

 All observables can be predicted in terms of N_{par} = 18 (?) parameters

 $O_i(E) = O_i(E, \alpha, \alpha_s, M_Z, M_W, M_H, M_t, \dots)$

where E corresponds to some charesterstic energy scale.

- If we meausere at least N_{par} different observables we can extract the values of the parameters from the experiment and make predictions....
- Rather naive question:
 - Why can't we extract all the parameters just from ONE observable by choosing different E_i,i=1,N_{par}?

 All observables can be predicted in terms of N_{par} = 18 (?) parameters

 $O_i(E) = O_i(E, \alpha, \alpha_s, M_Z, M_W, M_H, M_t, \dots)$

where E corresponds to some charesterstic energy scale.

- If we meausere at least N_{par} different observables we can extract the values of the parameters from the experiment and make predictions....
- Rather naive question:
 - Why can't we extract all the parameters just from ONE observable by choosing different E_i,i=1,N_{par}?

 All observables can be predicted in terms of N_{par} = 18 (?) parameters

 $O_i(E) = O_i(E, \alpha, \alpha_s, M_Z, M_W, M_H, M_t, \dots)$

- Rather naive question:
 - Can't we extract all the parameters just from ONE observable by choosing different E_i,i=1,N_{par}?

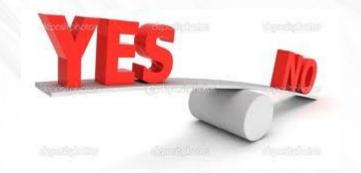
In princple «YES»:

- Choose appropriate O_i
- Calculate RADIATIVE corrections as precise as possible (dependence on all the parameters)
- · Get what you want!

 All observables can be predicted in terms of N_{par} = 18 (?) parameters

 $O_i(E) = O_i(E, \alpha, \alpha_s, M_Z, M_W, M_H, M_t, \dots)$

- Rather naive question:
 - Can't we extract all the parameters just from ONE observable by choosing different E_i,i=1,N_{par}?



In practice «NO»! sensitivity is different for different parameters!

 All observables can be predicted in terms of N_{par} = 18 (?) parameters

 $O_i(E) = O_i(E, \alpha, \alpha_s, M_Z, M_W, M_H, M_t, \dots)$

- Rather naive question:
 - Can't we extract all the parameters just from ONE observable by choosing different E_i,i=1,N_{par}?

In practice «NO»! sensitivity is different for different parameters!

OK, not all (just one, e.g., M_{H}) and not from a single observable....(See below).

Consistency check of the SM

 Given N>N_{par} observables one can check the consistency of the model, since the latter predicts the relations between observables.

 $O_i(E) = O_i(E, \alpha, \alpha_s, M_Z, M_W, M_H, M_t, \dots)$

- In practice: use as many observables as possible and do a fit
 - e.g. ZFITTER or GFITTER for ElectroWeak Precision Observables (EWPO)

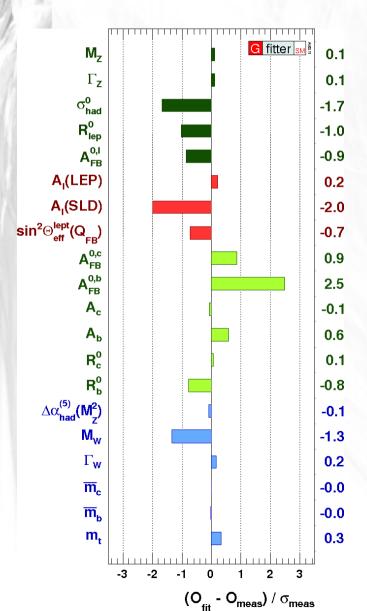
Precision SM observables

- Low energy
 - Fermi G_{μ} constant measured in muon decay
 - Anomalous magnetic moment of muon $(g-2)_{\mu}$
- Z-pole observables
 - Z-boson mass and width M_Z, Γ_Z
 - Effective couplings of Z to fermions g_V, g_A
 - Effective Weinberg angle $\sin^2 \theta_{lept}$
- LEP 2, Tevatron, LHC:
 - W-boson mass M_W
 - Top quark mass M_t

Precision SM observables

- Low energy
 - Ferm G_{μ} constant measured in muon decay
 - Anomalous magnetic moment of muon $(g-2)_{\mu}$
- Z-pole observables
 - Z-boson mass and width M_Z, Γ_Z
 - Effective couplings of Z to fermions g_V, g_A
 - Effective Weinberg angle $\sin^2 \theta_{lept}$
- LEP 2, Tevatron, LHC:
 - W-boson mass M_W
 - Top quark mass M

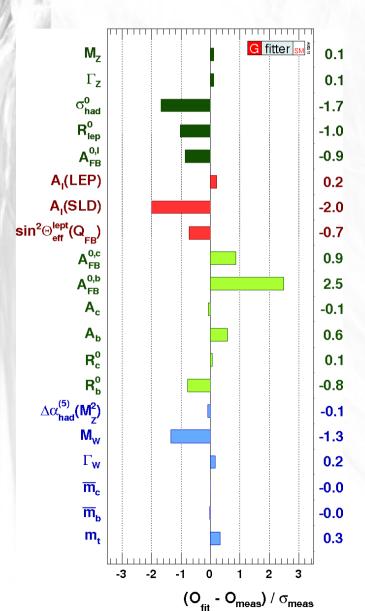
Gfitter fit :)



Parameter	Input value	Free	Results from global EW fits:		Complete fit w/o
		in fit	Standard fit	Complete fit	exp. input in line
M_Z [GeV]	91.1875 ± 0.0021	yes	91.1874 ± 0.0021	91.1877 ± 0.0021	$91.1983 \substack{+0.0133 \\ -0.0155}$
Γ_Z [GeV]	2.4952 ± 0.0023	-	2.4959 ± 0.0015	2.4955 ± 0.0014	$2.4951 \substack{+0.0017 \\ -0.0016}$
$\sigma_{\rm had}^0$ [nb]	41.540 ± 0.037	_	41.478 ± 0.014	41.478 ± 0.014	41.469 ± 0.015
R^0_ℓ	20.767 ± 0.025	_	20.743 ± 0.018	20.741 ± 0.018	$20.718 \substack{+0.027 \\ -0.026}$
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	_	0.01641 ± 0.0002	$0.01620 \substack{+0.0002 \\ -0.0001}$	0.01606 ± 0.0001
$A_{\ell}^{(\star)}$	0.1499 ± 0.0018	_	0.1479 ± 0.0010	$0.1472^{+0.0009}_{-0.0006}$	_
A_c	0.670 ± 0.027	-	$0.6683^{+0.00044}_{-0.00043}$	$0.6680 \substack{+0.00040 \\ -0.00028}$	$0.6679^{+0.00042}_{-0.00025}$
A_b	0.923 ± 0.020	_	$0.93470 \substack{+0.00009 \\ -0.00008}$	$0.93463 \substack{+0.00008\\-0.00005}$	0.93463+0.00007
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	_	0.0741 ± 0.0005	$0.0737 \substack{+0.0005 \\ -0.0004}$	0.0738 ± 0.0004
$A_{\rm FB}^{0,b}$	0.0992 ± 0.0016	_	0.1037 ± 0.0007	$0.1035 \substack{+0.0003 \\ -0.0004}$	$0.1038^{+0.0003}_{-0.0005}$
R_c^0	0.1721 ± 0.0030	_	0.17226 ± 0.00006	0.17226 ± 0.00006	0.17226 ± 0.0000
R_b^0	0.21629 ± 0.00066	_	$0.21578 \substack{+0.00005 \\ -0.00008}$	$0.21577 \substack{+0.00005\\-0.00008}$	0.21577+0.00005
$\sin^2 \theta_{eff}^{\ell}(Q_{FB})$	0.2324 ± 0.0012	_	0.23141 ± 0.00012	$0.23150 \substack{+0.00008 \\ -0.00011}$	$0.23152 \substack{+0.00006\\-0.00013}$
M_H [GeV] ^(o)	Likelihood ratios	yes	$95^{+30[+74]}_{-24[-43]}$	$125^{+8[+21]}_{-10[-11]}$	$95^{+30[+74]}_{-24[-43]}$
M _W [GeV]	80.399 ± 0.023	_	$80.382 \substack{+0.014 \\ -0.015}$	$80.368\substack{+0.007\\-0.010}$	$80.360 \substack{+0.012 \\ -0.011}$
Γ _W [GeV]	2.085 ± 0.042	-	2.093 ± 0.001	2.092 ± 0.001	$2.091 \substack{+0.002 \\ -0.001}$
m_[GeV]	$1.27^{+0.07}_{-0.11}$	yes	$1.27^{+0.07}_{-0.11}$	$1.27 \substack{+0.07 \\ -0.11}$	_
m _b [GeV]	$4.20^{+0.17}_{-0.07}$	yes	$4.20^{+0.16}_{-0.07}$	$4.20 \substack{+0.16 \\ -0.07}$	_
m_t [GeV]	173.2 ± 0.9	yes	173.3 ± 0.9	173.5 ± 0.9	$177.2^{+2.9}_{-3.1}(\bigtriangledown)$
$\Delta \alpha_{\rm had}^{(5)}(M_Z^2)^{(\dagger \bigtriangleup)}$	2749 ± 10	yes	2750 ± 10	2748 ± 10	2716^{+60}_{-45}
$\alpha_s(M_Z^2)$	_	yes	0.1192 ± 0.0028	0.1193 ± 0.0028	0.1193 ± 0.0028
$\delta_{ m th} M_W$ [MeV]	$[-4,4]_{theo}$	yes	4	4	_
$\delta_{\rm th} \sin^2 \theta_{\rm eff}^{\ell}$ (†)	$[-4.7, 4.7]_{theo}$	yes	4.7	4.7	_

^(*)Average of LEP ($A_{\ell} = 0.1465 \pm 0.0033$) and SLD ($A_{\ell} = 0.1513 \pm 0.0021$) measurements. The fit w/o the LEP (SLD) measurement but with the direct Higgs searches gives $A_{\ell} = 0.1471 \stackrel{+0.0010}{_{-0.0000}} (A_{\ell} = 0.1467 \stackrel{+0.0007}{_{-0.0004}})$. ^(o)In brackets the 2σ . ^(†)In units of 10^{-8} . ^(Δ)Rescaled due to α_s dependency. ^(∇)Ignoring a second less significant minimum, cf. fig. ?? and the result of eq. (??).

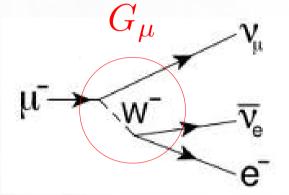
Gfitter fit :)



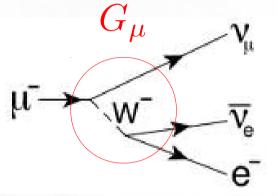
Parameter	Input value	Free	Results from global EW fits:		Complete fit w/o
		in fit	Standard fit	Complete fit	exp. input in line
M_Z [GeV]	91.1875 ± 0.0021	yes	91.1874 ± 0.0021	91.1877 ± 0.0021	91.123+0.0133
Γ_Z [GeV]	2.4952 ± 0.0023	-	2.4959 ± 0.0015	2.4955 ± 0.0014	+0.0017
σ_{had}^0 [nb]	41.540 ± 0.037	_	41.478 ± 0.014	41.478 ± 0.014	41.469 ± 0.015
R^0_{ℓ}	20.767 ± 0.025	_	20.743 ± 0.018	20.741 ± 0.0.8	$20.718 \substack{+0.027 \\ -0.026}$
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	-	0.01641 ± 0.0002	0.01620 ± 0.002	0.01606 ± 0.0007
A_{ℓ} (*)	0.1499 ± 0.0018	_	0.1479 ± 0.0010	$(1472^{+0.0009}_{-0.0006})$	_
A_c	0.670 ± 0.027	_	$0.6683 \pm 0.007_{43}$	0.6680 + 0.00040 - 0.00028	$0.6679^{+0.00042}_{-0.00025}$
A_b	0.923 ± 0.020	_	0.93477 ± 0.0008	$0.93463 \substack{+0.00008\\-0.00005}$	0.93463+0.00007
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	-	0.0005	$0.0737 \substack{+0.0005 \\ -0.0004}$	0.0738 ± 0.0004
$A_{ m FB}^{0,b}$	0.0992 ± 0.0016		0.1037 ± 0.0007	$0.1035 \substack{+0.0003 \\ -0.0004}$	$0.1038 \substack{+0.0003 \\ -0.0005}$
R_c^0	0.1721 ± 0.0030	G	0.17226 ± 0.00006	0.17226 ± 0.00006	0.17226 ± 0.0000
R_b^0	0.21629 ± 0	_	$0.21578 \substack{+0.00005 \\ -0.00008}$	$0.21577 \substack{+0.00005\\-0.00008}$	0.21577+0.00005
$\sin^2 \theta_{\text{eff}}^{\ell}(Q_{\text{FB}})$	0.23.4€.∞12	-	0.23141 ± 0.00012	$0.23150 \substack{+0.00008 \\ -0.00011}$	$0.23152 \substack{+0.00006\\-0.00013}$
M _H [GeV] ⁽⁰⁾	elihood ratios	yes	$95^{+30[+74]}_{-24[-43]}$	$125^{+8[+21]}_{-10[-11]}$	$95^{+30[+74]}_{-24[-43]}$
M_W [GeV]	80.399±0.023	_	$80.382 \substack{+0.014 \\ -0.015}$	$80.368\substack{+0.007\\-0.010}$	80.360 +0.012
Γ _W [GeV]	2.085 ± 0.042	_	2.093 ± 0.001	2.092 ± 0.001	$2.091 \substack{+0.002 \\ -0.001}$
m _c [GeV]	$1.27^{+0.07}_{-0.11}$	yes	$1.27^{+0.07}_{-0.11}$	$1.27 \substack{+0.07 \\ -0.11}$	_
m _b [GeV]	$4.20^{+0.17}_{-0.07}$	yes	$4.20^{+0.16}_{-0.07}$	$4.20 \substack{+0.16 \\ -0.07}$	_
m_t [GeV]	173.2 ± 0.9	yes	173.3 ± 0.9	173.5 ± 0.9	$177.2^{+2.9}_{-3.1}(\bigtriangledown)$
$\Delta \alpha_{\rm had}^{(5)}(M_Z^2)^{(\dagger \Delta)}$	2749 ± 10	yes	2750 ± 10	2748 ± 10	2716^{+60}_{-45}
$\alpha_s(M_Z^2)$	_	yes	0.1192 ± 0.0028	0.1193 ± 0.0028	0.1193 ± 0.0028
$\delta_{ m th} M_W$ [MeV]	$[-4,4]_{theo}$	yes	4	4	_
$\delta_{th} \sin^2 \theta_{eff}^{\ell}$ (†)	$[-4.7, 4.7]_{theo}$	yes	4.7	4.7	_

^(*)Average of LEP ($A_{\ell} = 0.1465 \pm 0.0033$) and SLD ($A_{\ell} = 0.1513 \pm 0.0021$) measurements. The fit w/o the LEP (SLD) measurement but with the direct Higgs searches gives $A_{\ell} = 0.1471 \stackrel{+0.0010}{_{-0.0005}} (A_{\ell} = 0.1467 \stackrel{+0.0007}{_{-0.0004}})$. ^(o)In brackets the 2σ . ^(†)In units of 10^{-8} . ^(Δ)Rescaled due to α_s dependency. ^(∇)Ignoring a second less significant minimum, cf. fig. ?? and the result of eq. (??).

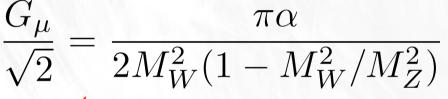
 $G_F = 1.16637(1) \times 10^{-5} \text{ GeV}^{-5}$ $\frac{G_{\mu}}{\sqrt{2}} = \frac{g}{2\sqrt{2}} \frac{1}{M_W^2} \frac{g}{2\sqrt{2}}$

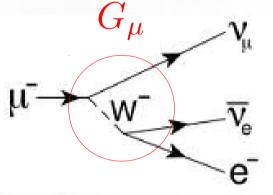


 $G_F = 1.16637(1) \times 10^{-5} \text{ GeV}^{-5}$ $\frac{G_{\mu}}{\sqrt{2}} = \frac{g^2}{8M_W^2} = \frac{e^2}{8\sin^2\theta_W M_W^2}$

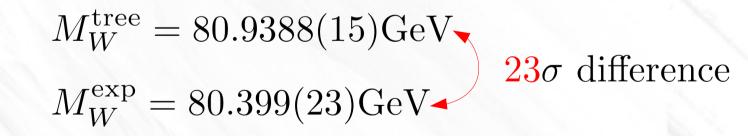


$$G_F = 1.16637(1) \times 10^{-5} \text{ GeV}^{-5}$$





Tree-level



We need to include high order effects!

 $\alpha = 1/137.035999679, M_Z = 91.1876(28) \text{ GeV}$

At high orders one needs to specify a renormalization scheme to define the renormalized parameters

We were considering

- physical masses M_Z, M_W
 - \rightarrow ON-SHELL renormalization prescription
- $\alpha(q^2=0)$ fine-structure constant in MOM-scheme

Fermi theory

 $\frac{d\mu}{\sqrt{2}} = \frac{\pi d}{2M_W^2 (1 - M_W^2 / M_Z^2)}$

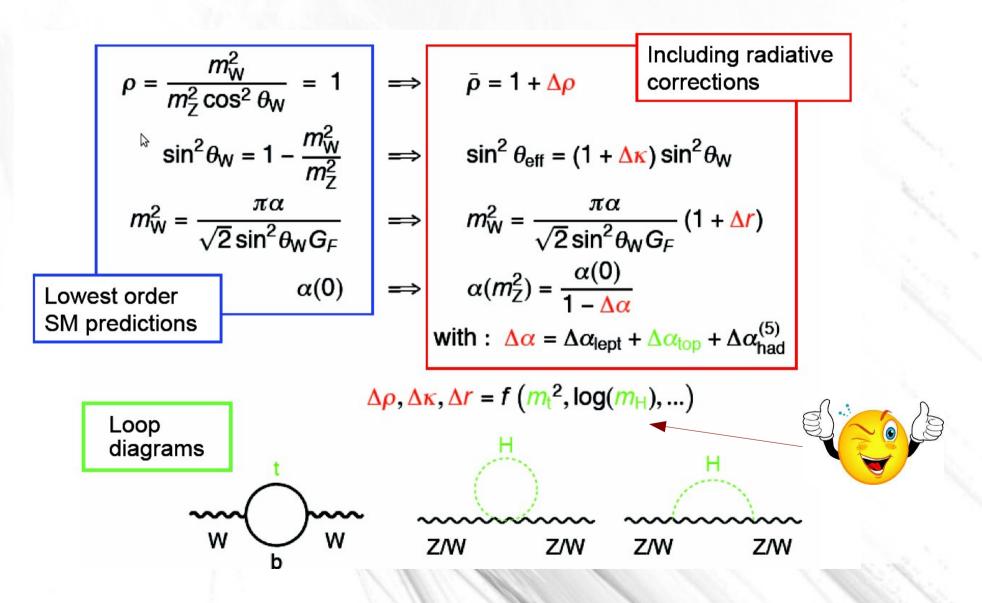
 $\pi \alpha$

Typical MATCHING problem

Comparison of observables In «effective» and «fundamental» theories

SM

 G_{μ}



2

with loop contributions

$$\frac{G_F}{\sqrt{2}} = \frac{\pi\alpha}{M_W^2 \left(1 - M_W^2 / M_Z^2\right)} \cdot \left(1 + \Delta r\right)$$

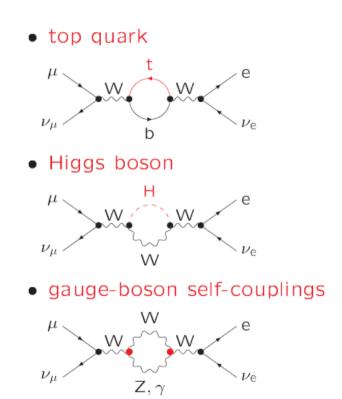
 Δr : quantum correction $\Delta r = \Delta r(m_t, M_H)$

determines W mass

 $M_W = M_W(\alpha, G_F, M_Z, m_t, M_H)$

complete at 2-loop order

1-loop examples



full structure of SM

with loop contributions

$$\frac{G_F}{\sqrt{2}} = \frac{\pi\alpha}{M_W^2 \left(1 - M_W^2 / M_Z^2\right)} \cdot \left(1 + \Delta r\right)$$

 Δr : quantum correction

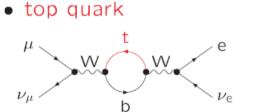
 $\Delta r = \Delta r(m_t, M_H, m_Z, m_W, \dots)$

determines W mass

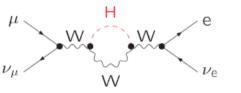
 $M_W = M_W(\alpha, G_F, M_Z, m_t, M_H)$

complete at 2-loop order

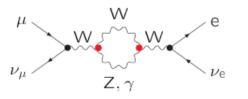
1-loop examples



• Higgs boson



gauge-boson self-couplings

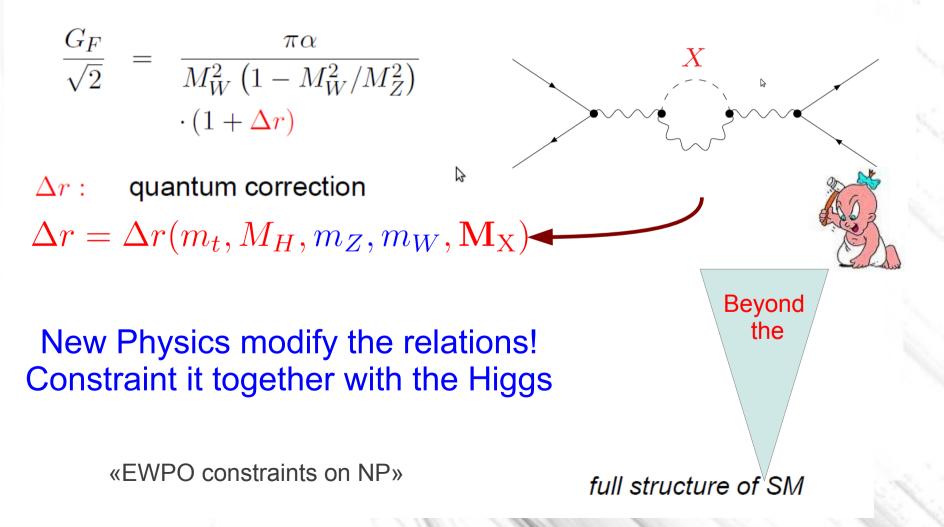


Try to FIT it!

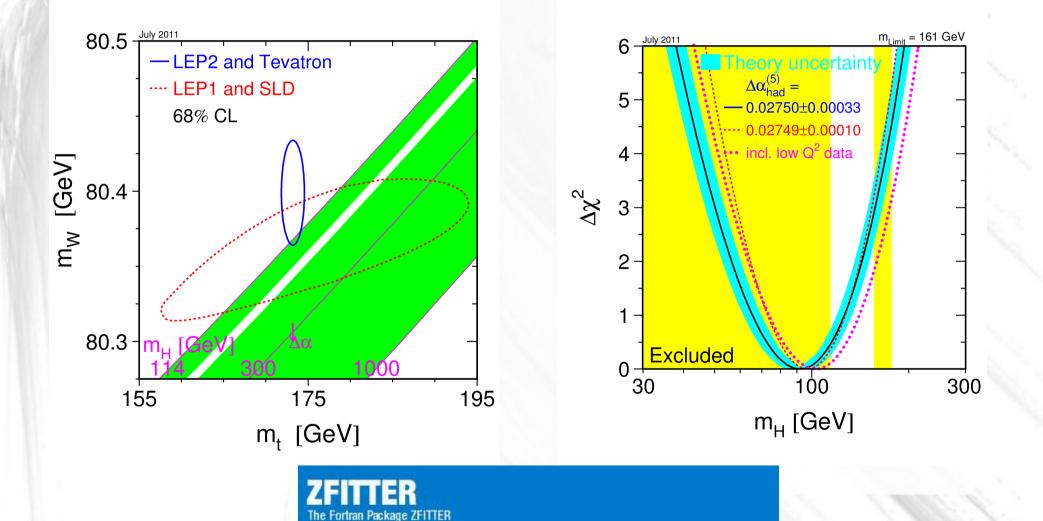
full structure of SM

with loop contributions

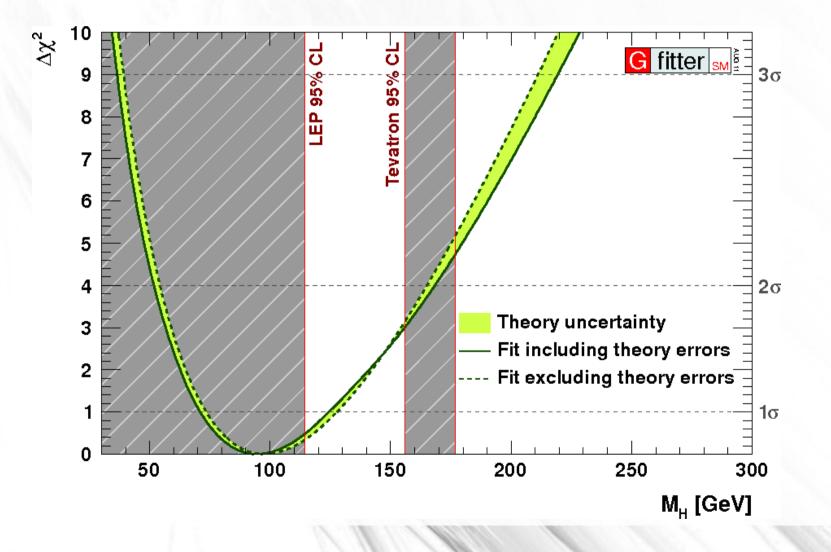
1-loop examples



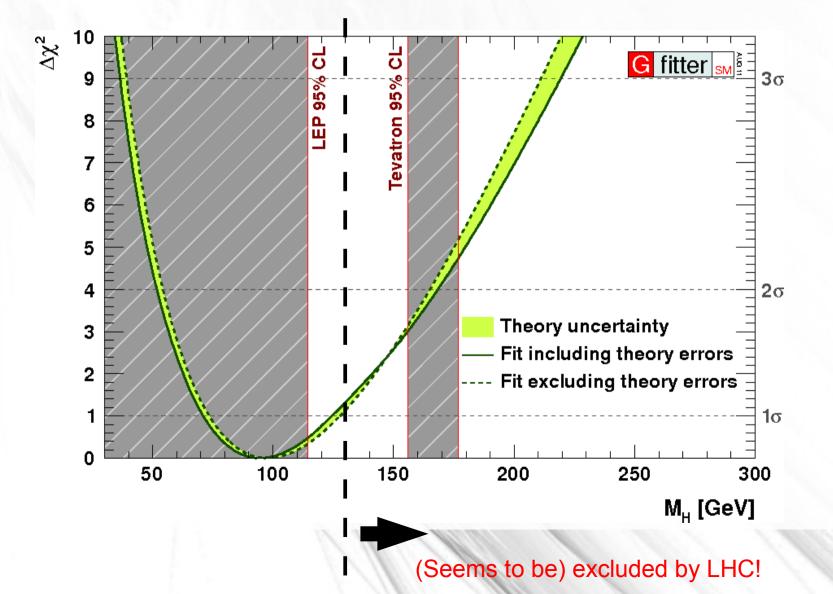
(Indirect) bounds on Higgs Mass



(Indirect) bounds on Higgs Mass



(Indirect) bounds on Higgs Mass

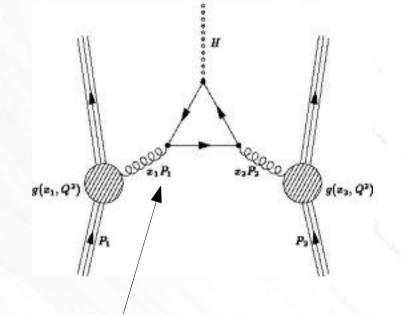


More on importance of Loop corrections

Some processes in the SM are ONLY due to loops!

MSTW 2008 NLO PDFs (68% C.L.)

Very important to the LHC Higgs searches



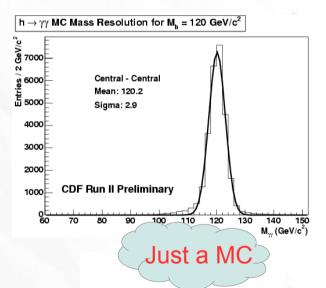
Since we expect that $M_h <<1$ TeV, x should be small

The missing piece: Higgs particle

Higgs mass is a free parameter of the SM!

Should be measured in a direct experiment (e.g. as a Peak in some disrtibution)

- But we have indirect bounds
 - from precision corrections
 - from theoretical consistency

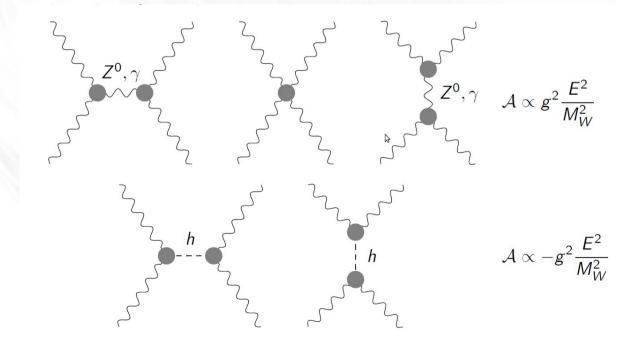


Theoretical constraints on the Higgs boson mass

Unitarity problem in WW → WW scattering

Longitudinal

polarization of W-boson



Without Higgs WW scattering violate unitarity (cross-section grows with energy)

TeV scale favoured

Theoretical constraints on the Higgs boson mass

Triviality and Stability

For large M_{μ} :

For small M_{μ} :

$$M_H^2 = 2\lambda v^2 \qquad \qquad \frac{d\lambda}{dt} = \frac{1}{16\pi^2} \left(12\lambda^2 - 3g_t^4 + 6\lambda g_t^2 + \cdots\right)$$

For large M_H:

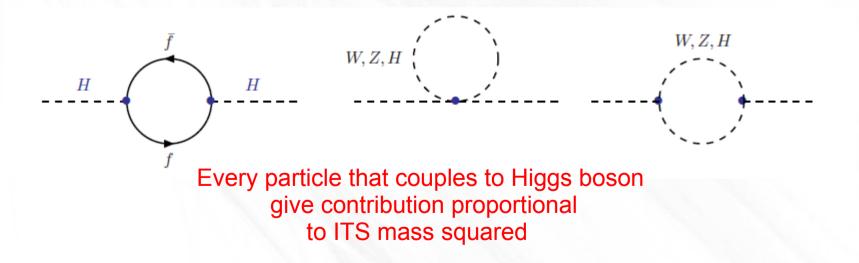
$$\lambda(Q) = \frac{M_H^2}{2v^2 - \frac{3}{2\pi^2}M_H^2 \ln \frac{Q}{v}}$$
For small M_H:

$$\lambda(Q) = \lambda(v) - \frac{\frac{3}{8\pi^2}y_t^4(v) \ln \frac{Q}{v}}{1 - \frac{9}{16\pi^2}y_t^2(v) \ln \frac{Q}{v}}$$

$$\lambda(Q) = \lambda(v) - \frac{3}{6\pi^2}y_t^4(v) \ln \frac{Q}{v}}{1 - \frac{9}{16\pi^2}y_t^2(v) \ln \frac{Q}{v}}$$

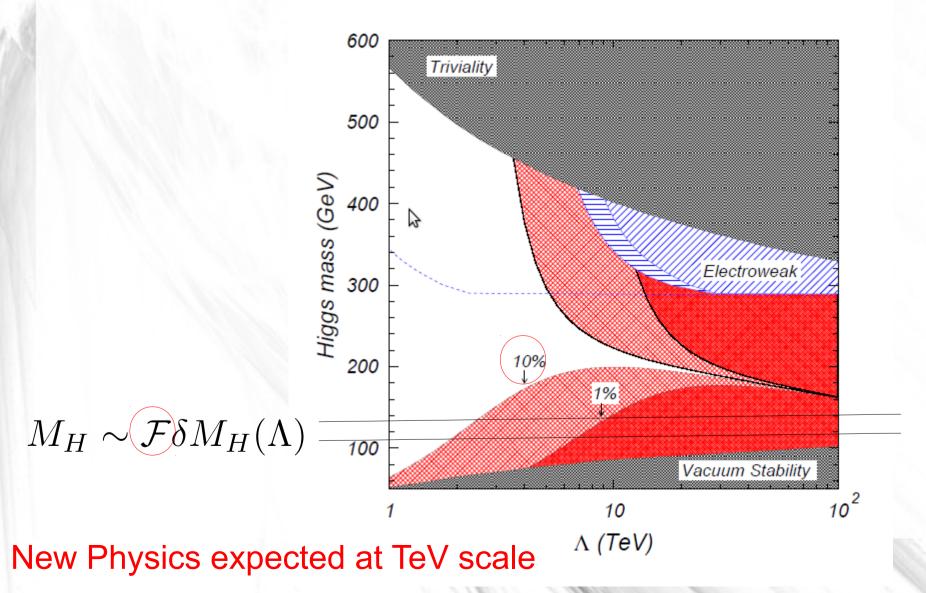
Theoretical constraints on the Higgs boson mass

- Naturalness (hierarchy problem)
 - No symmetry to protect the Higgs mass from large radiative corrections (scalar particle)



NB: For vector bosons: gauge symmetry, for fermions — chiral symmetry

Theoretical constraints on the Higgs boson mass

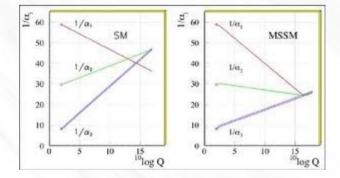


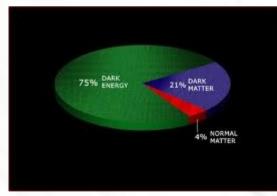
Issues of the SM

- Higgs is missing (EWSB mehanism)
- No Dark Matter candidate
- Gauge coupling unification is problematicty
- Large number of free parameters
- Flavor problem
- Gravity?

Issues of the SM

- Higgs is missing (EWSB mehanism)
- No Dark Matter candidate
- Gauge coupling unification is problematicty
- Large number of free parameters
- Flavor problem
- Gravity?





Lecture 4 summary

- The SM exhibits (almost) perfect agreement with data in High Energy Physics experiments!
- Possible New Physics **HAS** to reproduce it as a low-energy effective theory!
- Still, there are some issues that prevent us from saying that the SM is the unltimate theory
- We are waiting for NEW data from LHC to find the last ingridient of the model — the Higgs boson (test the EWSB mechansm).

Topics NOT covered in the lectures

• QCD

(A.V. Nesterenko, O.V. Teryaev)

Flavor Physics in Lepton sector

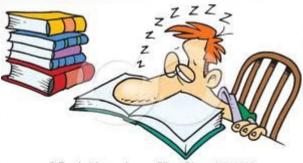
(V.A. Naumov and S.M. Bilenky)

Renormalization

(A.A. Vladimirov)

Top Physics

Thank you!



© Ron Leishman * www.ClipartOf.com/1048698