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Introduction 



Waves 

amplitude and phase in space and time 

Linear waves:  superposition, interference, phase coherence 

e.g. 

optical fibres  

microwave cavities 

atomic Bose-Einstein condensates  

quantum billiards 

quantum dots 

superconducting networks 

molecules, solids 



 Nonlinear waves? 

high intensities - qualitatively new properties: 

nonlinear response 

waves interact with each other 

resonances 

dynamical chaos 

instability 

rogue waves ... tsunami ... 



Lattice waves 

discretize space – introduce lattice 

one oscillator per lattice point 

oscillator state is defined by amplitude and phase 

add interaction between oscillators 

 

anharmonic potential = nonlinear wave equation 

intensity increase changes frequency 

in quantum world energy levels NOT equidistant   

Typical excitations in condensed matter, optics, etc 



 

 

Linear waves  

in  localizing potentials 



Waves in localizing media 

• uncorrelated random potential: Anderson localization 

 

• quasiperiodic potential: Aubry-Andre (Harper) localization  

 

• dc bias ε(l)=E·l : Wannier-Stark localization (Bloch oscillations) 

 

• quantum kicked rotor: localization in momentum space,  

   loosely similar to quasiperiodic potential case 

In all cases all (or almost all) eigenstates are spatially localized, 

with finite upper bounds on the localization length / volume. 



Wannier-Stark ladder 

Bloch oscillations for E=0.05 
Eigenfunctions 

Localization volume 

Krimer,Khomeriki,SF (2009) 

Wannier (1960) 

Superexponential localization 



Aubry-Andre model Aubry,Andre (1980) 

Self duality: 

adapted from Aulbach et al (2004) 

Metal insulator transition: 

Exponential localization. 

Localization length  = 1 / ln[ ζ/2 ] 



Eigenvalues: 

Width of EV spectrum: 

Eigenvectors: 

Localization volume of NM: L 

l 

Localization length: 

Anderson localization 

in 

Krimer,SF (2010) 

Anderson (1958) 



Eigenvalues: 

Width of EV spectrum: 

Eigenvectors: 

Localization volume of NM: L 

l 

Localization length: 

Anderson localization 

in 

Anderson (1958) 

Krimer,SF (2010) 



Anderson  

Model 

• Lattice - tight binding model 

• Onsite energies  ei - random 

• Hopping matrix elements tij  j i 

Iij 

tij = { -W/2 < ei <W/2   
uniformly distributed 

t < tc  t > tc 

Insulator  
All eigenstates 
are localized 

Metal 
There appear states extended 

all over the whole system 

Anderson  Transition 

t   i and j are nearest  
        neighbors 
 

0   otherwise 



DoS DoS 

all states are 

localized 

t < t
c
 
 

t > t
c 

Anderson  Transition 

- mobility edges (one particle) 

extended 



Localization of single-particle wave-functions. 

Continuous limit: 

extended 

localized 

d=1: All states are localized 

d=2: All states are localized 

d >2: Anderson transition 



Eigenmodes of a periodic lattice, N=99 





Eigenmodes of a disordered lattice, N=99 
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Ordered lattice Disordered  lattice Disordered  lattice - averaged 

•  Exciting a single site as an initial condition 

Wave packet evolution 



Experimental Evidence for Wave Localization 

Ultrasound: Weaver 1990 

 

Microwaves: Dalichaoush et al 1991, Chabanov et al 2000 

 

Light: Wiersma et al 1997,  Scheffold et al 1999, Pertsch et al (1999), 

Morandotti et al (1999), Stoerzer et al 2006, Schwartz et al 2007,  

Lahini et al 2008 

 

BEC: Moore et al (1994) Anderson et al (1988), Morsch et al (2001),  

Billy et al 2008, Roati et al 2008 







• Evanescent coupling between waveguides  
• Light coherently tunnels between neighboring waveguides 

• Dynamics is described by the Tight-Binding model 

 

z 
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βn – waveguide’s refraction index /width 

Cn,n±1 –  separation between waveguides 

An optical one-dimensional waveguide lattice (Silberberg et al ’08) 



• Injecting a narrow beam (~3 sites) at different locations 
across the lattice 

 

 

 

(a) Periodic array – expansion 
(b) Disordered array - expansion  
(c) Disordered array - localization 

(a) 

(b) 

(c) 



 

 

Nonlinear waves  

in  localizing potentials 



Defining the problem 

• a disordered medium 

 

• linear equations of motion: all eigenstates are Anderson localized 

 

• add short range nonlinearity (interactions) 

 

• follow the spreading of an initially localized wave packet  
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Defining the problem 

• a disordered medium 

 

• linear equations of motion: all eigenstates are Anderson localized 

 

• add short range nonlinearity (interactions) 

 

• follow the spreading of an initially localized wave packet  

Will it delocalize? Yes because of nonintegrability and ergodicity 

 

No because of energy conservation –  

      spreading leads to small energy density,  

      nonlinearity can be neglected,  

      dynamics becomes integrable, and  

      Anderson localization is restored 



Equations in normal mode space: 

NM ordering in real space: 

Characterization of wavepackets in normal mode space: 

Second moment: 

Participation number: 

Compactness index: 

K adjacent sites equally excited: 

K adjacent sites, every second empty 

or equipartition: 

location of tails 

number of strongly excited modes 



Frequency scales 

• Eigenvalue (frequency) spectrum width:  

• Localization volume of eigenstate:   V ≈ 360/W 

• Average frequency spacing inside  

                           localization volume:    d = Δ/V  

W=4 : 

8 

~18 (sites) 

0.43 

• Nonlinearity induced frequency shift: 

Three expected evolution regimes: 

Weak chaos                : δ < d 

Strong chaos              : d < δ < 2 

(partial) self trapping : 2 < δ 

2 

SF Chem Phys 2010, TV Laptyeva et al EPL 2010 



W=4 

Wave packet with 20 sites 

Norm density = 1 

Random initial phases 

Averaging over 1000 realizations  

J Bodyfelt et al PRE 2011 



We averaged the measured exponent 

over 20 realizations: 

α = 0.33 ± 0.02 (DNLS) 

α = 0.33 ± 0.05 (KG) 

Asymptotic regime of weak chaos  SF et al PRL 2009, Ch. Skokos et al PRE 2009 

Strong chaos and crossover to weak chaos  TV Laptyeva et al EPL 2010 

Averaging over 1000 realizations,  measuring 

DNLS, W=4 KG, W=4 
KG 



Generalizations:  higher dimensions, nonlinearity exponent σ: 

SF ChemPhys 2010 

Chaos in wave packet generates nonlinear diffusion: 



D=1, 0 < σ < 4 :  

Ch Skokos et al PRE 2010 

D=2, σ = 2 :  

TV Laptyeva et al, EPL 2012 

Generalizations:  higher dimensions, nonlinearity exponent σ: 

Related results by M Mulansky 



Restoring Anderson localization?   A matter of probability and KAM! 

MV Ivanchenko et al PRL 2011 
E : total energy  

L : size of initial wave packet 

Generalizing: 

d: dimension 

V: volume of wave packet 

γ : = 2σ 

Related results by Aubry,Johansson  



The emerging picture 

0 

I II III 

SF,Krimer,Skokos (2009) 

Shepelyansky and Pikovsky (2008) 

Molina (1998) 

SF (2010) 

Bodyfelt,Lapteva,Krimer, 

Skokos,SF (2010) 

Kopidakis, Komineas, 

SF, Aubry (2008) 

Weak Chaos Strong Chaos Selftrapping, part of 

packet IS spreading 

In all cases subdiffusive spreading 

d=Δ/V Δ δ 

Anderson Localization 

////// 

KAM 



Quasiperiodic potentials (Aubry-Andre): M Larcher et al, arXiv1206.0833 

Pecularities: 

 

• spectrum with gaps 

• subgaps etc 

• fractal properties 

• gap selftrapping 

• hierarchy of level spacings 

• strong and weak chaos 

• α = 1/3 



Nonlinear Wannier-Stark ladder 

E=2, β=8, ...,9 

α=0.38 

D Krimer et al PRE 2009 

Pecularities: 

 

• spectrum is equidistant 

• exact resonances 

• absence of universality 

• exponents depend on E 



1st experimental confirmation from Firenze 



 

 

Many body localization? 
(what I will not further talk about) 



Localization of  one-particle wave functions in disordered potentials 

delocalized 

lokalisiert 

d=1: All states are localized 

d=2: All states are localized 

d >2: Anderson transition 

Disorder strength 

Interaction strength 

Fermi liquid Wigner crystall 

Interacting Fermions: 

 

! – more or less understood 

 

? – not really 

? 

! 



Basko, Aleiner, Altshuler (2006): 

• all single particle states  are localized 

• no phonons  

• short range interaction  only 

Average level spacing  of single particle  

states  within one localization volume: 

• critical temperature for MIT  

• in the metallic phase fermions 

  need a minimum number of excited 

  partner particles 

• in the limit of  large localization length 

  and weak disorder: 

  Tc → 0 , classical MF description? 



 

 

Interacting quantum particles  

in  disordered chains 



random uncorrelated from 

Model describes interacting bosons  in one dimension 





One particle 

Real space basis: 

Eigenstates = normal modes: 

Eigenvalue problem: 

Single quantum particle identical with classical linear wave equation. 

 

Here: Anderson localization 



Two particles 

Real space basis: 

Eigenstates = normal modes: 

Eigenvectors: 

Indistinguishable particles: 

PDF of particle number: 



V=1 



N particles in one dimension are equivalent to one fictuous particle in N dimensions 



Unfolding irreducible space into full two-dimensional plane: 



 Noninteracting eigenstate basis: 

Eigenstates = normal modes (NM): 



• The overlap integrals are same as in classical nonlinear wave theory 

 

• connectivity is L*L  (instead of L in classical theory) 

 

• phase space is 4*N*N  (instead of  2*N in classical theory) 

 

• differential equations are linear  (instead of nonlinear in classical theory) 

 

• width of spectrum:  

 

• average spacing of connected eigenstates:   

 

• energy mismatch = effective disorder in NM space: 

 

• effective hopping:  

 

• weak disorder:  

 

• U > W + V : bound states separate into narrow band, loc length small, 

  separation into strongly localized  bound states and spinless fermions 

 

• small U: perturbation regime, strong disorder in NM space: 

 

• relevant regime:  



• Analytics boils down to getting control over the overlap integrals I 

 

• Shepelyansky / Imry: neglecting phase correlations in eigenvectors 

 

 

 

• Schreiber / Roemer: depends how to average,  

 

• Krimer / Flach: subset of Is conserving momentum:  < I > ~ 1/L 

                            rest of Is :   

Inconclusive, needs further and more intelligent studies  



Direct computation of the new localization length 

Choose eigenstates with centers close to the diagonal, and  

maximum NM contribution from state with both single particle energies 

close to zero 

W=2, U=0; 0.2 

W=2.5 , U=0; 2 

Exponents 

1.3 ... 1.4 



Conclusions? 

 

• previous estimates probably wrong 

 

• numerics of direct localziation length calculation  is not 

  getting into the relevant scaling regime so far 

 

• question remains completely open 



Two (and more) interacting particles in a Wannier-Stark ladder 

Interaction induced fractional Bloch  and tunneling oscillations 

U=3, E=0.05,  N=1,2,3,4 



Two particles form a bound state and Bloch oscillate  

with double frequency 



Effective model for bound state dynamics with n particles: 



Resonant tunneling 

U=19.8 

Two adjacent 

Two on top 



basis: 

pdf of particle density: 

Participation number of density pdf: 

Two interacting particles in a quasiperiodic potential 

M.V. Ivanchenko 

R. Khomeriki 

S. Flach 

EPL 98 66002 (2012) 



Results: eigenfunctions 

M.V. Ivanchenko 

R. Khomeriki 

S. Flach 

EPL 98 66002 (2012) 





Results: PDF of spreading of wave packet with λ=2.5 and N=2500 

               and two particles initially at adjacent sites 

U=2 U=4.5 



Results: the complete picture from spreading wave packets: 

               square rooted 2nd moment for 60 different realizations 


