lim_{x_s\to x_s^t}\left(N_sg_{2s}(x_s)\frac{d\chi(x_s)}{dx_s}+D_s\chi(x_s)\right)=0.$$

The statement of the problem

The Schrödinger equation for the problem of penetration of \boldsymbol{A} identical spinless quantum particles

$$\left[-\frac{\hbar^2}{2m}\sum_{i=1}^{A}\frac{\partial^2}{\partial \tilde{x}_i^2}+\sum_{i,j=1;i< j}^{A}\tilde{V}^{pair}(\tilde{x}_{ij})+\sum_{i=1}^{A}\tilde{V}(\tilde{x}_i)-\tilde{E}\right]\tilde{\Psi}(\tilde{x}_1,...,\tilde{x}_A;\tilde{E})=0.$$

m are masses of particles, \tilde{E} is total energy of system of A particles $\tilde{P}^2 = 2m\tilde{E}/\hbar^2$, \tilde{P} is total momentum of system of A particles $x_i \in \mathbf{R}^d$ are Cartesian coordinates in d-dimensional Euclidian space $\tilde{\mathbf{x}} = (\tilde{x}_1, ..., \tilde{x}_A) \in \mathbf{R}^{A \times d}$ in $A \times d$ -dimensional configuration space

 $\widetilde{V}^{pair}(\widetilde{X}_{ij})$ is the pair potential, $\widetilde{X}_{ij} = \widetilde{X}_i - \widetilde{X}_j,$ for example, $\widetilde{V}^{pair}(\widetilde{X}_{ij}) = \widetilde{V}^{hosc}(\widetilde{X}_{ij});$ i.e. $\widetilde{V}^{hosc}(\widetilde{X}_{ij}) = \frac{m\omega^2}{2A}(\widetilde{X}_{ij})^2$ is HOP with frequency ω/\sqrt{A} , $\widetilde{V}(\widetilde{X}_i)$ potentials of the repulsive potential barriers.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

The statement of the problem

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} \text{Oscillator units} \\ x_{osc} = \sqrt{\hbar/(m\omega)} \\ p_{osc} = x_{osc}^{-1} \\ E_{osc} = \hbar\omega/2 \end{array} \end{array} \overset{}{} \begin{array}{l} E = \tilde{E}/E_{osc}, \ P^2 = E, \\ P = \tilde{P}/p_{osc} = \tilde{P}x_{osc}, \\ x_i = \tilde{x}_i/x_{osc}, \\ x_{ij} = \tilde{x}_{ij}/x_{osc} = x_i - x_j. \end{array} \overset{}{} \begin{array}{l} V^{pair}(x_{ij}) = \tilde{V}^{pair}(x_{ij}x_{osc})/E_{osc}, \\ V^{hosc}(x_{ij}) = \tilde{V}^{hosc}(x_{ij}x_{osc})/E_{osc} = \frac{1}{A}(x_{ij})^2, \\ V(x_i) = \tilde{V}(x_ix_{osc})/E_{osc}. \end{array} \end{aligned}$$

SE in Oscillator units

$$\left[-\sum_{i=1}^{A} \frac{\partial^{2}}{\partial x_{i}^{2}} + \sum_{i,j=1;i< j}^{A} \frac{1}{A}(x_{ij})^{2} + \sum_{i,j=1;i< j}^{A} U^{pair}(x_{ij}) + \sum_{i=1}^{A} V(x_{i}) - E\right] \Psi(x_{1}, ..., x_{A}; E) = 0.$$
where $U^{pair}(x_{ij}) = V^{pair}(x_{ij}) - V^{hosc}(x_{ij})$, i.e., if $V^{pair}(x_{ij}) = V^{hosc}(x_{ij})$, then $U^{pair}(x_{ij}) = 0$.

The problem under consideration is to find the solutions of SE that are totally symmetric (or antisymmetric) with respect to the permutations of A particles, i.e. the permutations of coordinates $x_i \leftrightarrow x_j$ at i, j = 1, ..., A, or symmetry operations of permutation group S_n .

Jacobi coordinates

$$\begin{pmatrix} y_{1} \\ y_{2} \\ y_{3} \\ \vdots \\ y_{A-1} \\ y_{A} \end{pmatrix} = J \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \vdots \\ x_{A-1} \\ x_{A} \end{pmatrix}, \quad \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \vdots \\ x_{A-1} \\ x_{A} \end{pmatrix} = J^{T} \begin{pmatrix} y_{1} \\ y_{2} \\ y_{3} \\ \vdots \\ y_{A-1} \\ y_{A} \end{pmatrix},$$

$$Jacobi \text{ coordinates [P. Kramer and M. Moshinsky, Nucl. Phys. 82, 241 (1966).]}$$

$$J = \begin{pmatrix} 1/\sqrt{2} & -1/\sqrt{2} & 0 & 0 & \cdots & 0 \\ 1/\sqrt{6} & 1/\sqrt{6} & -2/\sqrt{6} & 0 & \cdots & 0 \\ 1/\sqrt{12} & 1/\sqrt{12} & 1/\sqrt{12} & -3/\sqrt{12} & \cdots & 0 \\ 1/\sqrt{12} & 1/\sqrt{12} & 1/\sqrt{12} & -3/\sqrt{12} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{1}{\sqrt{(A-1)A}} & \frac{1}{\sqrt{(A-1)A}} & \frac{1}{\sqrt{(A-1)A}} & \frac{1}{\sqrt{(A-1)A}} & \cdots & -\frac{A-1}{\sqrt{(A-1)A}} \\ 1/\sqrt{A} & 1/\sqrt{A} & 1/\sqrt{A} & 1/\sqrt{A} & \cdots & 1/\sqrt{A} \end{pmatrix},$$

◆□ → ◆□ → ◆三 → ◆三 → ○ ● のへで

Properties of Jacobi coordinates

The inverse coordinate transformation is implemented using the transposed matrix

$$J^{-1} = J^{T} = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{12} & \cdots & 1/\sqrt{(A-1)A} & 1/\sqrt{A} \\ -1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{12} & \cdots & 1/\sqrt{(A-1)A} & 1/\sqrt{A} \\ 0 & -2/\sqrt{6} & 1/\sqrt{12} & \cdots & 1/\sqrt{(A-1)A} & 1/\sqrt{A} \\ 0 & 0 & -3/\sqrt{12} & \cdots & 1/\sqrt{(A-1)A} & 1/\sqrt{A} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -(A-1)/\sqrt{(A-1)A} & 1/\sqrt{A} \end{pmatrix}$$

i.e., J is an orthogonal matrix with pairs of complex conjugate eigenvalues, the absolute values of which are equal to one; $\sum_{i=1}^{A} (y_i \cdot y_i) = \sum_{i=1}^{A} (x_i \cdot x_i) = R^2 \mapsto \sum_{i,j=1}^{A} (x_{ij})^2 = 2A \sum_{i=1}^{A} (y_i)^2 - 2(\sum_{i=1}^{A} x_i)^2 = 2A \sum_{i=1}^{A-1} (y_i)^2.$

$$\begin{bmatrix} -\frac{\partial^2}{\partial y_A^2} + \sum_{i=1}^{A-1} \left[-\frac{\partial^2}{\partial y_i^2} + (y_i)^2 \right] + U(y_1, ..., y_A) - E \end{bmatrix} \Psi(y_1, ..., y_A; E) = 0,$$

$$U(y_1, ..., y_A) = \sum_{i,j=1; i < j}^{A} U^{pair}(x_{ij}(y_1, ..., y_{A-1})) + \sum_{i=1}^{A} V(x_i(y_1, ..., y_A)),$$

A. Gusev (JINR)

Symmetrized coordinates

$$\begin{pmatrix} \xi_{0} \\ \xi_{1} \\ \xi_{2} \\ \vdots \\ \xi_{A-2} \\ \xi_{A-1} \end{pmatrix} = C \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \vdots \\ x_{A-1} \\ x_{A} \end{pmatrix}, \quad \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \vdots \\ x_{A-1} \\ x_{A} \end{pmatrix} = C \begin{pmatrix} \xi_{0} \\ \xi_{1} \\ \xi_{2} \\ \vdots \\ \xi_{A-2} \\ \xi_{A-1} \end{pmatrix},$$

$$C = \frac{1}{\sqrt{A}} \begin{pmatrix} 1 & 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & a_{1} & a_{0} & a_{0} & \cdots & a_{0} & a_{0} \\ 1 & a_{0} & a_{1} & a_{0} & \cdots & a_{0} & a_{0} \\ 1 & a_{0} & a_{0} & a_{1} & \cdots & a_{0} & a_{0} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & a_{0} & a_{0} & a_{0} & \cdots & a_{1} & a_{0} \\ 1 & a_{0} & a_{0} & a_{0} & \cdots & a_{1} & a_{0} \end{pmatrix}, \quad a_{0} = 1/(1 - \sqrt{A}) < 0,$$

$$a_{1} = a_{0} + \sqrt{A} > 0.$$

A. Gusev (JINR)

◆□ > ◆母 > ◆目 > ◆目 > ● 目 ● ● ●

Properties of symmetrized coordinates

The inverse coordinate transformation is performed using the same matrix $C^{-1} = C$, $C^2 = I$,

$$C^{-1} = C^{T} = C = \frac{1}{\sqrt{A}} \begin{pmatrix} 1 & 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & a_{1} & a_{0} & a_{0} & \cdots & a_{0} & a_{0} \\ 1 & a_{0} & a_{1} & a_{0} & \cdots & a_{0} & a_{0} \\ 1 & a_{0} & a_{0} & a_{1} & \cdots & a_{0} & a_{0} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & a_{0} & a_{0} & a_{0} & \cdots & a_{1} & a_{0} \\ 1 & a_{0} & a_{0} & a_{0} & \cdots & a_{1} & a_{0} \end{pmatrix}, \qquad \begin{array}{c} a_{0} = 1/(1 - \sqrt{A}) < 0, \\ a_{1} = a_{0} + \sqrt{A} > 0. \end{pmatrix}$$

i. e. $C = C^T$ is a symmetric orthogonal matrix with the eigenvalues $\lambda_1 = -1$, $\lambda_{2,\dots,A} = 1$ $\sum_{i=0}^{A-1} (\xi_i \cdot \xi_i) = \sum_{i=1}^{A} (x_i \cdot x_i) = R^2 \mapsto \sum_{i,j=1}^{A} (x_{ij})^2 = 2A \sum_{i=1}^{A-1} (\xi_i)^2$.

At A = 2 similar to Jacobi coordinates (in form of [G.P. Kamuntavičius et al, Nucl. Phys. A 695, 191 (2001)]) At A = 4 similar to [D. W. Jepsent and J. O. Hirschfelder, Proc. Natl. Acad. Sci. U.S.A. 45, 249 (1959); P. Kramer and M. Moshinsky, Nucl. Phys. 82, 241 (1966)]

A. Gusev (JINR)

The relative coordinates $x_{ij} \equiv x_i - x_j$ of a pair of particles *i* and *j*

$$x_{ij} \equiv x_i - x_j = \xi_{i-1} - \xi_{j-1} \equiv \xi_{i-1,j-1}, \quad x_{i1} \equiv x_i - x_1 = \xi_{i-1} + a_0 \sum_{i'=1}^{A-1} \xi_{i'}, \quad i, j = 2, ..., A.$$

SE in the symmetrized coordinates

$$\begin{bmatrix} -\frac{\partial^2}{\partial \xi_0^2} + \sum_{i=1}^{A-1} \left[-\frac{\partial^2}{\partial \xi_i^2} + (\xi_i)^2 \right] + U(\xi_0, ..., \xi_{A-1}) - E \end{bmatrix} \Psi(\xi_0, ..., \xi_{A-1}; E) = 0,$$

$$U(\xi_0, ..., \xi_{A-1}) = \sum_{i,j=1; i < j}^{A} U^{pair}(x_{ij}(\xi_1, ..., \xi_{A-1})) + \sum_{i=1}^{A} V(x_i(\xi_0, ..., \xi_{A-1})),$$

which is invariant with respect to permutations $\xi_i \leftrightarrow \xi_j$ at i, j = 1, ..., A - 1as follows from the invariance SE with respect to permutation $x_i \leftrightarrow x_j$ at i, j = 1, ..., Ais preserved.

However, the direct converse is not true.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへで

The symmetrized coordinates are related with the Jacobi ones as

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_{A-1} \\ y_A \end{pmatrix} = B \begin{pmatrix} \xi_0 \\ \xi_1 \\ \xi_2 \\ \vdots \\ \xi_{A-2} \\ \xi_{A-1} \end{pmatrix}, \quad B = JC = \begin{pmatrix} 0 & b_1^0 & b_1^- & b_1^- & b_1^- & \cdots & b_1^- & b_1^- \\ 0 & b_2^+ & b_2^0 & b_2^- & b_2^- & \cdots & b_2^- & b_2^- \\ 0 & b_3^+ & b_3^+ & b_3^0 & b_3^- & \cdots & b_3^- & b_3^- \\ 0 & b_4^+ & b_4^+ & b_4^+ & b_4^0 & \cdots & b_4^- & b_4^- \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & b_{A+1}^+ & b_{A+1}^+ & b_{A+1}^+ & b_{A-1}^0 & \cdots & b_{A-1}^+ & b_{A-1}^0 \end{pmatrix} \\ b_s^+ = 1/((\sqrt{A} - 1)\sqrt{s(s+1)}), \\ b_s^- = \sqrt{A}/((\sqrt{A} - 1)\sqrt{s(s+1)}), \text{ and } \\ b_s^0 = (1 + s - s\sqrt{A})/((\sqrt{A} - 1)\sqrt{s(s+1)}) \end{pmatrix}$$

One can see that for the center of mass the symmetrized and Jacobi coordinates are equal, $y_A = \xi_0$, while the relative coordinates are related via the $(A - 1) \times (A - 1)$ matrix M having the matrix elements $M_{ij} = B_{i,j+1}$. The inverse transformation is given by the matrix $B^{-1} = (JC)^{-1} = CJ^T = B^T$, i.e., B is also an orthogonal matrix.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへで

Note, that at the Jacobi coordinates

$$y_1 = \frac{1}{\sqrt{2}}(x_1 - x_2), \quad y_2 = \frac{1}{\sqrt{6}}(x_1 + x_2 - 2x_3)$$

are related with the symmetrized ones

$$\xi_1 = \frac{1}{\sqrt{3}}(x_1 + \frac{\sqrt{3}-1}{2}x_2 - \frac{\sqrt{3}+1}{2}x_3), \quad \xi_2 = \frac{1}{\sqrt{3}}(x_1 - \frac{\sqrt{3}+1}{2}x_2 + \frac{\sqrt{3}-1}{2}x_3)$$

by the orthogonal matrix M:

$$M = \begin{pmatrix} b_1^0 & b_1^- \\ b_2^+ & b_2^0 \end{pmatrix} = \begin{pmatrix} (\sqrt{6} - \sqrt{2})/4 & (\sqrt{6} + \sqrt{2})/4 \\ (\sqrt{6} + \sqrt{2})/4 & -(\sqrt{6} - \sqrt{2})/4 \end{pmatrix} = \begin{pmatrix} \sin \phi_1 & \cos \phi_1 \\ \cos \phi_1 & -\sin \phi_1 \end{pmatrix} = \\ = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \cos \phi_1 & -\sin \phi_1 \\ \sin \phi_1 & \cos \phi_1 \end{pmatrix} = \begin{pmatrix} \cos \phi_1 & \sin \phi_1 \\ -\sin \phi_1 & \cos \phi_1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = M_1(\phi_1)M_0.$$
(1)

i.e. by permutation of coordinates $(\xi_1, \xi_2) \rightarrow (\xi_2, \xi_1)$ and counterclockwise rotation by the angle $\phi_1 = \pi/12$.

This transformation illustrates isomorphism between symmetry operations of the equilateral triangle group D_3 in \mathbb{R}^2 and the permutation group S_3 , on three objects (A = 3), like [V.S. Buslaev et al, Phys. Atom. Nucl. (2013) accepted.].

The coordinate planes 1, 2, 3, labelled with boxes, the center-of-mass plane in \mathbb{R}^3 , and the lines of intersection of these planes with the pair-collision planes $x_i = x_j$, corresponding to pair-collision lines $\{x_i = x_j, x_1 + x_2 + x_3 = 0\}$ (labelled 12, 23, 13) in the center-of-mass plane $x_1 + x_2 + x_3 = 0$, belonging to \mathbb{R}^2 .

The equilateral triangle showing the isomorphism between the group of its symmetry operations D_3 in \mathbb{R}^2 and the group of permutations S_3 of three objects. The symmetric (ξ_1, ξ_2) and Jacobi (y_1, y_2) coordinates, related via the transformation (1) in the center-of-mass plane \mathbb{R}^2 , respectively.

イロン スロン スロン スロン 一日

The Jacobi coordinates

$$y_1 = \frac{1}{\sqrt{2}}(x_1 - x_2), \quad y_2 = 1/\sqrt{6}(x_1 + x_2 - 2x_3), \quad y_3 = 1/\sqrt{12}(x_1 + x_2 + x_3 - 3x_4)$$

are related with the symmetrized ones

$$\xi_1 = 1/2(x_1 + x_2 - x_3 - x_4), \quad \xi_2 = 1/2(x_1 - x_2 + x_3 - x_4), \quad \xi_3 = 1/2(x_1 - x_2 - x_3 + x_4)$$

by the orthogonal matrix M:

$$M = \begin{pmatrix} b_1^0 & b_1^- & b_1^- \\ b_2^+ & b_2^0 & b_2^- \\ b_3^+ & b_3^+ & b_3^0 \end{pmatrix} = \begin{pmatrix} 0 & \sqrt{2}/2 & \sqrt{2}/2 \\ \sqrt{6}/3 & -\sqrt{6}/6 & \sqrt{6}/6 \\ \sqrt{3}/3 & \sqrt{3}/3 & -\sqrt{3}/3 \end{pmatrix}.$$

◆□ > ◆母 > ◆臣 > ◆臣 > 臣 の < @

One of the possible decompositions $M = M_3(\phi_3)M_2(\phi_2)M_1(\phi_1)$ of this matrix is

$$M = \left(\begin{array}{cccc} 1 & 0 & 0 \\ 0 & \cos \phi_3 & \sin \phi_3 \\ 0 & -\sin \phi_3 & \cos \phi_3 \end{array}\right) \left(\begin{array}{cccc} \cos \phi_2 & \sin \phi_2 & 0 \\ -\sin \phi_2 & \cos \phi_2 & 0 \\ 0 & 0 & 1 \end{array}\right) \left(\begin{array}{cccc} 1 & 0 & 0 \\ 0 & \cos \phi_1 & \sin \phi_1 \\ 0 & -\sin \phi_1 & \cos \phi_1 \end{array}\right)$$

This transformation is a product of three counterclockwise rotations: the first of them by the angle $\phi_1 = 3\pi/4$ about the first old axis, the second one by the angle $\phi_2 = \pi - \arctan(\sqrt{2}) \approx 16\pi/23$ about the third new axis, and the third one by the angle $\phi_3 = \pi/3$ about the first new axis. Note, that the second angle ϕ_2 is supplementary to the angle between an edge and a face of a regular tetrahedron, associated with the system of symmetrized coordinates $\{\xi_1, \xi_2, \xi_3\} \in \mathbb{R}^3$. This transformation illustrates isomorphism between symmetry operations of the tetrahedron group T_d in \mathbb{R}^3 and the permutation group S_4 , on four objects (A = 4), like [P. Kramer and M. Moshinsky, Nucl. Phys. 82, 241 (1966).].

Intersections in \mathbb{R}^4 of the coordinate spaces \mathbb{R}^3 (labelled 1, 2, 3, 4) and the spaces \mathbb{R}^3 of pair collisions (labelled 12, etc.) with the sphere \mathbb{S}^2 in the center-of-mass space \mathbb{R}^3 .

イロン スロン スロン スロン 一日

Basis transformation

A = 3

Clockwise rotation of the coordinate system (ξ_2, ξ_1) to (y_1, y_2) by the angle $\phi_1 = \pi/12$ induces the transformation of corresponding A = 2-oscillator functions

$$< y_1, y_2 | j + m', j - m' > = \sum_{m=-j}^{m=j} d^j_{m'm}(2\phi_1) < \xi_2, \xi_1 | j + m, j - m > .$$

Here $d_{m'm}^{j}(2\phi_{1}) = N_{m'm}^{j} \sin^{|m'-m|} \phi_{1} \cos^{|m'+m|} \phi_{1} P_{j-(|m'-m|+|m'+m|)/2}^{|m'-m|,|m'+m|}(\cos(2\phi_{1}))$ are the Wigner functions, $P_{s}^{\mu\nu}(x)$ are Jacobi polynomials, or

$$\iint_{-\infty}^{\infty} d\xi_2 d\xi_1 < j + m, j - m | \xi_2, \xi_1 > < \xi_2 \cos \phi + \xi_1 \sin \phi, -\xi_2 \sin \phi + \xi_1 \cos \phi | j + m', j - m' > .$$

General case

The transformations of (A - 1)-dimensional oscillator functions induced by operators of permutation of A - 1 coordinates and (A - 1)-dimensional finite rotation, defined as a product of (A - 1)(A - 2)/2 rotations in separate coordinate planes, can be constructed using the diagram method, which reduces the analytic calculations of the (A - 1)-dimensional oscillator Wigner functions [G. S. Pogosyan, Ya. A. Smorodinsky, and V. M. Ter-Antonyan, J. Phys. A 14, 769 (1981)] to simple geometric operations, similar to the graph method for calculating the Clebsh-Gordan coefficients.

Symmetrized coordinates representation in 1D Euclidian space (d = 1)

Eq for (A - 1)-dimensional oscillator with known eigenfunctions $\Phi_j(\xi_1, ..., \xi_{A-1})$ and eigenenergies E_j

$$\left[\sum_{i=1}^{A-1} \left[-\frac{\partial^2}{\partial \xi_i^2} + (\xi_i)^2 \right] - E_j \right] \Phi_j(\xi_1, ..., \xi_{A-1}) = 0, \quad E_j = 2\sum_{k=1}^{A-1} i_k + A - 1,$$

where the indices i_k , k = 1, ..., A - 1 take integer values $i_k = 0, 1, 2, 3, ...$

We define the SCR in the form of linear combinations of the conventional oscillator eigenfunctions $\bar{\Phi}_{[i_1,i_2,...,i_{A-1}]}(\xi_1,...,\xi_{A-1})$:

$$\begin{split} \Phi_{j}(\xi_{1},...,\xi_{A-1}) &= \sum_{\substack{2 \sum_{k=1}^{A-1} i_{k}+A-1=E_{j} \\ \Phi_{[i_{1},i_{2},...,i_{A-1}]}} \bar{\Phi}_{[i_{1},i_{2},...,i_{A-1}]}(\xi_{1},...,\xi_{A-1}), \\ \bar{\Phi}_{[i_{1},i_{2},...,i_{A-1}]}(\xi_{1},...,\xi_{A-1}) &= \prod_{k=1}^{A-1} \bar{\Phi}_{i_{k}}(\xi_{k}), \quad \bar{\Phi}_{i_{k}}(\xi_{k}) = \frac{\exp(-\xi_{k}^{2}/2)H_{i_{k}}(\xi_{k})}{\sqrt[4]{\pi}\sqrt{2^{i_{k}}}\sqrt{i_{k}!}}, \end{split}$$

where $H_{i_k}(\xi_k)$ are Hermite polynomials.

Symmetrization with respect to permutation of A - 1 particles

The states, symmetric with respect to permutation of A-1 particles $i = [i_1, i_2, ..., i_{A-1}]$

$$\beta_{[i'_1,i'_2,\ldots,i'_{A-1}]}^{(i)} = \begin{cases} 1/\sqrt{N_\beta}, & [i'_1,i'_2,\ldots,i'_{A-1}] \text{ is a multiset permutation of } [i_1,i_2,\ldots,i_{A-1}], \\ 0, & \text{otherwise.} \end{cases}$$

Here $N_{\beta} = (A-1)! / \prod_{k=1}^{N_{\upsilon}} v_k!$ is the number of multiset permutations of $[i_1, i_2, ..., i_{A-1}], N_{\upsilon} \leq A-1$ is the number of different values i_k in the multiset $[i_1, i_2, ..., i_{A-1}]$, and v_k is the number of repetitions of the given value i_k .

The states, antisymmetric with respect to permutation of A - 1 particles

$$\Phi_{j}^{a}(\xi_{1},...,\xi_{A-1}) = \frac{1}{\sqrt{(A-1)!}} \begin{vmatrix} \bar{\Phi}_{i_{1}}(\xi_{1}) & \bar{\Phi}_{i_{2}}(\xi_{1}) & \cdots & \bar{\Phi}_{i_{A-1}}(\xi_{1}) \\ \bar{\Phi}_{i_{1}}(\xi_{2}) & \bar{\Phi}_{i_{2}}(\xi_{2}) & \cdots & \bar{\Phi}_{i_{A-1}}(\xi_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ \bar{\Phi}_{i_{1}}(\xi_{A-1}) & \bar{\Phi}_{i_{2}}(\xi_{A-1}) & \cdots & \bar{\Phi}_{i_{A-1}}(\xi_{A-1}) \end{vmatrix}$$

i.e., $\beta_{[i'_1,i'_2,\ldots,i'_{A-1}]}^{(i)} = \varepsilon_{i'_1,i'_2,\ldots,i'_{A-1}} / \sqrt{(A-1)!}$ where $\varepsilon_{i'_1,i'_2,\ldots,i'_{A-1}}$ is a totally antisymmetric tensor.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Case $A = 2 (\xi_1 = (x_2 - x_1)/\sqrt{2})$

Function being even (or odd) with respect to ξ_1 appears to be symmetric (or antisymmetric) with respect to permutation of two particles, i.e. $x_2 \leftrightarrow x_1$.

Case $A \ge 3$

The functions, symmetric (or antisymmetric) with respect to permutations in Cartesian coordinates $x_i \leftrightarrow x_j$, i, j = 1, ..., A become symmetric (or antisymmetric) with respect to permutations of symmetrized coordinates $\xi_i \leftrightarrow \xi_j$, at i', j' = 1, ..., A - 1 $\Phi(..., x_i, ..., x_j, ...) = \pm \Phi(..., x_j, ..., x_i, ...) \rightarrow \Phi(..., \xi_{i'}, ..., \xi_{j'}, ...) = \pm \Phi(..., \xi_{j'}, ..., \xi_{i'}, ...)$

Here and below we use the above property of the symmetrized coordinates

$$\mathbf{x}_{ij} \equiv \mathbf{x}_i - \mathbf{x}_j = \xi_{i-1} - \xi_{j-1} \equiv \xi_{i-1,j-1}, \quad i, j = 2, ..., A, \quad \mathbf{x}_1 = \frac{1}{\sqrt{A}} \sum_{i'=0}^{A-1} \xi_{i'}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Symmetrization with respect to permutation of \boldsymbol{A} particles

However, the converse is not true, because we deal with a projection map:

$$\begin{pmatrix} \xi_1 \\ \xi_2 \\ \cdots \\ \xi_{A-1} \end{pmatrix} = \begin{pmatrix} 1 & a_1 & a_0 & a_0 & \cdots & a_0 & a_0 \\ 1 & a_0 & a_1 & a_0 & \cdots & a_0 & a_0 \\ 1 & a_0 & a_0 & a_1 & \cdots & a_0 & a_0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & a_0 & a_0 & a_0 & \cdots & a_1 & a_0 \\ 1 & a_0 & a_0 & a_0 & \cdots & a_0 & a_1 \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \\ \cdots \\ X_{A-1} \\ X_A \end{pmatrix}$$

Thus, the functions, symmetric (or antisymmetric) with respect to permutations of symmetrized coordinates (i.e. by permutations $x_i \leftrightarrow x_j$ at i, j = 2, ..., A), are divided into two types, namely,

the physical symmetric (antisymmetric) solutions, symmetric (or antisymmetric) with respect to permutations $x_1 \leftrightarrow x_{j+1}$ at j = 1, ..., A - 1

 $\Phi(x_1,...,x_{i+1},...) = \pm \Phi(x_{i+1},...,x_1,...),$

and the nonphysical solutions, $\Phi(x_1, ..., x_{i+1}, ...) \neq \pm \Phi(x_{i+1}, ..., x_1, ...)$, which should be eliminated.

This step is equivalent to only one permutation $x_1 \leftrightarrow x_2$, that simplifies its practical implementation.

Profiles of the first eight oscillator partial symmetric (upper panels) and symmetric (lower panels) eigenfunctions $\Phi^{S}_{[i_1,i_2]}(\xi_1,\xi_2) \text{ at } A = 3 \text{ in}$ coordinate frame (ξ_1, ξ_2) . The curves are nodes of the eigenfunctions. Red line correspond to pair collision $X_2 = X_3$, and blue lines correspond to pair collisions $x_1 = x_2$ and $x_1 = x_3$ of projection $(x_1, x_2, x_3) \rightarrow (\xi_1, \xi_2).$

The same but for antisymmetric eigenfunctions.

Eigenfunctions A = 3. d = 1 are classified by D_{3m} .

The eigenvalues $\varepsilon_{km}^{S(A)} = 2(2k + 3m + 1)$ are degenerate with where K' = 0, 4, 6, 8, 10, 14, $\varepsilon_{\text{ground}}^{S} = 2, \, \varepsilon_{\text{ground}}^{A} = 8,$ that is less in ~ 6 times of degenerate multiplicity $p_4(i)$ of eigenvalues without symmetry.

Profiles of the first six oscillator symmetric eigenfunctions $\Phi^B_{[i_1,i_2,i_3]}(\xi_1,\xi_2,\xi_3)$ at A = 4 in coordinate frame (ξ_1,ξ_2,ξ_3) .

Profiles of the first six oscillator antisymmetric eigenfunctions $\Phi^{B}_{[i_1,i_2,i_3]}(\xi_1,\xi_2,\xi_3)$ at A = 4 in coordinate frame (ξ_1,ξ_2,ξ_3) .

A. Gusev (JINR)

The eigenfunctions $\Phi_j(\xi_1, \ldots, \xi_{A-1})^{S(A)} \equiv \Phi_{[i_1, i_2, i_3]}^{S(A)}(\xi_1, \xi_2, \xi_3)$ of S and A states of a 3D harmonic oscillator are expressed via the eigenfunctions of 1D harmonic oscillator:

$$\Phi_{j}^{S(A)}(\xi_{1},\xi_{2},\xi_{3}) = N_{[i_{1},i_{2},i_{3}]}^{-1/2} (\bar{\Phi}_{[i_{1},i_{2},i_{3}]} + \bar{\Phi}_{[i_{2},i_{3},i_{1}]} + \bar{\Phi}_{[i_{3},i_{1},i_{2}]} \pm \bar{\Phi}_{[i_{2},i_{1},i_{3}]} \pm \bar{\Phi}_{[i_{1},i_{3},i_{2}]} \pm \bar{\Phi}_{[i_{3},i_{2},i_{1}]}).$$

Here $i_1 = 0, 1, 2, \dots, i_2 = i_1, i_1 + 2, \dots, i_3 = i_2, i_2 + 2, \dots$ for S states and $i_1 = 0, 1, 2, \dots, i_2 = i_1 + 2, i_1 + 4, \dots, i_3 = i_2 + 2, i_2 + 4, \dots$ for A states, $N_{[i_1, i_2, i_3]}$ being the number of multiset permutations of i_1, i_2, i_3 : $N_{[i_1, i_2, i_3]} = \{6, i_1 < i_2 < i_3; 1, i_1 = i_2 = i_3; 3, \text{otherwise}\}$.

The eigenfunctions of S states with even (odd) i_1 and A states with odd (even) i_1 possess symmetry octahedral (tetrahedral)-type.

The eigenvalues $\varepsilon_{i_1,i_2,i_3}^{S(A)} = 2(i_1 + i_2 + i_3 + 3/2)$ are degenerate with multiplicity $3K^2 + (3 + K')K + K' + \delta_{0K'}$, if $\varepsilon_{i_1,i_2,i_3}^{S(A)} - \varepsilon_{\text{ground}}^{S(A)} = 4(6K + K') + K''$, where $K' = 0, 1, 2, 3, 4, 5, K'' = 0, 6, \varepsilon_{\text{ground}}^S = 3, \varepsilon_{\text{ground}}^A = 15$, that is less in ~ 24 times of multiplicity $p_4(j)$ of eigenvalues without symmetry.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Profiles of the oscillator S-eigenfunctions $\Phi_{[1,1,1]}^S(\xi_1,\xi_2,\xi_3)$, $\Phi_{[0,0,4]}^S(\xi_1,\xi_2,\xi_3)$ and A-eigenfunction $\Phi_{[0,2,4]}^A(\xi_1,\xi_2,\xi_3)$, at A = 4. Maxima and minima positions of these functions form stella octangula, cube and octahedron, and two polyhedra with 20 triangle faces (only 8 of them being equilateral triangles) and 30 edges, 6 of them having the length 2.25 and the other having the length 2.66.

A. Gusev (JINR)

The degen	eracy multip	plicities p, p_s =	$= p_a ext{ and } p_S$	$s = p_A$ of s-, a	a-, S-, and	
A-eigenfur	nctions of the	e oscillator ene	ergy levels Δ	$\Delta E_j = E_j^{\bullet} - E_j^{\bullet}$	$E_1^{\bullet}, \bullet = \emptyset, s$, <i>a</i> , <i>S</i> , <i>A</i> .

A=3		A=4			A=5			A=6			ΔE_j	
p	$p_{s(a)}$	$p_{S(A)}$	p	$p_{s(a)}$	$ p_{S(A)} $	р	$p_{s(a)}$	$p_{S(A)}$	р	$p_{s(a)}$	$ p_{S(A)} $	
1	1	1	1	1	1	1	1	1	1	1	1	0
2	1	0	3	1	0	4	1	0	5	1	0	2
3	2	1	6	2	1	10	2	1	15	2	1	4
4	2	1	10	3	1	20	3	1	35	3	1	6
5	3	1	15	4	2	35	5	2	70	5	2	8
6	3	1	21	5	1	56	6	2	126	7	2	10
7	4	2	28	7	3	84	9	3	210	10	4	12

▲□ → ▲□ → ▲目 → ▲目 → ▲□ →

Close-coupling equations in the SCR

Galerkin expansion in the symmetrized coordinates

$$\Psi_{i_o}(\xi_0)(\xi_0,...,\xi_{A-1}) = \sum_{j=1}^{j_{max}} \Phi_j(\xi_1,...,\xi_{A-1})\chi_{ji_o}(\xi_0),$$

Here $\chi_i(\xi_0)$ are unknown functions

$$\chi_{ji_o}(\xi_0) = \int d\xi_1 ... d\xi_{A-1} \Phi_j(\xi_1, ..., \xi_{A-1}) \Psi_{i_o}(\xi_0, ..., \xi_{A-1}),$$

and $\Phi_j(\xi_1, ..., \xi_{A-1})$ are the orthonormalized basis eigenfunctions of the (A-1)-dimensional oscillator.

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへで

The set of the close-coupling Galerkin equations in symmetrized coordinates

$$\left[-\frac{d^2}{d\xi_0^2} + E_i - E\right] \chi_{ii_o}(\xi_0) + \sum_{j=1}^{j_{max}} (V_{ij}(\xi_0))\chi_{ji_o}(\xi_0) = 0,$$
$$V_{ij}(\xi_0) = \int d\xi_1 \dots d\xi_{A-1} \Phi_i(\xi_1, \dots, \xi_{A-1}) \left(\sum_{k=1}^A V(x_k(\xi_0, \dots, \xi_{A-1}))\right) \Phi_j(\xi_1, \dots, \xi_{A-1}),$$

The repulsive barrier is chosen to be a Gaussian potential $V(x_i) = \frac{\alpha}{\sqrt{2\pi}\pi} \exp(-\frac{x_i}{\sigma})$

Gaussian-type potential at $\sigma = 0.1$ (in oscillator units) and corresponding 2D barrier potential at $\alpha = 1/10, \sigma = 0.1$.

Diagonal V_{ij} (solid lines) and nondiagonal V_{j1} , (dashed lines) effective potentials for A = 2, A = 3 and A = 4 symmetric particles at $\sigma = 1/10$.

Diagonal V_{jj} (solid lines) and nondiagonal V_{j1} , (dashed lines) effective potentials for A = 2, A = 3 and A = 4 antisymmetric particles at $\sigma = 1/10$.

Asymptotic boundary conditions

$$\frac{d\boldsymbol{F}(\xi_0)}{d\xi_0}\Big|_{\xi_0=\xi_{\min}} = \mathcal{R}(\xi_{\min})\boldsymbol{F}(\xi_{\min}), \ \frac{d\boldsymbol{F}(\xi_0)}{d\xi_0}\Big|_{\xi_0=\xi_{\max}} = \mathcal{R}(\xi_{\max})\boldsymbol{F}(\xi_{\max}),$$

 $\begin{aligned} \mathcal{R}(\xi) \text{ is an unknown } j_{\text{max}} \times j_{\text{max}} \text{ matrix function,} \\ \mathbf{F}(\xi_0) &= \{\chi_{i_o}(\xi_0)\}_{i_o=1}^{N_o} = \{\{\chi_{j_o}(\xi_0)\}_{j=1}^{j_{\text{max}}}\}_{i_o=1}^{N_o} \text{ is the required } j_{\text{max}} \times N_o \text{ matrix solution,} \\ \text{and } N_o \text{ is the number of open channels, } N_o &= \max_{2E \geq E_i} j \leq j_{\text{max}}. \end{aligned}$

In asymptotic region

$$\Psi(\xi_0,...,\xi_{A-1};E) = \sum_j \Phi_j(\xi_1,...,\xi_{A-1}) \frac{\exp(+\iota(p_j\xi_0))}{\sqrt{p_j}}$$

Open channels: $p_j^2 = E - E_j > 0$ (oscillating solutions). Closed channels: $p_j^2 = E - E_j < 0$ (exponentially small solutions).

The asymptotic boundary conditions

Matrix-solution $\Phi_v(z) = \Phi(z)$ describing the incidence of the particle and its scattering, which has the asymptotic form "incident wave + outgoing waves", is

$$\boldsymbol{\Phi}_{\boldsymbol{\nu}}(z \to \pm \infty) = \left\{ \begin{array}{ll} \left\{ \begin{array}{ll} \boldsymbol{X}^{(+)}(z) \boldsymbol{\mathsf{T}}_{\boldsymbol{\nu}}, & z > 0, \\ \boldsymbol{X}^{(+)}(z) + \boldsymbol{X}^{(-)}(z) \boldsymbol{\mathsf{R}}_{\boldsymbol{\nu}}, & z < 0, \end{array} \right. & \boldsymbol{\nu} = \rightarrow, \\ \left\{ \begin{array}{ll} \boldsymbol{X}^{(-)}(z) + \boldsymbol{X}^{(+)}(z) \boldsymbol{\mathsf{R}}_{\boldsymbol{\nu}}, & z > 0, \\ \boldsymbol{X}^{(-)}(z) \boldsymbol{\mathsf{T}}_{\boldsymbol{\nu}}, & z < 0, \end{array} \right. & \boldsymbol{\nu} = \leftarrow, \end{array} \right.$$

where \mathbf{R}_{ν} and \mathbf{T}_{ν} are the reflection and transmission $N_o \times N_o$ matrices, $\nu = \rightarrow$ and $\nu = \leftarrow$ denote the initial direction of the particle motion along the z axis.

Schematic diagrams of the continuum spectrum waves having the asymptotic form: (a) "incident wave + outgoing waves", (b) "incident waves + ingoing wave":

A. Gusev (JINR)

The asymptotic boundary conditions

The ABC for the solution $\Psi(y, \mathbf{x}) = \{\Phi_{i_0}(y, \mathbf{x})\}_{i_0=1}^{N_0} (y = \xi_0, \mathbf{x} = \{\xi_1, ..., \xi_{A-1}\})$

$$\begin{split} \Psi_{i_{o}}^{\leftarrow}(\boldsymbol{y} \to +\infty, \mathbf{x}) \to \Phi_{i_{o}}(\mathbf{x}) \frac{\exp\left(-\imath\left(p_{i_{o}}\boldsymbol{y}\right)\right)}{\sqrt{p_{i_{o}}}} + \sum_{j=1}^{N_{o}} \Phi_{j}(\mathbf{x}) \frac{\exp\left(+\imath\left(p_{j}\boldsymbol{y}\right)\right)}{\sqrt{p_{j}}} R_{j_{i_{o}}}^{\leftarrow}(\boldsymbol{E}), \\ \Psi_{i_{o}}^{\leftarrow}(\boldsymbol{y} \to -\infty, \mathbf{x}) \to \sum_{j=1}^{N_{o}} \Phi_{j}(\mathbf{x}) \frac{\exp\left(-\imath\left(p_{j}\boldsymbol{y}\right)\right)}{\sqrt{p_{j}}} T_{j_{o}}^{\leftarrow}(\boldsymbol{E}), \\ \Psi_{i_{o}}^{\leftarrow}(\boldsymbol{y}, |\mathbf{x}| \to \infty) \to 0; \end{split}$$

$$\begin{split} \Psi_{i_{o}}^{\rightarrow}(\boldsymbol{y} \rightarrow -\infty, \mathbf{x}) \rightarrow \Phi_{i_{o}}(\mathbf{x}) \frac{\exp\left(\iota\left(p_{i_{o}}\boldsymbol{y}\right)\right)}{\sqrt{p_{i_{o}}}} + \sum_{j=1}^{N_{o}} \Phi_{j}(\mathbf{x}) \frac{\exp\left(-\iota\left(p_{j}\boldsymbol{y}\right)\right)}{\sqrt{p_{j}}} R_{ji_{o}}^{\rightarrow}(\boldsymbol{E}), \\ \Psi_{i_{o}}^{\rightarrow}(\boldsymbol{y} \rightarrow +\infty, \mathbf{x}) \rightarrow \sum_{j=1}^{N_{o}} \Phi_{j}(\mathbf{x}) \frac{\exp\left(\iota\left(p_{j}\boldsymbol{y}\right)\right)}{\sqrt{p_{j}}} T_{ji_{o}}^{\rightarrow}(\boldsymbol{E}), \\ \Psi_{i_{o}}^{\rightarrow}(\boldsymbol{y}, |\mathbf{x}| \rightarrow \infty) \rightarrow 0. \end{split}$$

 $v = \leftarrow, \rightarrow$ denotes the initial direction of the particle motion along the y axis, N_o is the number of open channels at the fixed energy $p_{i_o}^2 = E - E_{i_o} > 0$; $R_{j_o}^v$ and $T_{j_o}^v$ are unknown reflection and transmission amplitudes.

A. Gusev (JINR)

S-matrix

ABC in the matrix form

 $\Psi = \Phi^T F$, describing the "incident wave + outgoing waves" at $y_+ \to +\infty$ and $y_- \to -\infty$ as

$$\begin{pmatrix} \mathbf{F}_{\to}(y_{+}) & \mathbf{F}_{\leftarrow}(y_{+}) \\ \mathbf{F}_{\to}(y_{-}) & \mathbf{F}_{\leftarrow}(y_{-}) \end{pmatrix} = \begin{pmatrix} \mathbf{0} & \mathbf{X}^{(-)}(y_{+}) \\ \mathbf{X}^{(+)}(y_{-}) & \mathbf{0} \end{pmatrix} + \begin{pmatrix} \mathbf{0} & \mathbf{X}^{(+)}(y_{+}) \\ \mathbf{X}^{(-)}(y_{-}) & \mathbf{0} \end{pmatrix} \mathbf{S},$$

the unitary and symmetric scattering matrix \mathbf{S}

$$\mathbf{S} = \left(\begin{array}{cc} \mathbf{R}_{\rightarrow} & \mathbf{T}_{\leftarrow} \\ \mathbf{T}_{\rightarrow} & \mathbf{R}_{\leftarrow} \end{array} \right), \quad \mathbf{S}^{\dagger}\mathbf{S} = \mathbf{S}\mathbf{S}^{\dagger} = \mathbf{I}$$

is composed of the above reflection and transmission matrices having the following properties :

$$\begin{split} T^{\dagger}_{\rightarrow}T_{\rightarrow}+R^{\dagger}_{\rightarrow}R_{\rightarrow} &= I_{oo} = T^{\dagger}_{\leftarrow}T_{\leftarrow}+R^{\dagger}_{\leftarrow}R_{\leftarrow}, \\ T^{\dagger}_{\rightarrow}R_{\leftarrow}+R^{\dagger}_{\rightarrow}T_{\leftarrow} &= 0 = R^{\dagger}_{\leftarrow}T_{\rightarrow}+T^{\dagger}_{\leftarrow}R_{\rightarrow}, \\ T^{T}_{\rightarrow} &= T_{\leftarrow}, \quad R^{T}_{\rightarrow} = R_{\rightarrow}, \quad R^{T}_{\leftarrow} = R_{\leftarrow}. \end{split}$$

In addition, it should be noted that functions $X^{(\pm)}(z)$ satisfy relations

$$Wr(Q(z); X^{(\mp)}(z), X^{(\pm)}(z)) = \pm 2i I_{oo}, Wr(Q(z); X^{(\pm)}(z), X^{(\pm)}(z)) = 0,$$

where $Wr(\bullet; \mathbf{a}(z), \mathbf{b}(z))$ is a generalized Wronskian with a long derivative defined as

$$Wr(Q(z); \mathbf{a}(z), \mathbf{b}(z)) = \mathbf{a}^{T}(z) \left(\frac{d\mathbf{b}(z)}{dz} - \mathbf{Q}(z)\mathbf{b}(z) \right) - \left(\frac{d\mathbf{a}(z)}{dz} - \mathbf{Q}(z)\mathbf{a}(z) \right)^{T} \mathbf{b}(z).$$

This Wronskian is used to estimate a desirable accuracy of the above expansion.

FEM grid details

type	Α	j max	ξ_0^{\max}	$N_{\rm elem}$	max N₀
\mathbf{S}	2	13	9.3	664	10
А	2	13	9.3	664	10
\mathbf{S}	3	21	10.5	800	10
А	3	16	10.5	800	7
\mathbf{S}	4	39	12.8	976	15
А	4	15	12.8	976	3

 $\begin{array}{l} A \text{ is number of particles,} \\ j_{max} \text{ is number of Eqs.} \\ \xi_0^{max} \text{ is last point of the} \\ \text{finite-element grid } \Omega_\xi \{-\xi_0^{max}, \xi_0^{max}\}, \\ N_{\text{elem}} \text{ is number of fourth-order} \\ \text{Lagrange elements,} \\ \max N_o \text{ is maximum number of} \\ \text{open channels.} \end{array}$

イロト イロト イヨト イヨト ヨー シタの

The total transmission probabilities $|T|_{11}^2$ vs energy E (in oscillator units) from the ground state of the system of A = 2, 3, 4 of symmetric particles, coupled by the oscillator potential, through the repulsive Gaussian potential barriers $V(x_i) = \frac{\alpha}{\sqrt{2\pi\sigma}} \exp(-\frac{x_i^2}{\sigma^2})$ at $\sigma = 0.1$ and $\alpha = 2, 5, 10, 20$.

・ロト ・日ト ・ヨト ・ヨト

The total transmission probabilities $|T|_{11}^2$ vs energy E (in oscillator units) from the ground state of the system of A = 2, 3, 4 of antisymmetric particles, coupled by the oscillator potential, through the repulsive Gaussian potential barriers $V(x_i) = \frac{\alpha}{\sqrt{2\pi\sigma}} \exp(-\frac{x_i^2}{\sigma^2})$ at $\sigma = 0.1$ and $\alpha = 2, 5, 10, 20$.

・ロト ・日ト ・ヨト ・ヨト

The total penetration probabilities $|T|_{ii}^2$ vs energy E (in oscillator units) from the ground and excited states of the system of A = 2, 3, 4 of symmetric particles, coupled by the oscillator potential, through the repulsive Gaussian-type potential barriers $V(x_i) = \frac{\alpha}{\sqrt{2\pi\sigma}} \exp(-\frac{x_i^2}{\sigma^2})$ at $\sigma = 0.1$ and $\alpha = 10$.

・ロン ・回 ・ ・ ヨン ・ ヨン

The probability densities $|\chi_i(\xi_0)|^2$ of the coefficient functions and the profiles of probability densities $|\Psi(\xi_0,\xi_1)|^2$ for A = 2 symmetric particles.

A. Gusev (JINR)

tes. tunneling of composite systems

The probability densities $|\chi_i(\xi_0)|^2$ of the coefficient functions and the profiles of probability densities $|\Psi(\xi_0,\xi_1)|^2$ for A = 2 antisymmetric particles.

A. Gusev (JINR)

Res. tunneling of composite systems

The probability densities $|\chi_i(\xi_0)|^2$ of the coefficient functions for A = 3 and A = 4symmetric particles. A. Gusev (JINR)

The comparison of convergence rate of Galerkin and Kantorovich close-coupling expansions

The comparison of convergence rate of Galerkin (cc^{*}) and Kantorovich (k^{*}) close-coupling expansions in calculations of transmission coefficient $|T|_{11}^2$ for symmetric A = 2 at $\alpha = 10$, $\sigma = 0.1$. Results agree with calculations by means of the Numerov method in 2D plane [F.M. Pen'kov, JETP 91, 698 (2000)]

Thank you for your attention!

A. Gusev (JINR)