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Neutrino as a keystone of (astro)particle physics

Stellar Nucleosynthesis
Supernovae, Hypernovae
Active Galactic Nuclei

Neutrino Stars

Big-Bang Nucleosynthesis
Leptogenesys
Baryogenethys

Dark Matter

Dark Energy




Neutrinos on the Earth and in the Heavens

Neutrino & antineutrino fluxes on Earth (tentative)

Energy range or average energy
(eV)

Source

Local flux
(1/ cm?s)

1.7 x104
103-107
103—-107
103-107
10°—101"2
>108
>1012
>1016

Big Bang (relic or CvB)
Sun

Terrestrial radioactivity
Man-made nuclear reactors

Man-made accelerators
Cosmic rays (atmospheric)

Astrophysical objects (e.g. AGN)

UHECR+ Ycump (cOsmogenic)

1013
6.5x1010
7.5x106
7.5x106

<10°

<10°
<106

10-12




A tentative representation of the (anti)neutrino fluxes on Earth.

15 e T Ty

A — neutrinos B .
————— antineutrinos C B
" 10 F =~ SN1987A ]
= ' \ :
5 [_— ]
102 - i : - “soLAR ]
. Relict neutrinos - .
N / & antineutrinos Solar neutrinos G 8
> —~ - -
2 10 0 H* B Be’ 2 E ]
E 'IO — TV e 2 Ks ; -5 J
= <E,>~ Te - ]
‘v <§"> o 3?0%03312\/ ‘.‘s - ATMOSPHERIC 1
1 V - -
= X -10 F "
S 10° - B : :
3 §.1sf ;
L - 4
6 - [ ]
10° - Terrestrial (Geo-) -
antineutrinos " Sgpersounces @
-20 | -
- -
104 from supernovae z ]
\ / z -25 - =]
Atmospheric r DIFFUSE ]
i (anti)neutrinos - o
2 : MV~ 1GeV  1TeV  1PeV '\ 1EeV
10 l l-6 l4 -2 0 l 2 a e - 3112 13 14 16 16 17 18 19
e vt W 10 10 10 10 10 56 78 910
Energy (MeV) log (NEUTRINO ENERGY, eV)
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Relic neutrinos (“CvB") compose a small part of invisible (nonluminous) matter in the Universe.
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fandard Model of Elementary Particles

) £

" Contains one pound each of
butter, sugar, eggs and flour
+1 tsp vanilla essence

leptons quarks

Ordinary Matter ~4%
(of this only ~10% luminous)
+ Radiation ~10~

¥ Neutrinos 0.1-1%
[Hot DM (?)]

Dark matter ~23%

[presumably cold]

»

4

Cosmic Coincidence Problem: why this cake is almost a poundcake today?



Matter-energy content of the universe
10® - photons neutrinos
102
10! - | The neutrino density
dark matter 23% i in the Galaxy must
be a bit larger
(5]
£ 107
o
= 402
3
-3 |-
g 10
. 107
dark matter 63% dark energy 72% 105 -
106 protons electrons
107 |- neutrons
10-8 dark matter
13.7 billion years ago today S 4
(universe 380,000 years old) © 2010 Encyelopadia Britannica, Inc. 10-9

The Standard Models of particle physics and cosmology make a (more or less) robust prediction
that the number density of relic neutrinos is ~ 112 cm™? per species. This result implies that
massive neutrinos constitute the following fraction of the total matter density in the Universe:

fo= S _2my g gg

2 :
= m — . P_7 b t ft
0. = 302V TV [Qnh” = 0.134 (WMA est fit)]

Here and below Q, = p, /pc, Qm = pm/pec, the today's Hubble expansion rate is parameterized
as Ho = 100h kms™' Mpc™" (h is the normalized Hubble rate) and the critical density is

3H?2 1.88 x 107*?h% g/cm® ~ 0.98 x 107*? g/cm®
~87G ] 1.05 x 107°h% GeV/em® & 0.54 x 1077 GeV/cm®

pe [h = 0.72 & 0.08]
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Puc. 1: The predicted solar neutrino energy spectrum at 1 AU. Line fluxes are in cm™=s

and spectral fluxes are in cm™?s 'MeV~!. The vertical arrows point on the energy threshold
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2.—1

of the H2O detectors Kamiokande (K) and Super-Kamiokande (SK), D2O detector at Sudbury
Neutrino Observatory (SNO), liquid-argon detector ICARUS (1), scintillation detector Borexino
(B), and Indium-based detector LENS (L).
[VN, Phys. Part. Nucl. Lett. 8 (2011) 683-703. The data are taken from J. N. Bahcall et al., Astrophys. J. 621
((2005)) L85-L88 and L. C. Stonehill et al., Phys. Rev. C6 (2004) 015801.]
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Puc. 2: Left panel: . energy spectra of the candidate events (data), the total expectation (thin
solid black line), the total background (thick solid black line), the expected ***U (dot-dashed
red line, the expected “**Th (dotted green line), and the backgrounds due to reactor 7. (dash
blue line), *C(a,n)'®0 reactions (dotted brown line) and random coincidences (dot-dashed
violet line). The inset shows the expected signal extended to higher energies.

Right panel: 7. energy spectra of the candidate events substructed by the total backgrounds
[From A. Suzuki (for the KamLAND Coll.), AIP Conf. Proc. 815 (2006) 19-28.]
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Puc. 6: Muon and electron antineutrino energy spectra in several accelerator experiments (a.u.).
[A. Bodek, K. S. Kuzmin & VN (unpublished). The data are collected from many sources.]



0.2 Neutrino interactions
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Puc. 7: Low-energy neutrino capture cross sections for gallium and chlorine (left), CC and NC
induced neutrino cross sections for deuterium (middle), and neutrino—electron scattering cross
sections (right) vs. neutrino energy.

[VN, Phys. Part. Nucl. Lett. 8 (2011) 683—-703. The data are taken from J. N. Bahcall et al., Phys. Rev. C 54 (1996)
411-422, J. N. Bahcall, Phys. Rev. C56 (1997) 3391-3409, S. Ying et al., Phys. Rev. C45 (1992) 1982-1987,
and J. N. Bahcall et al., Phys. Rev. D51 (1995) 6146—6158.]
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0.3 Modern neutrino toolkit
o Accelerator v/Ts [ANL, BNL, CERN, FNAL, IHEP, KEK, LAMPF, J-PARC,..]

Examples of the LBL experiments
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Puc. 12: Schematic layout of the MINOS experiment [FNAL — SOUDAN].
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Puc. 13: Schematic layout of the OPERA experiment [CERN — LNGS].

[Figures 12 and 13 are borrowed from G. Brunetti,“Neutrino velocity measurement with the OPERA experiment
in the CNGS beam,” PhD thesis, in joint supervision of the Université Claude Bernard, Lyon-l and Universita
degli Studi di Bologna (May 2011), N° d’ordre 88-2011, LYCEN-T 2011-10;
<http://amsdottorato.cib.unibo.it/3917>, <http://tel.archives-ouvertes.fr/tel-00633424>. |



M t.¥ariga take
3,180m

Super-Kamiokande

Mt.Iken o3 ma

1,360m

Puc. 14: Schematic layouts of the K2K [KEK (Tsukuba) — Super-Kamiokande] and T2K [J-
PARC (Tokai) — Super-Kamiokande]| experiments. [From relevant websites].



o Reactor s [Angra, Braidwood, Bugey, CHOOZ & Double CHOOZ, Daya Bay, Gosgen,
JOYO, KASKA, KNPP-GEMMA, KamLAND, Krasnoyarsk, Kuo-Sheng, Palo Verde,
RENO, Rovno, Savannah River Site, SONGS, TEXONO,...]

Examples of the reactor antineutrino experiments

A 200sthanau

Bay cores

L s

Puc. 15: Default configuration of the Daya Bay experiment (left panel) and the power stations
around the KamLAND experiment (right panel). [From Daya Bay & KamLAND Proposals.]
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Puc. 16: The Daya Bay (left), Reno (middle), and Double Chooz (right) detector layouts. The
common design is an evolution of the CHOOZ detector.

[From T. Lasserre, “Oscillation Parameters with forthcoming Reactor Neutrino Experiments”, in: Proceedings of
the Workshop ‘European Strategy for Future Neutrino Physics’, Geneva, Switzerland, October 1-3, 2009, edited
by A. Blondel & F. Dufour, CERN-2010-003, pp. 33-40.]



e Underground Laboratories for terrestrial and extraterrestrial neutrinos
[BNO, DUSEL, Homestake, Gran Sasso, Kamioka, KGF, Modane, Mont Blanc,
Pyh&asalmi, SOUDAN, SNO,.. ]

Examples of the underground experiments

L'AQUILA CERN

" TERAMO
\A

Puc. 17: Gran Sasso underground laboratory (INFN). Most relevant neutrino experiments are
Borexino, lcarus, LVD, MACRO, OPERA.

[From <http://www.lngs.infn.it>.]
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Puc. 20: Liquid scintillator detectors.

FREJUS

Puc. 19: Tracking calorimeter detectors.

Figures 18-20 show the park of
underground detectors (as it was on
1989) capable to catch atmospheric
neutrinos. Only the Baksan telescope
remains in operation till now (2012).
[Borrowed from A. M. Bakich, “Aspects of neutrino
astronomy,” Space Sci. Rev. 49 (1989) 259-310.]




SUPER-KAMIOKANDE DETECTOR jilectronios Catching Neutrinos

About once every 90 minutes, a neutrino interacts in the detector
chamber, generating Cherenkov radiation. This optical equivalent
of a sonic boom creates a cone of light that is registered on the
photomultipliers that line the tank. Characteristic ring patterns tell
physicists what kind of neutrinos interacted and in which direction
they were headed.

Access
tunnel

2\ Control (2 km)
room

12.5 million gallon tank
of ultra-pure water

Mountains filter out other signals
that mask neutrino detection.

A few neutrinos interact
within the huge tank of
super pure water, generating
a cone of light

KX\"|

punoib Jepun
soue)siq

o
- - S|
- -
K — - “
ST
S - “" S
.; N ““‘?
The light is
detected by
photo sensors
that line the
tank, and 5

translatedhto a
digital image.

Mt. Ikena Yama

University of Hawai'i media graphic

Puc. 21: Super-Kamiokande, the largest ever underground neutrino detector.

[This and next images are borrowed from the Super-Kamiokande website <http://www-sk.icrr.u-tokyo.ac.jp>.]
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Figures 23 and 24 show
two real (not Monte Carlo)
events recorded in the Super-
Kamiokande-| detector.

[From Tomasz Barszczak webpage
<http://www.ps.uci.edu/ tomba/
sk/tscan/pictures.html> (UC).]

A real multiple ring event
(found by Brett Michael
Viren, State University of
New York at Stony Brook) is
shown in Fig. 23. >

This event recorded on
24/09/1997, 12:02:48 was
one of the close candidates
for decay p — et +7° but
did not pass analysis cuts.

The 7° meson would decay
immediately into two gammas
which make overlapping fuzzy
rings. Positron and 7° would
fly in opposite directions.

Time color scale spans 80 ns.

Puc. 23: Multiple ring event recorded in the Super-
Kamiokande detector on 24/09/1997, 12:02:48.



In Fig. 24, an upward-going
through-going muon event
recorded on 30/05/1996,
17:12:56 is shown. >

The muon entered through
the flat circular part of the
detector near the bottom
of the picture where purple
earliest PMT hits can be
seen. It exited through the
cylindrical side wall in the
middle of the picture.

Time color scale spans 262 ns.

The Sun in neutrino light.

Puc. 24: Through-going muon event recorded in the Super-
Kamiokande detector on 30/05/1996, 17:12:56.
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" Water Purificatiom
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Puc. 25: Schematic view of the Hyper-Kamiokande detector, a megaton water Cherenkov
detector, proposed as a successor to Super-Kamiokande; to be located at Tochibora, a few
kilometers from the Kamioka site, 648 m rock (1,750 m w.e.) overburden.

[From K. Abe et al., “Letter of Intent: The Hyper-Kamiokande Experiment — Detector Design and Physics Potential”,

arXiv:1109.3262 [hep-ex].]



Tabsanua 1: Hyper-Kamiokande detector parameters of the baseline design.

Detector type Ring-imaging water Cherenkov detector
Candidate site Address Tochibora mine, Kamioka town, Gifu, Japan
Latitude 36°21'08.928"” N
Longitude 137°18'49.688" E
Altitude 508 m
Overburden 648 m rock (1,750 m w.e.)
Cosmic Ray Muon flux ~ 2.3 x107% sectem™?
Off-axis angle for the J-PARC v 2.5° (same as Super-Kamiokande)
Distance from the J-PARC 295 km (same as Super-Kamiokande)
Detector geometry  Total Volume 0.99 Megaton
Inner Volume (Fiducial Volume) 0.74 (0.56) Megaton
Outer Volume 0.2 Megaton
PM tubes 99,000 20-inch ¢ PMTs
20% photo-coverage
Outer detector 25,000 8-inch ¢ PMTs
Water quality light attenuation length > 100 m © 400 nm

Rn concentration < 1 mBg/m?




» Underwater/ice neutrino telescopes
[AMANDA, ANTARES, Baikal, IceCube, NEMO, NESTOR

ANTARES

DUMAND
Hawaii, USA
(canceled 1995)

NEMO

Catania, Italy

NESTOR

Pylos, Greece

n K3, - - :

AMANDA & IceCube, South Pole, Antarctica

Puc. 26: A map of underwater/ice Cherenkov neutrino telescope projects.

[From Francis Halzen web-page <http://icecube.wisc.edu/ halzen/>].
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Puc. 27: Overall view of the NT-200 complex in Lake Baikal.
[From V. A. Balkanov et al. (Baikal Coll.) Appl. Opt. 33 (1999) 6818—6825 [astro-ph/9903342].]
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Puc. 28: Baikal NT-200 and NT-96 schematic view.
[From Ch. Spiering et al. (Baikal Coll.), Prog. Part. Nucl. Phys. 40 (1998) 391 [astro-ph/9801044].]
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Puc. 29: Three neutrino candidates recorded in NT-96.
[From V. A. Balkanov et al. (Baikal Coll.) Yad. Fiz. 63 (2000) 1027-1036 [Phys. Atom. Nucl. 63 (2000) 951-961].]



IceCube Lab

IceTop
81 Stations
324 optical sensor

IceCube Array
86 strings including 8 DeepCore strings
5160 optical sensors

DeepCore
8 strings-spacing optimized for lower energies
480 optical sen8or

Puc. 30: The IceCube Neutrino Telescope is made up of 86 strings with a total of 5,160
Digital Optical Modules that are used to sense and record neutrino events. Although the

telescope is 2,820 meters tall, the average hole is 2,452 meters deep.
[Image by Danielle Vevea & Jamie Yang, taken from the lceCube NO webpage <http://icecube.wisc.edu/>].



Puc. 31: Two typical neutrino events captured by the IceCube Neutrino Observatory.

[From <http://icecube.wisc.edu/>].



Arrays and methods for
detecting UHE neutrinos

Radio detection

[ANITA, AURA-ARA, CODALE-
MA, ELVIS, FORTE, GLINT,
GLUE, GMRT, Ooty RT, HAS-
RA, IceRay, LOFAR, LOPES,
LORD, LUNASKA, RESUN,
RICE, SalSA, SKA, TREND,
WSRT NuMoon,...]

Sonic/acoustic detection
[ACoRNE, AMADEUS, AUTEC,
SAUND, SPATS+HADES,.. ]

Fluorescence detection
[JEM-EUSO, S-EUSO, EUNO,
OWL, KOSMOTEPETL Project
(KLYPVE, TUS),..]

—10 Q\TMANDA
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Puc. 32: Model neutrino fluxes & upper limits from
experiments AMANDA, RICE, GLUE, and FORTE.
[From P. W. Gorham et al., Phys. Rev. Lett. 93 (2004) 041101
[astro-ph/0310232v3].]
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1 Interaction Lagrangian and weak currents

In the Standard Model (SM), the charged and neutral current neutrino interactions are
described by the following parts of the full Lagrangian:

L€ (z) = (2)Wo(z) +He and LN(z) = —— 7 jNC()7%(2).

g .
9 :
2/2 2 cos Oy

Here g is the SU(2) (electro-weak) gauge coupling constant
g% =4V2mi,Gp, gsinby = ||

and Oy is the weak mixing (Weinberg) angle (sin® Oy (Mz) = 0.23120).
The leptonic charged current and neutrino neutral current are given by the expressions:

i$C@)=2 Y Tri@)vale(z) and jNC(2)= Y Trr(@)vaves().
b=e,u,T,... b=e,u,T,...

The currents may include (yet unknown) heavy neutrinos and corresponding charged
leptons. The left- and right-handed fermion fields are defined as usually:

Ve,L/R(fU) = (1 iz%) ve(x) and fL/R(CU) = (1 3;75> ().




Note that the kinetic term of the Lagrangian includes both L and R handed neutrinos and
moreover, it can include other sterile neutrinos:

Lo :% [D(2)y" Oav(x) — 0T (x)y v(x)] = %?($)<5>V($)
:% 71(2) B v () + 7r(x) D vn(z)]
Ve () Ve,/r(T) Ve ()
(yu(a;)\ /VM,L/R(x)\ (Vu(‘ﬁ)\
viw) = vi(@) +va@) = | |, vt = | et | 2 200 )
\ ) \ ) \ )
Neutrino chirality: vysvr, = —vr and ysvr = +vR.

The Lagrangian of the theory with massless neutrinos is invariant with respect to the global
gauge transformations

ve(z) = e™up(x), 0(z) — e l(x) with A, = const.

This leads to conservation of the individual lepton flavor numbers L, (electron, muon, tauon,
etc.). It is not the case for massive neutrinos.

There are two types of possible neutrino mass terms: Dirac and Majorana.



2 Dirac neutrinos

The Dirac mass term has the form
Lp(z) = —vr(x)Mprr(z) + H.c,

where Mp is a N X N complex nondiagonal matrix. In general, N > 3 that is the column v,
may include the heavy active neutrino fields as well as sterile neutrino fields which do not enter
into the standard charged and neutral currents.

An arbitrary complex matrix can be diagonalized by means of an appropriate bi-unitary
transformation. One has

Mp = VmV',  m = ||my|| = ||msdull,

where V and V are unitary matrices and my > 0. Therefore

N
Lp(z) = -V r(z)mvy(z) + He = —v/(z)mv'(z) = — kaﬁk (z)vi(x),
k=1
where the new fields vx are defined by
V(@) = Vive (), Vi) = Vive@), (@)= (0. 00"

The matrix V is out of play...



It is easy to check that the neutrino kinetic term in the Lagrangian is transformed to

Vi) B (z) = %ka(@f-)?yk(m).
k

Hence, one can conclude that v (x) is the field of a Dirac neutrino with the mass my
and the flavor LH neutrino fields vy 1,(z) present in the standard weak lepton currents
are linear combinations of the LH components of the fields of neutrinos with definite
masses:

Loy =

|_\D|N.

VL:VV/L or VK,L:E WRI/R,L'

The matrix V is sometimes referred to as the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) neutrino (vacuum) mixing matrix.

Quark-lepton complementarity (QLC): Of course the PMNS matrix it is not the same as the
CKM (Cabibbo-KobayashiMaskawa) quark mixing matrix. However the PMNS and CKM

matrices may be, in a sense, complementary to each other.
The QLC means that in the same parametrizations the (small) quark and (large) lepton mixing
angles satisfy the empirical relations:

HCKM + HPMNS 7_(_/4, HCKM + QPMNS ~ 7T/4




It is well known that a complex n x n unitary matrix depends on n? real parameters.

The classical result by Murnagham? states that the matrices from the unitary group U(n) are
products of a diagonal phase matrix

I' = diag (eml ez ,em">,
containing n phases ay, and n(n — 1)/2 matrices whose main building blocks have the form

cos sin @ e ¢ (1 0 cos 6 sin 0 1 O‘
—sinf et cos 6 —\0 T —sinf cos6 0 e )"

"~

Euler rotation
Therefore any n X n unitary matrix can be parametrized in terms of
n(n — 1)/2 “angles” (taking values within [0, 7/2])
and

n(n + 1)/2 “phases” (taking values within [0, 27)).

The usual parametrization of both the CKM and PMNS matrices is of this type.

2F. D. Murnagham, “The unitary and rotation groups,” Washington, DC: Sparta Books (1962).



One can reduce the number of the phases further by taking into account that the
Lagrangian with the Dirac mass term is invariant with respect to the transformation

O el v ey Vo ei(b’“_aﬁ)‘/gk,
and to the global gauge transformation
0 e™, v ey, with A = const. (1)
Therefore 2N — 1 phases are unphysical and the number of physical (Dirac) phases is

1 N2 _-3N+2 (N—-1)(N -2
o= YD oy z +2 _( >2< )

5 )
no(2) =0, np(3) =1, np(d)=3,...

(N > 2);

The global symmetry (1) leads to conservation of the lepton charge

L:ZLg

l=e,u,T,...

common to all charged leptons and all neutrinos ;. However

The individual lepton flavor numbers L, are no longer conserved.

The nonzero phases lead to the C'P and T violation in the neutrino sector.



Three-neutrino case

In the most interesting (today!) case of three lepton generations one defines the orthogonal
rotation matrices in the ¢j-planes which depend upon the mixing angles 6;;:

C12 S12 0 C13 0 S13 1 0 0
012 = —S812 C12 0 , 013 = 0 1 0 , 023 = 0 C23 523 |,
0 0 1 —S13 0 C13 0 —S23 C23
Solar matrix Reactor matrix Atmospheric matrix

where ¢;; = cos;;, si; =sin6;;) and the diagonal matrix with the Dirac phase factor:
j jr Sij j
I'p = diag (1, 1, ew).

The parameter § is commonly referred to as the Dirac CP-violation phase.

Finally, by taking into account the Murnagham theorem, the PMNS mixing matrix for the
Dirac neutrinos can be parametrized as®

V) = 0235013012

—16
C12C13 512€13 513€
20 20
— —S512€23 — C12523513€ C12C23 — 512523513€ 523C13
20 20
512823 — €C12€23513€ —C12523 — S12€23513€ C23C13

aThis is the Chau—Keung presentation advocated by the PDG for both CKM and PMNS matrices.



3 Majorana neutrinos

The charge conjugated bispinor field ¢ is defined by the transformation
Yot =0y, Yt = -y C,
where C' is the charge-conjugation matrix which satisfies the conditions
Cyrct = —~,, CHICT=~s, CT=Cc'=0C, CT=-C,

and thus coincides (up to a phase factor) with the inversion of the axes z° and z*:

. . O ()
C_fyOny o (0'2 O)

Reminder. The Pauli matrices:

B 1 0 0 1 0 —i 1 0
o=1=1{y 1) 1=(1 o) 2=\ o) =\o -1/

The Dirac matrices:

0 0 0
P =m= (" , A == F), k=123 F=q=-
0 0 0

—0 — Ok oo

go

Clearly a charged fermion field ¥ (x) is different from the charge conjugated field 1°(x).



But for a neutral fermion field v(x) the equality

ve(z) = v(z) (2)

(Majorana condition) is not forbidden.® Everything which is not forbidden is allowed...

Majorana neutrino and antineutrino coincide.

In the chiral representation
¢ c =T _UQX*
V= , v'=07" = . -
(X +02¢
According to the Majorana condition (2)

¢=—0oox* and x=o0290" = P+x=02(0—x)".

(The Majorana neutrino is two-component, i.e. needs only one chiral projection). Then

vy = (1—;75)1/: (i:g) and vp = (1_275)1/: (iii) =v].
4

v=vL+VRr =V +V}.

3The simplest generalization of Eq. (2), v¢(z) = e'¥v(x) (¢ = const), is not very interesting.



Now we can construct the Majorana mass term in the general N-neutrino case. It is

1_.
Lm(x) = —§UL(ZE)M|\/|VL($) + H.c.,

where My is a N x N complex nondiagonal matrix and, in general, N > 3.
It can be proved that the My should be symmetric, My, = M.

If one assume for a simplification that its spectrum is nondegenerated, the mass matrix can be
diagonalized by means of the following transformation

My = V'mV',  m = [[my]| = ||midull,

where V is a unitary matrix and my > 0. Therefore

L 1 — c / - AN 1 -7 /- —
Lm(z) = ~3 (VL) 'muy + v pm(vy)°] = ~3 v'my = D) kaukyk,
v, =Vivg, (V)¢ =C (Z) TV =v+ (W)
The last equality means that the fields v (x) are Majorana neutrino fields.
Considering that the kinetic term in the neutrino Lagrangian is transformed to
— IL o,

= Z (;[;) Z Vk(il}) 3 Vk;(CIJ)

one can conclude that vy (x) is the field with the definite mass my.



The flavor LH neutrino fields vy 1,(z) present in the standard weak lepton currents are
linear combinations of the LH components of the fields of neutrinos with definite
masses:

vy =Vv, or I/g,ng ViV L -
k

Of course neutrino mixing matrix V is not the same as in the case of Dirac neutrinos.

There is no global gauge transformations under which the Majorana mass term (in its
most general form) could be invariant. This implies that there are no conserved lepton
charges that could allow us to distinguish Majorana vs and Ts. In other words,

Majorana neutrinos are truly neutral fermions.

Since the Majorana neutrinos are not rephasable, there may be a lot of extra phase
factors in the mixing matrix. The Lagrangian with the Majorana mass term is invariant
with respect to the transformation

l— eia£€7 Vior, — e_mg‘/gk



Therefore N phases are unphysical and the number of the physical phases now is

N(N +1 N(N —1 N —1)(N —2
(VD) NN (NSO =)
2 2 \ 2 PR S
Dirac‘;hases Majorana phases

?”L|\/|(2) - 1, ?”L|\/|(3) - 2, n|\/|(4) = 3, ce

In the case of three lepton generations one defines the diagonal matrix with the extra
phase factors: I'y = diag (e'®1/2,e/*2/2 1), where o » are commonly referred to as
the Majorana CP-violation phases. Then the PMNS matrix can be parametrized as

Vmy = 0235013 012w = V(pyI'm

—120 11 /2
C12C13 5$12C13 S13€ elor/ 0 0
- 1) 1) ; 2
= | —S12¢23 — Cc12823813€ C12C23 — S812823813€ $23C13 0 eio2/ 0
i8 i8
5§12823 — C12C23813€ —C12823 — S12C23513€ C23C13 0 0 1

Neither Ly nor L = ), L, is conserved allowing a lot of new processes, for example,
T et (T, 1T set () KT, 7 = ptv., Kt s aptet, KT — alefr.,
Dt - K putut, Bt 5 K etpt, 2= = pu p~, AT =3 putpu™, et

No one was discovered yet but (may be!?) the (53)0. decay (Heidelberg-Moscow experiment).



4 See-saw mechanism

It is possible to consider mixed models in which both Majorana and Dirac mass terms are
present. For simplicity sake we'll start with a toy model for one lepton generation.

Let us consider a theory containing two independent neutrino fields v, and vg:
v, would generally represent any active neutrino (e.g., v = ver),
VR can represents a right handed field unrelated to any of these or

it can be charge conjugate of any of the active neutrinos (e.g., vr = (v,1)").

We can write the following generic mass term between v;, and vg:

L =— mpUrvr —(1/2)[mrVLvy +mrVrvR] +H.c. (3)
Dirac m\;ss term Majorana\:nass term

* As we know, the Dirac mass term respects L while the Majorana mass term violates it.

x The parameter mp in Eq. (3) is in general complex but we'll assume it to be real (but not
necessarily positive).

* The parameters my, and mg in Eq. (3) can be chosen real and (by an appropriate
rephasing the fields v;, and vr) non-negative, but the latter is not assumed.

* Obviously, neither v, nor vr is a mass eigenstate.



In order to obtain the mass basis we can apply the useful identity?
vrvr = (Vr)(vL)*

which allows us to rewrite Eq. (3) as follows

b ey (mr mp) [(vp)° I c
Em——§(l/L,(VR))(mD mR) ( . +H.c. = —§VLM(I/L) + H.c.

If (for simplicity) C'P conservation is assumed the matrix M can be diagonalized
through the standard orthogonal transformation

V(COSH sm@) with H%arctan< 2mp )

—sinf cosf mpr — mr,

and we have
VIMV = diag(m1, ms),

where m; o are eigenvalues of M given by

1

mi2 = 3 (mL +mp + \/(mL — mpg)? +4m%>.

@A particular case of a more general relation v ') = ESC’FTC’_lwf, where 1)1 > are Dirac spinors
and I represents a product of the Dirac v matrices.



The eigenvalues are real if (as we assume) mp 1 r are real, but not necessarily positive.
Let us define (i = sign m; and rewrite the mass term in the new basis:

1

L,, = 5 [¢1 lma| 71 (van)© + G Ime| (Tar)  var] + H.c., (4)

The new fields v, and v represent chiral components of two different neutrino states
with “masses” my and mo, respectively:

Ur V1T vip=cosfvy —sinf vy,
- — V - — . -
Vp Vsn vop=sinfv; + cosOvp.
Now we define two 4-component fields
vi =viL + G ()" and vy =g + (o (12r)".
Certainly, these fields are self-conjugate with respect to the C' transformation:
Vlf: = Ckvk (k = 1, 2)

and therefore they describe Majorana neutrinos. In terms of these fields Eq. (5) reads

1
£m == —5 (\ml\ §1V1 + ‘mglvgyg). (5)

We can conclude therefore that vy (x) is the Majorana neutrino field with the definite
(physical) mass |my|.



There are several special cases of the Dirac-Majorana mass matrix M which are of
considerable phenomenological importance, in particular,

(A): M= (T?Z 7’(1)1) —  |mi2| =m, 9:% (maximal mixing)
two Majorana fields are equivalent to one Dirac field;
™ : ..
(B): M= (77;;; 77:1) —> mi2=mpEtmp, 0= 1 (maximal mixing);

(C): M= (T?Z E) or, more generally, |mp| < |mgr|, mp > 0.

A generalization of case (A), |mr.r| < |mp]|, leads to the so-called “Pseudo-Dirac neutrinos”
and to the vp (active) < vg (sterile) oscillations with almost maximal mixing (tan 260 > 1).

The case (C) with m < M is the simplest example of the see-saw mechanism. It leads to two
masses, one very large, m1 =~ M, other very small, mo ~ m2/M < m, suppressed compared
to the entries in M. In particular, one can assume

m ~ mg or my (0.5 MeV to 200 GeV) and M ~ Mgyt ~ 10°71% GeV.



Then ms2 can ranges from ~ 10~ '* eV to ~ 0.04 €V. The mixing between the heavy and light
neutrinos is extremely small: 0 ~ m /M ~ 1072 — 10" < 1.

n., 1?2 [<<m<<M@
///////(

\

v

If one of the eigenvalues m; goes up, the other goes down, and vice versa. This is the reason
why the name see-saw was given to the mechanism. [Too witty for so simple idea...]



A generalization of the above scheme to IV generations is almost straightforward but
technically rather cumbersome. Let's consider it schematically for the N = 3 case.

> If neutral fermions are added to the set of the SM fields, then the flavour neutrinos can
acquire mass by mixing with them.

> The additional fermions can be®
Gauge chiral singlets per family (e.g., right-handed neutrinos) [Type | seesaw], or
SU(2) x U(1) doublets (e.g., Higgsino in SUSY), or
Y =0, SU(2)L triplets (e.g., Wino in SUSY) [Type Il seesaw].
> Addition of three right-handed neutrinos N;r leads to the see-saw mechanism with the
following mass terms:

1 c
Lo = — Z {%LMZ-? iR~ 5 (Nir) Mi? ir+ H.c.

]
> The above equation gives the see-saw 6 x 6 mass matrix

. 0 mp
M — (mg M)

Both mp and mpg are 3 X 3 matrices in the generation space.

3Type |l seesaw operates with an additional scalar triplet.



When Mp, is nonsingular and its scale M is much larger than that in mg,* one gets

1T
m, ~ —mpMz mp.

All the neutrino masses are automatically suppressed due to the large scale M ~ Mgy in
MEg. One gets the following mass hierarchy for a diagonal Mr:

2 2 2
mi1 M2 M3 XMpq - Mpo - MM p3.

Here mpy are eigenvalues of mp. As long as these eigenvalues are hierarchical, the Majorana
neutrino masses also display the hierarchy. The mass eigenfields are surely Majorana neutrinos.

The ocean

“Neutring Islond

The desert (?)

] '1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
mass (eV/c?)

3A large M is natural in, e.g., grand unified SO(10) theories.
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5 Quantum mechanical treatment

Let us introduce two types of neutrino eigenstates:

e The flavor neutrino eigenstates which can be written as a vector

), = (ve), ) [ve), . )" = (Jva))”

are defined as the states which correspond to the charge leptons a = e, u, 7. The
correspondence is established through the charged current interactions of active neutrinos and
charged leptons.? In general, the flavor states have no definite masses. Therefore, they can
have either definite momentum, or definite energy but not both.

e The neutrino mass eigenstates

), = (va), v2), ), . )" = (o))"

are, by definition, the states with the definite masses my, k =1,2,3,....

Since |vo) and |vg) are not identical, they are related to each other through a unitary
transformation

va) =3 Vailva) o [v), = V),
k

where V =|| V& || is a unitary (in general, Nx N) matrix.

2Together with the standard vs, |1/>f may include also neutrino states allied with additional heavy
charged leptons, as well as the states not associated with charge leptons, like sterile neutrinos, vs.



To find out the correspondence between V and the PMNS mixing matrix V we can normalize

the “ f" and “m" states by the following conditions
(Olvar()|var) = daar  and  (O|vir(x)|ve) = Ogpr-
From these conditions we obtain

Z Vozk:‘A/a’k: — 6ao¢’ and Z Vakzvak:’ — 61{:1{:’-
k o

Therefore

A

VvV = VI

and

V), =Vip) = ) =V,

The time evolution of a single mass eigenstate |v;) with momentum p, is trivial,

d —iEL (t—to
i lve(t)) = Elvn(t) = (1)) = E=t0) 1 (to)),

(6)

where Ej, = \/p2 + m3 is the total energy in the state |vy). Now, assuming that all IV states

|vi) have the same momentum, one can write

i%h/(t))m = Hol|v(t)) , where Ho =diag(E1, E2, Es, . ..).

(7)



From Egs. (6) and (7) we have
. d
i Lw(t), = VIH V(D) (8)

Solution to this equation is obvious:

v(@), = Ve IOV u(h))

= Vi diag (e—iEl (t=t0) =iBa(t—t0) ) Vv \V(to)>f. (9)
Now we can derive the survival and transition probabilities
Pag(t — to)= P [va(to) — vs(t)]= [(vs(t)|valto))|”

2
- } S VarVii exp [iBx(t — to)) ‘
k
= ViV (VarVi;) " exp [i(E; — Eg)(t — to)].
ik

In the ultrarelativistic limit p2 > m3, which is undoubtedly valid for all interesting
circumstances (except relic neutrinos),

2 2
m m
E: 2 2% v k%EV k,
k= \/Pp +my p+2py +2Eu




Therefore in VERY good approximation

Pag(t —to) = Y Va;Var (VarVs;)" exp

jk

iAm3,(t — to)
2L, '

Before MINOS and OPERA there was now way to measure to and ¢ in the same experiment.
But it is usually possible to measure the distance L between the source and detector. So we
have to connect t — tg with L. The standard and almost “evident” approximation is

vk =pu/Er &~ c=1,

from which it follows that ¢t — to = L and finally we arrive at the following formula

. 2imL
Pop(L) =)  Va;Var (VarVe;)* exp [ = |, (10)
ik L
where
AT FE,
L. — 11

are the neutrino oscillation lengths. Just this result is the basis for the “oscillation
interpretation” of the current neutrino experiments.



Let us now consider the simplest 2-flavor case with ¢ = 2,3 and a = pu, 7 (the most favorable
due to the SK and other underground experiments). The 2 x 2 vacuum mixing matrix can be
parametrized (due to the unitarity) with a single parameter, 6 = 623, the vacuum mixing angle,

V:(COSQ 81119)7 0<6<mr/2

—sinf cos@

Equation (10) then becomes very simple:

L
P.o/ (L) = %sin2 20 {1 — COS <22 )] :

\"

AT E, E, 0.002 eV?
Ly = Loz = ~ 2 ).
7 Am2, Ho (10 GeV) ( Amz, )

Here Rg is the mean radius of Earth and 10 GeV is a typical energy in the (very wide)
atmospheric neutrino spectrum.

Since Earth provides variable “baseline” [from about 15 km to about 12700 km], it is
surprisingly suitable for studying the atmospheric (as well as accelerator and reactor) neutrino
oscillations in rather wide range of the parameter Am3; at not too small mixing angle 6.



5.2 The oscillation parameter ) e

plot (current status) 00 ~NOWAD

The regions of neutrino squared-mass
splitting (Am? = [Amj;| = |m5—m7|) and " Superk 0
mixing angle favored or excluded by various 103 -
experiments. Contributed to RPP-2010 [J.
Phys. G 37 (2010) 075021, Fig. 13.10] by
Hitoshi Murayama (University of California,
Berkeley).

[From URL http://hitoshi.berkeley.edu/neutrino/]

Q
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Kamiokande, MACRO, SOUDAN 2), are unless otherwise noted
ignored. However, all these very weakly affect 10712 | |

. 10+ 102 10 10°
the global analysis. tan20
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The current analyses actually neglect possible C'P violation. In this approximation

C12C31 $12C31 S13
V = —S812C23 — C128523531 C12C23 — 512823531  S$23C31
512823 — C12€23531 —C12823 — S812€23531 C23C31

. . . . 2 - 2 2 = .
Tabnunuya 2: Tentative summary of squared-mass splitting (Am;; = m; —m;) & mixing
angles. [The central values are from the current update for the PDG 2012 edition, <http://pdg.1bl.gov> and
from the recent Double CHOOZ (DC) eprint arXiv:1112.6353v2 [hep-ex]. The 99% C.L. ranges are a bit obsolete.]

Oscillation parameter Central value 99% C.L. range

solar mass splitting Ami, (759 £0.21)x107%eV? (7.1 +8.3)x 10 %eV?
atmospheric mass splitting  |Am35| (243 £0.13)x 10 %eV? (2.1 +2.8) x 107 %eV?

solar mixing angle  sin® 201 0.86110-92¢ 30° < 012 < 38°
atmospheric mixing angle sin? 2055 > 0.92 36° < O3 < 54°
DC mixing angle sin? 203, 0.086 + 0.051 3.75° < 031 < 11.8°
A A
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The standard assumptions are intuitively transparent and (almost) commonly accepted.

[1] The neutrino flavor states |v,) associated with the charged leptons o = e, i1, 7 (that is
having definite lepton numbers) are not identical to the neutrino mass eigenstates |v;)
with the definite masses m; (i = 1,2, 3).

Both sets of states are orthonormal: (v3|ve) = dag, (Vi|vi) = &ij.

U

They are related to each other through a unitary transformation V = ||V,

Vo) = ZV&\V@% i) =) Vailva).

VVI =1,

[2] Massive neutrino states originated from any reaction or decay have the same definite
momenta p, [‘equal momentum (EM) assumption”]. @

To simplify matter, we do not consider exotic processes with multiple neutrino production.

U

The flavor states |v,) have the same momentum p, but have no definite mass and energy.

2Sometimes — the same definite energies [‘equal energy (EE) assumption”].



[3] Neutrino masses are so small that in essentially all experimental circumstances the
neutrinos are ultrarelativistic. I

E; = /P2 +m? =~ |p,| +mi/(2|p.|).

Moreover, in the evolution equation, one can safely replace the time parameter t by the
distance L between the neutrino source and detector. [Everywhere h = ¢ = 1.]

The enumerated assumptions are enough to derive the nice and commonly accepted expression
for the neutrino flavor transition probability [L;; are the neutrino oscillation lengths]:

s

] %L\ |
P(Va = vg; L) = Pop(Ll) = ZVajV,Bk (VarVs;)" exp ( ZW )7
ik

L
AT E, 2 2 2
Ljx = ——, E, = |p.|, Am5, = m; — my.
Am? J J
ik
. J

Just this result is the basis for the “oscillation interpretation” of the current
experiments with the natural and artificial (anti)neutrino beams.

The QM formula satisfies the probability conservation law:

> Pap(L) =) Pap(L) =1.
o E



Equal-momentum assumption

Massive neutrinos v; have, by assumption, equal momenta p; = p.. But this key
assumption is reference-frame (RF) dependent and thus unphysical. Indeed, if p; = p, in
a certain RF, then in another RF moving with the velocity v,

I'v(vpy)
E, =T\ |[E: — (vpy A S E _ B

J
p; —p; = (Ej — E)v=1I\(E;— E;)v #0.

Treating the Lorentz transformation as active, we conclude that the EM assumption
cannot be applied to the neutrinos arising from a non-monoenergetic beam of parent
particles (the case in the real-life experiments).

« Similar objection is against the alternative equal-energy assumption. Indeed, in this case

E—E;=I(p;—p:))v#0, |pi—pj| = \/\pi —pj|* + ¢ [(pi — pj) v]* #0.
« Can the EM (or EE) assumption be at least a good approximation? Alas, no, it cannot.
Let v, arise from 7,2 decays. If the pion beam has a wide momentum spectrum — from

subrelativistic to ultrarelativistic (like that of CR), the EM condition cannot be valid even
approximately within the whole spectral range of the pion neutrinos.



g% Light-ray approximation
The propagation time T’ is, by assumption, equal to the distance L traveled by the
neutrino between production and detection points. But, if the massive neutrino
components have the same momentum p,, their velocities are in fact different:

Am?
Vi = Py = ‘Vk — Vj‘ ~ Ik

VP2 +m;

One may naively expect that during the time 7' the neutrino vy travels the distance
Ly = |vi|T; therefore, there must be a spread in distances of each neutrino pair

OLg; =Lk — L; ~ 252 L, where L=cI"=T.
Am3, 1 GeV 2Rg 0.1Rg ~ 107" cm
Am3, 1 TeV Re ~ 100 kps 100Rg ~107* ecm
Am3, 1 MeV 1 AU 0.25Rg ~ 1072 cm

The values of § Ly listed in the Table seem to be fantastically small.
But are they sufficiently small to preserve the coherence in any circumstance?



Can light neutrinos oscillate into heavy ones or vise versa?
[Can active neutrinos oscillate into sterile ones or vise versa?]

The naive QM answer is Yes. Why not? If, at least, both v, (light) and v, (heavy) are
ultrarelativistic [ |p.| > max(mi, m2, ms,..., M), | one obtains the same formula for the
oscillation probability &,,(L), since the QM formalism has no any limitation to the
neutrino mass hierarchy.

Possibility of such transitions is a basis for many speculations in astrophysics and cosmology.
But! Assume again that the neutrino source is 7,2 decay and M > m . Then the
transition v, — vs in the pion rest frame is forbidden by the energy conservation.

4

There must be some limitations & flaws in the QM formula. What are they?

Do relic neutrinos oscillate?

The lightest (standard) relic neutrinos are most probably relativistic or even
ultrarelativistic while the heaviest ones can be subrelativistic. The QM approach cannot
operate with such a set of neutrinos.

Does the motion of the neutrino source affect the transition probabilities?

To answer these and similar questions

one has to unload the UR approximation & develop a covariant formalism.




In the QFT approach: the effective (most probable) energies and momenta of virtual v;s are

found to be functions

of the masses, most probable momenta and momentum spreads of all

particles (wave packets) involved into the neutrino production and detection processes.
In particular, in the two limiting cases — ultrarelativistic (UR) and nonrelativistic (NR):

Ultrarelativistic case

(‘qg,d‘ ~ |qs,q| > m;)

Nonrelativistic case

(145,al ~mi > |as,al)

( FE,= FE, [1—nri—mri2—|—...],

7\

LY 2
pil=E, |[1—(n+1)r; — mtnt o)

2

1
vi=1—17r; — (211—|——
\

+ ...
2

<1,

[ Bi—m; + iV <1+25¢+...),
q |pil= msv; (1+%5i+--->:
1
. Vi 1?—199 <1
m?
E,~qd~—-q% r= QEZz < 1 (UR),

— RiFqb + fﬁ’jkqu] , o'l < 1 (NR).




Definite momentum assumption

In the naive QM approach, the assumed definite momenta of neutrinos (both v, and v;)
imply that the spatial coordinates of neutrino production (X) and detection (X,) are
fully uncertain (Heisenberg's principle). '

The distance L = |X; — X;| is uncertain too, that makes the standard QM formula for
the flavor transition probabilities to be strictly speaking senseless.

In the correct theory, the neutrino momentum uncertainty d|p.| must be at least of the
order of min(1/Ds,1/D,), where Dg and D, are the characteristic dimensions of the
source and detector “machines” along the neutrino beam.

U
The neutrino states must be some wave packets (WP) [though having very small spreads]
dependent, in general, on the quantum states of the particles [or, more exactly, also WPs]
which participate in the production and detection processes.

In the QFT approach: the effective WPs of virtual UR v;s are found to be

~

2

@DE*) = exp {ii(pixs,d) — [(piX)2 — m%X2] }, X =X4— Xs,

i
B2
where p; = (E;,pi) and X, 4 are the 4-vectors which characterize the space-time location of
the v production and detection processes, while ©; are certain (in general, complex-valued)
functions of the masses, mean momenta and momentum spreads of all particles involved into
these processes. [BSZ/E,, and thereby v; are Lorentz invariants.]




5.5 The aims and concepts of the
field-theoretical approach.

The main purposes:

To define the domain of applicability of the standard
quantum-mechanical (QM) theory of vacuum neutrino
oscillations and obtain the QFT corrections to it.

The basic concepts:

e The “v-oscillation” phenomenon in QFT is nothing
else than a result of interference of the macroscopic
Feynman diagrams perturbatively describing the
lepton number violating processes with the massive
neutrino fields as internal lines (propagators).

e The external lines of the macrodiagrams are wave
packets rather than plane waves (therefore the
standard S matrix approach should be revised).

e The external wave packet states are the covariant
superpositions of the standard one-particle Fock
states, satisfying a correspondence principle.

References: D. V. Naumov & VN, J. Phys. G 37 (2010) 105014 [arXiv:1008.0306 [hep-ph]]; Russ.
Phys. J. 53 (2010) 549-574; arXiv:1110.0989 [hep-ph].
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6 Wave packets in quantum mechanics

A A

Let |k) be the eigenstate of the on-shell (with mass m) 4-momentum operator P = (P, P):

p,u|k> :k,u|k> (/’L:0717273)

K=k -k =m> = P’k)=m’k).
So the proper Lorentz transformation k — k' = Ak transforms the state |k) into |k'):

k) s |K).
Notation : ko = Fx = Vv k2 + m?2, / dk 1 (] = 1
— B e —— = 1.
Normalization : (q|k) = (27)°2Fkd(q — k), (27)32Ex

Let now |a) be an arbitrary «one-particle» spinless state. It can be decomposed into the full
set {|k)} that is represented as a wave packet:

_ dk _ (k|a)




But |a) can be decomposed in the eigenvectors of any other self-adjoint operator, e.g. — the
position operator X = (X1, X2, X3):

X =), (=123 G =6y -x — [dxx -1

Therefore

la) = /dxd)x|x>, Px = (x|a).
Since the operator P in z representation is —iV then

k(k|x) = (k|P|x) = (k|(—iVx)|x) = —iV.(k]x), = (k|x)=+v2Ege™™,

/ TERNE 2E ), k) = V2B / dxe”"[x).

Therefore the wavefunctions 1 and 1{x are Fourier transforms of each other:

dk . .

The norm of the state |a) is

(ala) =

gl =[xt



e If the state |a) is localized in the point x, that is |a) = const |x,), then
Py = const§(x — X,) <= P = conste’ .

Of course, such a state cannot be the state of a real physical particle, since its momentum

is absolutely uncertain. Moreover, particle cannot be localized in a region smaller than its

Compton length ~ 1/m. It is however important that in this mathematical limit,

wavefunctions Px and P depend explicitly on the spatial coordinate x,.

e In Real World, any physical (“particle-like”) state |a) is localized within a finite space
region S. More formally: the probability density [\x|* vanishes well beyond S.

In general S can be described by some equations, inequalities, or by a

| set of coordinates. Let's limit ourselves to the simplest case when it can

\ y‘j be characterized by a single 3-vector x, (the simples example is a sphere
= with the center in x,). Then

Px must be a function of x, | <= | Pk must be a function of x,

e Similarly, if the state |a) has a finite lifetime, {x and {x must be functions of zY
e In a more general case of a space-time localization the wavefunctions depend on x, & 2.

e Since any Lorentz boost entangles the space-time variables, the wavefunctions \x and
must depend on a 4-vector z, = (z%,x,), which describes the evolution of the state in
the configuration space.



e Let's assume that the state |a) has a definite 3-momentum p,: |a) = const |p,). Then

Py = const (27)°V2ELS(k — pa) <= Py = const /2ple” "Po*,
This state is also unphysical since it is fully delocalized in space.

However, just such kind of states are used for description of the asymptotically free particles in
the quantum scattering theory. Sometimes the plane waves are astonishingly associated with
point particles... Fortunately such “interpretation” does not (usually) affect the calculations of
the microscopic scattering amplitudes.

e In Real World, any physical (“particle-like”) state |a) is localized in some finite region of
the momentum space. Considerations similar to the above ones allow us to conclude that

Pk must be a function of p, | <= | Px must be a function of p,

Note: the energy variable p? (in contrast with the time variable z9) is not independent since in
the PW limit it becomes /p2 + m?2.

Finally we may conclude that the simplest wave packet |a) suitable for description of the
particle states localized in both the configuration space and momentum space must depend on
the space-time variable z, and momentum variable p,:

1l)k — 1-l)k(pa,a?a) and 1-I)x — 1-I)x(pa)ma)-




The foregoing qualitative considerations do not provide us with the exact physical meaning of
variables x, and p,. Let us precisely specify the latter for the special class of the states.

Definition: The quasistable packet (QSP) is the state whose norm does not depend
on . in any inertial reference frame.

e For QSP, the 4-vector z, can enter the function {x only through a phase factor
explif(xqs)], where f(x,) is a real function.

e Since f(x,) is dimensionless and (by assumption) does not depend on any dimension
parameters, it can only depend on the dimensionless combinations of the components of
the 4-vectors k, p, (k* = p2 = m?) and z,.

e Due to Lorentz invariance of the norm (ala), the function f(z,) is also a Lorentz
invariant. Therefore it is a function of the scalar products (kza), (paza), and m?z2 only.

e The function f(x,) must satisfy the aforementioned limiting cases, namely, it must
contain the term kx, in the local limit (|a) — const|x,)) and does not depend on z, in
the plane wave limit (|a) — const |p.)).

It is easy to see that the simplest choice of the function f(x,), which satisfies the above
requirements is

f(#a) = (Pa — k)za.
If we wish to describe the states which are sufficiently well localized in both the momentum
space and configuration space, than this form is intrinsically unique.



Therefore our quasistable state is of the form

dk i(pa—K)zq
la) = |Pa, Ta) Z/me(p )% gk, pa)|k),

where the “form factor” ¢(k, p,) does not depend on x, and the extra factor in the
denominator is added to simplify at most the form factor’'s properties.? From above we find:

dk 2
(pesalperae) = [ s |00 pl”

Therefore |¢(k, pa)|? is a Lorentz scalar. Without loss of generality, we require that

Qb(k/, péz) — Qb(k, pa) (k/ — Ak) piz — Apa)-
)

Pas Ta) — [Phy@h) (Dl = Apa, @ = Axa),

Clearly, the wavefunctions Vx(pa,za) and Pk (pa, xs) are not Lorentz scalars:

L ipa—k)a
ayTa) = —F——€ ¢ ¢ k7 a)s
Vk(Pa, Ta) T ¢(k, pa)

dk
(27)3/2Ex

1PaTa —1 X—Xg 040
Y (Pas ) = € o) k8] ok, pa).

aAnd also for better accommodation to the QFT case.



6.3.1 Further properties of QSP

Particular case of the Lorentz invariance is the invariance of ¢(k, p,) relative to rotations
k— k' =0k, p.+— p,=0p,.
U
e Vx(Pa,Ta) and Vx(pa,Ts) are rotation invariants:
Vi (Pos 7a) = Wk(Pas o), W (Pas 24) = Wx(Pa, 7a) (X' = Ox, z, = (Oxa, ).

Since [Wx, (Pa,Tq)| does not depend on x,, the latter can be identified with the center of
symmetry of the packet; we'll call it the center of the packet.

[bx (Pa, xa)| is invariant relative to spatial translations is space but not in time.

[Wx (Pa, Ta)| — 0 as |22 — oo (the packet spreads with time in the configuration space).

e The form factor ¢(k, p) can be function of the only Lorentz invariant quantity
(k—p)* = 2[m* — (kp)] = (Bx — Ep)” — (k — p)~.

o ¢(k,p) = ¢(p, k), ¢(P,P) = ¢o does not depend on p;
— o ¢(k,0) = ¢(0,k) = ¢(ko) is a rotation-invariant function of kg = FEy;
o the norm (pq, Za|Pa,Ta) does not depend on x4, and p,.

e The states |pq,zq) form a complete vector set:

| >_2p2 dXq|pa, Ta) — /ddxd i| ) (p,y| =1
pa - ¢0 apa, a p y47‘('3’¢0|2 p7 p7y - =




6.3.2 Physical meaning of the vector p,,.

From the definition of the QSP |pq,z,) it follows that

[(k|pa, za)|* = |p(k, pa)|”.

So |p(k, pa)|* defines the weight with which the state |k) enters into the
wave packet state |pq, Zq).

It is natural to adopt that the function |¢(k, p)| has the only maximum in the
point k = p (at that |¢|max = |¢o| > 0) and drops rapidly as |k — p| — oc.

Y
[Vklo(k, p)”k:p = [Vp|o(k, p)”p:k = 0.

For the form factors ¢(k, p,) of such class, the physical meaning of the vector
Po is clear:

The vector p, is the most probable 3-momentum of the state |p,, za).

Note: After this, the transition to the local limit becomes impossible and we can forget about
this “strut” (which is in any case absent in QFT).



6.3.3 Mean 4-momentum and mass of QSP.

e The mean 4-momentum P = (Po, ) of the packet is defined by the standard QM rule:

D D <pax|PM|p7 > _ 1 dkku‘gb(k?p)‘Q
P = PulP) = b, a) _'%nd{/‘ (2m)%2E

Here and below the index a is dropped for short; the positive constant

(p,z|p, ) /dk|¢ (k,p)[° 1 /°°
Ve = = dk 2 |op(k
2m T 2m 2132 By ~ 812m 0 - |¢( 0)|
has dimension of volume. The mean 4-momentum is the integral of motion.

e P(0) = 0 due to the evenness of the function ¢(k,0). Therefore the mean (effective) mass
of the packet, m, is the mean energy Py in RF:

= dk|¢(k,0)|* 1 /OO -
f— P f— ! — 2 _ 2
" (0) / 42m)3mV,.  8m2mV, dkokoy/ ko = m? [@(ko)l,

m

—1

— % — / dkokoy/ k2 — m? |5(k0)|2 [/ dkomy/ k2 — m? ‘;b/(ko)‘Q] > 1

m

the equality ™ = m only holds in the PW limit.

The QSP is heavier than its plane-wave constituents.




This very general effect is a manifestation of the
nonadditivity of the relativistic mass.

In our case: the transversal to p components of the
momenta of the states |k) do not contribute to the
mean momentum (p x P = 0), but do contribute
to the mean energy.

Some analogy:
The mass of a gas in a bulb increases under
(uniform) heating: the bulb does not get an extra \ - - /

momentum, but internal energy of the gas grows.

Proposal of an experiment.

Note that the mean value of the squared mass P2 is equal to m? and thus

F22ﬁ2m2.

One can prove that Py = (m/m)Ep, P = (m/m)p. So, in the mean, QSP is on-shell:
_2 —_—

P =P, P"'=m".

The mean velocity P /P coincides with most probable velocity v, = p/Ejp.



Let us inquire the exact physical meaning of the space-time dependence of the state |p, ).
Consider the mean value of the position operator X:

. p.aXlp,z) 1 [ 2
_ = d
X =X(p,x) = p.ap.z)  2mV, yy|by(p, z)|
dkdq otla=k)(y—x)+(q0—ko)zo] *
4mV*/ yy/ 2m)6/FExEq oo p)oap)

dkdq i[(a—k)y+(q0—ko)zo] *
= dyy—l—x/ e\ ATEYTRI0TROIT0I g (k. p)dT(q, P).

6/ExEq
Y

X =£(p,z0) +x, where §{(p,z0) =

1
2mV /d.‘yy\xy(p,ﬂvo)\2 and Xy (P, 7o) = by (P, 2)|,—o-

Due to the rotation invariance of 1y (p, x), the function (0, xo) is even function of y. Thus

f(O, 5130) = 0.
Since £ is a 3-vector, and the last equality is valid for any x, it is equivalent to the following:
¢ =o.

Here and below, the star symbol (%) is used to denote the rest-frame quantities.



Let & be the 0-component of the 4-vector £ = (£o,&). The Lorentz boost connecting RF with
lab. frame (LF) can be written as

Ip(vpé) .

€*Z€+Fp[Fp+1

§O] Vp,

where
vp =p/Ep, Ip=Ep/m, and &=&(p,xo).

So we obtain the equation : )

Lp Ep(vp€

EZE [ﬁo—m}vpy
which has the only solution
£(p; zo) = vpéo.

Next, it is easy to prove that |xy(p,0)| is even function of y. Hence £(p,0) = O that is

o=0 as xo=0.

Therefore £y must be identified with 2o and we have

X(p,x) = X + VpZo.

Conclusions:
e In the mean, QSP follows the classical trajectory, with the most probable velocity vp.
e In RF, the mean position of the packet is just its center, x.

e The parameter x( is the time counted from the moment when the mean position of the
packet has been coincided with its center x in LF.



6.5 Effective volume of QSP.

Which is the area of localization of a wave packet in
the configuration space?

Making the perfect definition of the size or volume
of a wave packet (an infinite quantum object) is
an almost as thankless job as defining the size of a
cloud. Nevertheless, we have to have a quantitative
characteristic of the degree of localization of the

packet, allowing to compare the effective sizes of

on
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different packets.
Simple example: Let p(x) be the spherically symmetric

density distribution of some quantity, say mass, with the
center in the point x = 0. Let both the full mass

/ dxp(x) = M eime
and the central density po = p(0) are finite. We may ‘ ‘
define the effective spatial volume V as the volume of Effective size
a uniform ball of mass M with density po:

V:M/po.

This definition, being no better and no worse than any other, is the most appropriate since it
can easily be translated to the covariant quantum language.



By following the above example, we define the effective spatial volume of QSP in RF as
1
V(0) = o [ dy [y (0.2)]".

*

Here, the analog of the central density is the central value of the function |y (0, z)|?
(proportional to the probability density in RF) P, taken at the moment zo = 0:

dk¢>ko
x(0,
|ll') ( x ;EO 0 ‘/ 2k‘0

This is just a constant. It's easy to see that

Vylby(0,2)*| _ . _ =0

y=x,x09=0

2

1

~ 8n?

/moo dko \/kO(kS —m?2) ¢(ko)

Hence p. is the extremum of the density function

dkdq

0.2)]% = il(a—1) (y—x)+(20—ko)zol J(p. 3+ |
Wy (0, )] /2(27T)6\/m6 ®(ko)p™(qo)

One more (the last) restriction: ¢ (ko) > 0 or, equivalently, arg[¢(k, p)] = 0.

This condition, unclaimed till now, is connected with the same PW limit, in which
the phase of the function ¢(k, p) is zero. So it is sufficient to put argloé(k, p)] = 0.

In this case, it is obvious that p, is the absolute maximum of [\ (0, z)|?.



By using the definition of the norm (p, z|p,z) = 2mV, we obtain
V(0) = 2mV./px.

Taking into account the Lorentz transformation law for the volume,
we find the effective volume of the packet in LF:

V(o) 1

— _ 2
V(p) = 2 = 7 [ dy (e,

In the PW limit:
$(k,0) = 16m°md(k) = p. —=2m — V(0) =V, = .

Thus, for the packets well localized in the momentum space, one can put approximately

V(0)=V,, V(p)=V./ITp.

The above definition of V(p) is formally applicable to any form factor. It is therefore instructive to
check its self-consistency also in the local limit. While in this (unphysical) case, the integrals defining
the constants V., p,. diverge at the upper limit of integration in kg, their ratio vanishes = V(p) — 0
as it should be. Formally this fact can be proved by the standard regularization of the integrals in kq:

v -

v, S dkor/ kg —m? |¢(ko)|? , M -3

— o lim = lim / dkokoy/ k3 — m? = lim —.
2 M — o0 M — o0 M3

P M — o0 ‘fé\f dko\/ko(kg —m2)$(k0) m

The effective size of QSP in RF is naturally defined as the diameter of a ball of volume V(0).



7 Wave packets in quantum field theory.

The S-matrix formalism of QFT usually deals with the one-particle Fock states (FS) as the
asymptotically-free states of the spin-s fields. The FS are constructed from the vacuum state:

k,s) = V2Ekal [0),  axs|0) =0, (Ex = ko = VK2 + m?2),

and provide the QFT realization of the abstract QM states |k) with the fixed 3-momentum.
e The conventional (anti)commutation relations for the creation/annihilation operators hold:

{aqm aks} — {aLT, aLs} =0, {aqm a;rcs} - (27T)35S7’5 (k - q)'

The Lorentz-invariant normalization of FS is therefore singular since

(q,7|k, s) = (27)°2Ex 04,6 (k — q).

e The proper Lorentz transformation induces the unitary transformation of FS:
k—s k' =Ak = |k, s)— Urlk,s) = |K',s),

assuming that the axis of spin quantization is oriented along the boost or rotation axis.

e This is equivalent to the following unitary transformation of the operators aLS and aks:

aLS — UACLLSUX1 =/ Eyx [ Ex aL,S, Aks — UAakSUA_l =/ Ex /Ex ayss.



By the same, as above (QM), arguments referring to the localization of the state in the
configuration space and momentum space, we can build the QFT wave-packet (WP) as a
linear combination of the Fock states. The most general construction is

dk _ /
p, s, ) :/mchss’ (k,p,z;0) |k, s),

S,

In general, the function @,/ (k, p,x; o) depends not only on the momentum, space-time, and
spin variables, but also on a (finite or infinite) set of parameters (constants)

O — {0'1,02, . . .},
governing the shape of WP. All momenta are, by definition, on-shell [can be avoided in future].

Correspondence principle:

The wave packet state passes into the Fock state in the plane-wave limit:

PW
P, s, z) — |p, s).

Since the parameters o; can always be defined in such a way to approach the PW limit as
o; — 0 (Vi), we can formulate the correspondence principle in the following way:

limO D, (k,p,z;0) = (21)°2Ep0,.6(k — p).
o—



Below, we'll only interested in the quasistable WP very close to FS that is very narrow in the
momentum space (<= all o; are small). Then the correspondence principle suggests that

e functions @, must be Lorentz invariants (scalars),
e the = dependence of |®,,/| can be neglected,
o |D,y| K |Dss| for s'#s.

These requirements can be accumulated in the following simple ansatz:
®SS/ (k7 p7 x; 0-) — 5SS/€zg(k_p)m¢(k7 p; 0-)7
in which ¢(k, p; o) is a spin- and coordinate-independent Lorentz-invariant function, such that

lim ¢(k, p; o) = (27)*2Ep6(k — p)

(so ¢(k,p; o) is a “smeared” d-function), and ¢ is the sign which will be fixed in a short while.
Finally, the quasistable QFT wave packet [abbreviated as above by QSP] can be written as

dk eig“(k:—p)x
(2m)32Fx

|p,8,$> — ¢(k,p)‘k,8>, (12)

[Here and below the argument o is dropped for short, but is implied.]

From (12) it is in particular follows the (expected) transformation rule:
pos,x) = Ps,a) (0 = Ap, ol = Aw),

where again the axis of spin quantization is oriented along the boost or rotation axis.



7.2.1 The most general properties of QSP.

The function ¢(k, p) has exactly the same properties as its QM analog.
Thus, the major properties of QSP can be summarized without derivation:

o the form factor ¢(k, p) can be function of the only quantity (k — p)?;

o ¢(k,p) = &(p, k);

o ¢(p,pP) = ¢o does not depend on p;

o ¢(k,0) = $(0,k) = ¢(ko) is a rotation-invariant function of ko = Ex;

o the norm (p,s,x|p,s,x) =2mV, is a constant and, moreover, the
inner product (q,7,y|p, s, z) = 05" 9" PH)D(p, q;x — y) is defined by the
nonsingular and relativistic-invariant function

D(p.aiv) = [ g @0 po (ko) ffor < = +1).

e As in the QM case, we require that the function ¢(k, p) is positive definite,
has the only maximum at k = p, and drops rapidly as |k — p| — co. Hence

The vector p is the most probable 3-momentum of the state |p, s, x).

Technical condition [ensues from the correspondence principle; not necessary but practical.]

/mffkm( (k, 0) = 1.




e The mean 4-momentum, P, of QSP is the integral of motion.
e In the mean, the QSP is on-shell: P = m2. but P2 = mZ2.
e The QSP is heavier than its Fock constituents: m > m.

The relevant formulas remain formally the same as in the QM case.

7.2.2 A nuisance (metaphysical notes).

Treating the QSP as a physical quantum state, created in collisions or decays of other particles
», one may expect that the function ¢(k, p) depends parametrically (through the set o) on the
4-momenta (Q,. of both primary and secondary particles participated in the creation process.

Moreover, in the most general case the set of the progenitor and accompanying particles may
include ones from the whole net of the reactions which led to the production of the packet.




The 4-momenta @), can enter the scalar function ¢(k, p) only through the scalar products
(Qxk), (Qxp) and (Q.Q,.). Owing to the required properties of ¢(k, p), it satisfies the
conditions

{%l’;p)}kp - {8(’“82119)2 g((z(lj;)QL b t2 [ ok 8?8{%75))

yo(S-%)[BR] <0 i

The last equations are satisfied identically only in the unphysical case, when the velocities of
all particles s, are equal to each other, Q../Q%. = p/Ep. Thus, from the arbitrariness of the
4-momentum configurations {(Q). }, we conclude that [9¢(k, p)/0(Qxk)], _, = 0. Similarly we
obtain [0¢(k, p)/0(Qxp)|,_, = 0. Hence the dependence of ¢(k, p) upon (Q..k) and (Q..p)
must vanish, at least in the vicinity of the maximum of ¢(k, p). Since only this vicinity is really
important for the smeared J-function, it is safe to neglect this dependence everywhere.

The remaining scalar products (Q..Q),./) can be then “absorbed” into the definition of the
parameters ;. In other words, o; can be, in general, the scalar functions of the 4-momenta of
the “network particles” s¢ rather than constants. As a result, the WP composed by identical
one-particle Fock states but produced in different reactions (or reaction chains) are not,
generally speaking, identical. To avoid this serious complication we will be forced to sacrifice
the generality in some stages of our study, assuming voluntary that o; are still constants.

A note in excuse: this problem is not specific to the covariant approach...




Consider, as a representative example, a spin—% free-field operator

dk Z [aksus (k)e_ikx + bLSvS (k)eik’m}.

U(x) =
(@) / (27)3/2Ex
The coordinate representation of FS is a plane wave uniformly distributed over the space-time:

(0@ (2)|p, s) = us(p)e” "7,
So, the QFT analog of the QM wavefunction 1, (p, z) in = representation is the spinor function

Dy(ps.a) = OFWIP.5.2) = [ om0 g p). (13)

Moreover, in the S-matrix perturbation theory, just this factor will provide the modified
Feynman-rule factor for any Feynman diagram with the corresponding incoming fermion leg.

It is natural to demand that |, (p, s, z)| does not depend on x in RF because, in this case,
the point x can be identified with the symmetry center of the packet.

—q T dk —i(1— T
1|):c(P75737) — <O|W($)‘p,5,.ﬁl}> =€ < )/mus(k)e (1=t )(b(kap)

4

The requirement is fulfilled for any form factor ¢(k, p) only if ¢ = 1.




So instead of Egs. (12) and (13) we finally obtain

dk ¢(k, p)e’F—p)=
b, 5, z) = / ¢<(27;;)5Ek k, s), (14)
—1pT dk ik(x—
Yy(p,s,z) =e /mus(k)ﬁb(k’ p)e* Y, (15)

The opposed (in comparison with the QM WP) sign in the exponent in Eq. (14) is caused by
the identification of the function V,(p, s, x) with the matrix element (0|¥(y)|p, s, z) (what is
with the in wave packet) rather than with its complex conjugate. Indeed, quite similarly it can
be constructed the wave function for the wave packet related to the outgoing fermion line:

— dk

¥, (p,5,7) = (p,s,2|F(y)|0) = ™ / Gmam, = (0@ (e p)e™ T (16)

Obviously,
q)y(pa S, x) — q)jz(p7 S, x)’YO7

and hence, for definiteness, below we will only discuss the incoming wave packets.
Clearly, the same constructions can be released for the free fields of arbitrary tensor structure.

This finalizes the construction of QSP. However we'll need to do some simplifications.



From this point we'll consider only very narrow (in the momentum space) packets, for which
the function ¢(k, p) is strongly peaked at the point k = p. In this case, considering that the
Dirac spinor us(k) is a smooth function of k, we can write

Uy (P, 5,2) = (01T (y)|p, s, 2) ~ e~ P us(p)Y(p,z — y), (17)
where we have introduced the Lorentz-invariant function

0.2) = [ g @00k, p) = $(0,2.),

satisfying the Klein-Gordon equation: (0, — m?)y(p,x) = 0. [Therefore it is a relativistic
wave packet in terms of conventional scattering theory.]

The approximation (17) is valid under the condition
iVy Iny(p, z — y) + p| < 2Ep, (18)

which is fully consistent with other approximations in the subsequent analysis.

The relations analogous to (17) can be obtained for the free fields of any spin, providing us
with the modified Feynman-rule factors for the external legs of any diagram. In particular, it is
pertinent to note that the equality

(0|®(y)|p,s = 0,z) = e~ P*(p,z — y)

is exact for the scalar and pseudoscalar fields &(z).



From definition of ¢(p,z) and the correspondence principle it follows that

lim ¢(p,z) =™ and lim by (p,s,2) = e~ " us(p) = (0]Z(y)|p, s)-
J

An infinitely narrow wave packet in the momentum space corresponds
to a plane wave in the configuration space and vice versa.

e The effective spatial volume can be defined in the full analogy with the QM case:

def Yl(p, s, 2) by (p,s,z) N a2 - [ dk ok, p)|* _ V(0)
V(p) = [ dy (D5 2)0n (5. 2) —/d 1Y (p, )| —/(%)3 2B’ Ty

e In a similar way, we can define the mean position of the packet:

. /dyll)z(p,s,fﬁ)yll)y(p,S,x) 1
x d = 577 [ Y-l
/ dy ! (p, 5, 2)0y (D, 5, ) P

Q.
-

By using the properties of the function ¢ (p, x), it can be proved that
X =x+ vp(Yo — o).

So, in the mean, the packet follows the classical trajectory, with the most probable
velocity vp.



It is useful to introduce the auxiliary operator (wave-packet creation operator)

i(k—p)x
Apuw) = | dicolk,p)e T 77 1 (19)

2(27)3\/Ex FEp

Then the state |p, s, z) can be written in the form similar to the Fock state:

P, s,x) = \/QEpAI)s(CU) 0).

Clearly ALS(Q:) passes into aIT,S in the limit & — 0. It can be easily proved that under the

Lorentz transformation p — p’ = Ap and x — x’ = Ax the operator (19) is transformed as

A (@) — UnAb, ()Ux " = \[Egr /By AL, ().
The following (anti)commutation relations can be derived:
{aar, Abo(@) } = 00r (1B E) /7 €707 (q, p),
{Aar(y), Aps(@)} = { Al (y), AL (@) | = 0,

{Aqr (y)7 AI)S (x)} - 63T (4Equ)_1/2 €i<qy_px)p(p7 q; T — y)




Here we have defined the Lorentz- and translation-invariant commutation function
dk ik (o—
Dp,q;z—y) = | = 0k, p)o" (k,q)e* 7Y,
(P, gz —¥) / (@r)32En ok, p)o”(k,q)e
From the last (anti)commutation relation it follows that

<q7 T? y‘p7 87 CU> — 58r6i(qy—p3§)p(p7 q7 xr — y)

It provides, in particular, the invariant and non-singular (assuming o # 0) normalization of the
wave-packet states:

(p,s,z|p,s,z) = D(p,p;0) = 2mV, =~ 2E,V(p). (20)

7.5.1 Plane-wave limit.

In virtue of the correspondence principle, we have for arbitrary (smooth) function F'(p):

: dpD(p,q;x —y) . dk ¢" (K, q) ik(z—y) iq(o—y)

1 ) M) F — 1 ) Yy F k — q Y F
o0 amieE, L@ =lm oo, © (k) =e (),
J
lim D(p, g5z — y) = (27)*2Ep6(p — q)e™" 7Y,

o—
J

lim { Aqr(y), Aba() } = (27)°05,6 (p — @), lim (q,7,y[p, 5,2) = (27)6.,2Ep3 (p — a).

o—0



7.5.2 Behavior of the commutation function in the center-of-inertia frame.

Certain properties of the commutation function become especially transparent in the
center-of-inertia frame (CIF) of the two packets (p« + g« = 0) in which

dk * k(e —Yx
D(P*,—P*;CE* —y*) = / mqb(k,p*)gb (k, —p*)e i Y ).

e Due to the assumed behaviour
of ¢(k,p) in the vicinity of the lo(k,—p.)|
point k = p, one may expect
that |D(p«, —Pp«; T+« — y«)| has a
sharp maximum at p. = 0.

e On the contrary, the function
| D(p«, —P+; T+« — Y«)| vanishes
at large |p«|, since the maxima
of the factors |¢p(k,p«)| and
|p(k, —p«)| in the integrand are 0
widely separated in this case and
thus |¢(k, p+)o” (k, —p«)| < 1 ¥k
for any k.

e Function D(p«, —p«; T« — Yy« ) must vanish when the points x. and y,. are widely
separated in space (that is |x. — y.| is large) because the phase factor e =% =¥+) in the
integrand rapidly oscillates in this case.

Y

s
8



7.5.3 Summary of kinematic relations.

To come back into the laboratory (or any other) frame we have to express the asterisked
variables in terms of the non-asterisked ones.

e The Lorentz-transformation rules:

xng(xo_vx), X*:X+F[F+1(VX)_xO} v,

e The velocity and Lorentz factor of CIF in the lab. frame:
v = pP+q _ 1 _ Ep+ Eq
Ep —l'Eq, ’\/1 —V2 EP* +Eq*

e The energies and momenta in CIF:

1 1
Bp. = Eq. = 5V (p+a)? = B, [ps] = la:| = 5V =(p—9)* = Ps.

It is seen from the last relation that P. vanishes as p — q and grows with increasing |p — q|.
[Hence from the above consideration it follows that the function |D(p, q;z — y)| reaches its
maximum at p = q and vanishes at large values of |p — q|.]

e Useful identities:
2.z = (p+q)r, 2p«xs =(q—p)x, Vve=1 (Vx — VQZIZO),

2
Xz:[(p—kq)x] —x2zf2(|x—vx0|2—|vx><|2>, X, =0 <= x = va'.

(p+ q)?




[This item is important as a “prearrangement” for an extension of the formalism to include the
effects of coherent forward neutrino scattering from the matter background particles.]

Let's define the ket-state (and consequently bra-states) of n identical wave packets by

’ {p7 8,$}n> = ’ P1,581,21;P2,52,X2;...;Pn, Snaxn>

= Al o (z) AL (w2)--- AL (20)[0)

— (:I:]‘)n(n_l)/QAI)nSn (:’Cn) ) .AI)QSQ (xQ)AI)181 (a?n)‘0>7
<{p7 S, CL’}n ‘ = <p17 51, T1,P2,52,L25...:Pn,Sn,Tn ‘

= <O|Avpn3n (Tn) - 'gpzsz (552)1119181 (z1)
— (il)n(n_l)/2<0‘f4p181 (x1>Ap282 (332) ) 'Apnsn (331),
where the sign “+" (“—") is for bosons (fermions) and
Al () = 2B Al (2),  Aps(x) = /2Ep Aps().
It is easy to see that this state is fully (anti)symmetric relative to permutation

(pi, si, i) «— (Pj,sj,2;) forany 1 <i,5 <n (i# 7).



To determine the normalization of the multi-packet states we define the nxn matrix

Dn =D ({a,m,y}, . {p:s,2},) = ‘ Osir; (F1) ™ D(piy ajs i — ) )

It can be proved by induction (not so easy, see ) that

<{q7 r, y}n | {p7 S, aj}n> — exp

’LZ (qiy: — pzajz)] det (Dy,).

=1

* D ({Pa 87$}n ) {p, S,ilf}n) is Hermitian,
D(p,q;x —y) =D (q,p;y — ) = _
({p;s,x}, [{p,s,x},) is real.

Examples
<{p7 573:}1 | {p7 S,CC}1>
{p, s, z}y [{P;s,2},)
<{p7 573:}3 | {p7 S,CC}3>

2mV,,
2mV,)2 £ 64,0 |D(P1, P2; 21 — 22))°,
QmV*)S + QmV* Z 55@'53' |D(p27 Pj;Ti — x])|2

1<i<j<3

+2Re H [5siSjD(pi7pj;xi - .”13])]

1<i<j<3

(
(



Simplest repercussions

Non-overlapping  regime: If the space-time points
x1,T2,...,Tn (n>2) are well separated and/or the 3-
momenta pi1,Pp2,...,Pn essentially differ from each other,

the n-packet matrix element is approximately equal to
(2mV.,.)".

Overlapping regime: If the wave packets having the same spin
projections strongly overlap in both the momentum and the
configuration spaces, the n-boson matrix element tends to
n!(2mV,)", while the n-fermion matrix element vanishes.

v

The behaviour of the n-particle matrix element in the overlapping regime is merely a
manifestation of the effects of Bose attraction and Pauli blocking for identical bosons and

fermions, respectively.

It is less trivial that the wave-packet formalism reproduces another intuitively evident result
that the identical non-interacting bosons (fermions) with the same momenta and the same
spin projections do not condense (may well coexist) if they are separated by a sufficiently large
space-time interval. This result cannot be understood within the framework of the plane-wave

approach.

We will return to this conceptually important issue in order to clarify the exact meaning of the words

“sufficiently large space-time interval’.



In further consideration we will use a simple model of the QFT WP state — relativistic
Gaussian packet (RGP), in which the form-factor function ¢(k, p) is of the form

¢(k,p) =

272 ) exp (_ ExEy — kp) def sk, p), (21)

02 K1 (m? /202

202

where K is the modified Bessel function of the 3rd kind of order 1.

Ki(z) = z/ dte *'\/t2 — 1 (\ arg z| < g) :
1

One can check that the function (21) has the correct plane-wave limit and satisfies the

normalization conditions.
In what follows we assume

asymptotic expansion:

ole (k7 p) —

02 <<m2.

273/2 m

S—— exp
o’ o

Then the function (21) can be rewritten as an

o] e o ()]

In the nonrelativistic case, (|k| + |p|)® < 4m?, and only in this case this form factor coincides,
up to a normalization factor, with the usual (noncovariant) Gaussian distribution:

pa(k —p) o< exp {

epr]

402



But it is not the case at relativistic and especially ultrarelativistic momenta, when the
functions ¢¢ and p¢ significantly differ from each other.

7.7.1 Example: ultrarelativistic case.

In the UR limit (p* > m?, k? > m?) the function ¢¢(k, p) behaves as

2m%/2 m m? (k| —[p])® (1 —cosd) [K[|p| UR
k,p) =~ — — — = k
qu( ap> 2 o eXp[ 40'2|k”p‘ 202 :| ¢G’ ( ap>7
where 60 is the angle between the vectors k and p.
In particular, for 6 = 0 and 7/2 we have
2
UR (k—p) UR’ k[p|
—— d —— .
“ ’9:0 P { 402kap] and - 9G 6= /2 P [ 202

In the first case, the relativistic effect consists in a widening of the packet (in comparison with
the NR case) in the momentum space (“renormalization” of the WP width):

or— o\ Ixlp.

This effect is essential for the neutrino production and absorption processes involving
relativistic particles.



7.7.2 Plane-wave limit.

To illustrate the importance of the correct normalization it is useful to verify that the limit of ¢c (k, p)
as 0 — 0 is indeed o d(k — p). To do this it is sufficient to prove that for any smooth function F'(k)

lim
c—0 (27‘(‘)32Ek

The left part of the latter equality can be transformed to the following form

m2 Ek

:;@xﬁ;f”/dn/ e (52) )

where n = k/|k|. In order to estimate the integral in ¢ one can use the famous formula®

/O°° dtt*~te V! f(t) ~ v T T(a) f(0) [L +0(1)]  (a>0, v — o0), (23)

F(k) = F(0). (22)

which is valid for arbitrary continuous function f(t), t € [0,00). Since in our case

3 2
a=c, v= ;71—2 and f(t) = \/t—|—2F(m t(t—|—2)n),
o
the identity (22) becomes evident.
As a result we see that the function ¢g(k, p) actually represents the simplest model of
the form factor satisfying all the conditions imposed to the generic function ¢(k, p).

aSee, e.g., M. B. ®Pegopiok. MeTog nepesana. M.: Hayka. 1977.



7.7.3 Function ¢ (p, ).

The function ¥ (p, z) in the RGP model is

K (Cm2/202) def
(K1 (m?/20?)

Y(p,z) = Ve (p, ).

Here we have defined the dimensionless
Lorentz-invariant complex variable

S T

2 4 2
4 4o 2? 160" (pz)
|C| — |:1 _ m2 -+ mA )
1 40°
p =arg( = —3 arcsin {%] :

It can be proved that for any p and =

| >1 and |p| < 7/2.

o220 /m

A 3D plot of |G (0, x+)| as a function of 2z /m

and o223 /m [assuming that x, =

= (0,0,z3)]. The

calculations are done for o/m = 0.1.
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3D plots of |¢| and ¢ = arg ¢ as functions of o2z /m and o223 /m [assuming that x, = (0,0, z3)].

The calculations are done for o/m = 0.1.



Training

It is useful to ascertain that the function ¢ satisfies the Klein-Gordon equation. Taking into

account that
Ki(z) = —Ki1(2) and Ki(z) = —Ko(2) — K1(2)/z,

we find
9, [KIZ(Z)] = {Kg(z) + %Kl(z)} %, where 2 = m?(/(207),
Y
0 [Klsz)} _ [Ko(z) + %Kl(z)] % _ BKO(Z) + (1 4 Z%) Kl(z)] (‘%ZLWZ). (24)
Next step:
Oz = _amTi (azwu + %pu)
Y
Oz = —0,0"z = @ and  (9,2)(0"z) = —m>.

Substituting these identities into Eq. (24) and taking into account the explicit form of ¥ we

see that
(O —m*)e = 0.



7.7.4 Nondiffluent regime. Contracted RGP (CRGP).

An analysis of the asymptotic expansion of In [)c (0, x,)] in powers of o®/(m?() provides the
necessary and sufficient conditions of the nondiffluent behavior.

Due to the inequalities
CI>1, lel<m/2, and o <m”,

one can use the asymptotic expansion

Ki(2) ~ \/; { tot 2(;2) +0 (%)] (| arg 2| < 37”) C(25)
which gives

1 m2(1 —¢) 302 1 304 1 5 o6
Vo(p. @) = 57 exp [—2(,2 ] [1‘ m? (1 N z) " Soms (1‘ z) (“* z) o (mﬁﬂ

This formula is valid for any p and x, but it is still too involved for our aims. Under additional
restrictions the above expression can be essentially simplified by using an expansion of the
variable ¢ in powers of the small parameter o°/m?”. In the rest frame of the packet we obtain

n[Ya(0,z.)] = imax’ {1 + SL _ 0_4 (szxz B §)}

m2 m4 2
2.2 30 o (26)

We see that [1)¢(0, z.)| depends on time only in the O (o*/m*) order.



An elementary analysis suggests that the asymptotic series (26) can be truncated by neglecting
the O (0*/m*) terms under the following (necessary and sufficient) conditions:

o’ (x))? < m?/o®, x| <« m®/o”. (27a)

They can be rewritten in the equivalent but explicitly Lorentz-invariant form:

(px)® < m*/o*, (pz)® —m’z® < m?*/o”. (27b)

Under these conditions ¢ (p, ) reduces to the very simple and transparent result:

( 9 9 )

ba(p,x) = exp (imz, — o7x7)

— exp {zE (ro — VpX) — 02F§ [(X — szL’o)2 — (vp X X)Q} }
2 2] (28)

= exp [zE (zo — vpx) — 02F§ (x) — vpxo)~ — o’x7

= exp {i(px) — (o/m)* [(pz)* — m"a”]}.

L J

Some properties of CRGP:

1. The mean coordinate of the packet follows the classical trajectory (CT) x = vpxo.
2. |Ya(p,z)| = 1 along the CT and | (p,x)| < 1 with any deviation from it.
3. |Ya(p, x)| is invariant under the transformations {x¢o — zo + 7, X —> x + vpT}.

4. The nonrelativistic limit of (28) is wg\'R) (p,x) & exp [im (xo — vpx) — 07 |x — vpxo\Q].



[
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o2z9 /m

A 3D plot of |¢g(0,x«)| in the
small vicinity of the maximum
as a function of o02z%/m and
o?x3 /m [assuming that x, =
(0,0,23)]. The calculations are
done for o/m = 0.1.

The CRGP model permits to check the validity of the
condition (18) necessary for the applicability of the factorization
formula (17) — an essential element of the formalism. As is follows
from the explicit form of ¢ g (p,z) in the CRGP approximation,

2
: e
iVxInyg(p,z) =p+ QZW [(p:c)p — m2x].

Therefore the condition (18) can be written in the form
‘(pX)p — m2X‘ < (m2/02) Ep, (29)

where X = (Xo,X) = (yo — 0,y — x). Then the elementary
algebra yields

((pX)p — m2X|* = (pX)?p? — 2m> (pX) (PX) + m*X>
= (pX)?EZ + m® [(pX)? + m*X? — EZX{]
< (pX)?EZ +m? (p°X? 4+ m?X? — E2X¢).

As a result we have proved that

(pX)p — m?*X| < Ep/(pX)? —m?2X2,

Therefore the inequality (29) is not an independent condition but is satisfied automatically in the

CRGP approximation.

It can be also proved that the quantum correction to the classical momentum vanishes on the classical

trajectory X = vp Xp.



7.7.5 Function Ds(p,q; )

One can derive the explicit formula for the commutation function:

( Ki1(zm?/0?)  def |
D . = 2mV, = D y A5 ’
(p,q;z) = 2m K (/07 c(P,q; %)
2= 2 \/1 — 2 (0% + 2iB.a] = ——/(p+ 0" — 47 [P + i(p + 0)a].
m E2 * * 2m

The module and phase of z are determined by

1 90422\ 2 2 2 1 2
z[* == (1+ Pi— =0 + |2 (p+ )z , arg z = —— arcsin o+ :
m? m? 2 m?2|z|?

4
From these relations it can be proved that

|z| > E«/m>1 and |arg z| < /2.
Owing to these inequalities and condition 0 < m?, we can write the asymptotic expansion:

2mV, m2(1 — z 302 1
Potpare) = 2% g [P0 [} (1)

0'2

304 1 5 o
T (1 - ;) (11 + ;) +0 (m)]




The self-consistency demands to write down the approximation of this formula which would be
accordant with the CRGP approximation for the function ¥ ¢ (p, x).

L FE. 1+ otx? B 2,0'251}2 1_ otx? Lo 0_8
T m 22 m 22 ms )
J

D _ 2.2 2 B
In D (P, —Px; Tx) _ §ln m\ m(Es—m) mox; N 30“(Ex —m)
2mV E,

2 o2 2F. SmE,

. 0 30'2 0'2 4 2 9
1 1 1 — =
ema, { ok | T mEs g
30 2 042 2 P*Q o

It is now seen that, under the conditions [equivalent to those for the function ¥ c(p, x)]

o’(z))? < E2/o® and o°x2 < EZ/o”, (30)

one can retain only the four leading terms in powers of o /m?, finally obtaining:

2mV, o m*P(Iv—1) o*x2
Da(pPx, —Px; Tx) = =7 exp |imx, — — ~ S | (31)

*

[7/(20%)]2/? (effective volume).

where I, = E,/m (Lorentz factor of CIF) and V,



Hence, as expected, D¢ (p+«, —p«; x«) quickly vanishes when either |p.| or |x.]|
(or both) are large enough.

Some scarcely foreseeable features:

The

The dependence of |D¢| on variables x¢ and x disappears for the classical trajectories
X = VpZo;

|'Dc|/(2mV,) exponentially vanishes at sub-relativistic energies (I — 1 ~ 1)
and is nearly independent of x. at ultrarelativistic energies (I'x — 1 > 1).

For the nonrelativistic energies one gets (after transforming into the lab. frame)

. m2 2 0'2 2
Da(p,q; ) &~ 2mV, exp Zm(ﬂio—vx)—@wp—vd —7|X—V:C0‘ 7
[Vp =p/m, vq=q/m, V= % (Vp + Vq), vp| € 1, |vq| K 1]

The term oc (m?/0?) yet can be large (if vp # vq and o is small enough).

correspondence principle:

All these nice features fade away in the plane-wave limit since (as it can be proved),

lim Do (p, q;2) = (2m)°2Ep0(p — q)e™”.



7.7.6 Multi-packet matrix elements (examples).

Consider the ME ({p, s, z}, |{p,s,z},) with equal momenta (p; = p, Vi) for n = 2 and 3.
In the CIF, which coincides now with the rest frame (the same for all 1-packet “sub-states”)

{p, 5,2}y [{P,s,2}y) = (2mV.)? [1 £ 05y s, exp (=07 [xT — x35/%)],

1:&25 cexp (—o’|x; — xj|°)

’L<j

2
o § * *
+255152 5525355351 eXp <_7 |XZ _— Xj 2)] .

1<J

<{pa 87:6}3 | {p7 3733}3> — (va*

So the effects of Bose-Einstein attraction and Pauli repulsion, appearing when
s; = s; for any pair (7, 7), are only essential at short distances satisfying

|x; — x| 1
In other words, both effects are essential when the spatial distance between
the identical one-packet states (measured in their common rest frame) is
comparable with or shorter than the packet's dimension.

In the lab. frame the “attraction/repulsion regions” is restricted by the following condition:

v (@ =) = v x (i —x)P S V() (v=p/Ep).




7.7.7 Effective dimensions & momentum uncertainty of CRGP.

In the CRGP approximation, the effective volume is explicitly calculated to be

2 2/, 2 3/2
V() ~ v, = Zmim /o) ()

o2 [K1(m?/202)] 20
In the RF of the packet, one can define its effective size as the
diameter d, of a ball of volume V4,

oo (6VANTP (om0 L 1555
T T T\ 2 o o

Then, in the lab. frame, the effective size of the packet along
its momentum p is d./Ip. The pictorial model of the packet
is therefore an oblate spheroid with the transversal diameter

2 N
o)

of about 1.555/0 and eccentricity of 1/1%.

The volume density difference between the center and effective edge of any wave packet does
not depend on mass and spread and is exp[(cdy)?/2] = exp[(97/16)'/3] ~ 3.350.

The momentum uncertainty can be evaluated as follows:

2
opr|* = 3 6ps|° ~4In20°,

= | 160l ~ /2212 +2) 0.

2 _ 1 2 2 2 12
0pL|” = §|5p*\ Io ~2In20°17,



7.7.8 The range of applicability of CRGP.

The inherent (probably inaccessible in reality) “upper limit” for the packet dimension, d,”**, for
an unstable particle is of the order of its decay length ¢ (which is macroscopic for long-lived
particles), while the “lower limit”, d™™, is just the size of the particles composing the packet:
~ 1 fm for hadrons and ~ 1/m (the Compton wavelength) for the structureless particles
(leptons, gauge bosons). Any rate, due to the general restriction o° < m?, the permissible in
the formalism dimension of the packet must be much larger than d™™".

But, for unstable particles, the conditions of applicability of the CRGP approximation (27)
impose an additional and rather strong restriction to the maximum permissible value of the
parameter o. These condition should be valid during at least the life of the particle that is for

0< |zl <7 =1/T.

Therefore the following condition is necessary: 072 < m?. S0 Omax = /m /T = vV/mlI is the
absolute upper limit for the permissible in CRGP values of o. Correspondingly, the value

dmin_ 9_7'(' 1/6 1 B 9_7'(' 1/6 (l)l/Q
<2 Omax  \ 2 m

is the lower limit for the spatial dimension of the packet. Next, since we consider just the
quasistable packets, c must be much larger than T' (or, more precisely, 0° > I'?).
Finally the combined range of applicability is given by

' < o?> < ml < m?.




Table: Maximum permissible values of o (omax = VmI'), the ratio
I'/omax = v/I'/m and minimum permissible effective dimensions

d™m ~ 1.55/+/mI in the CRGP approximation for some particles.

Particle

Omax (€V)

1.78 x 107!
2.01 x 103
1.88
3.25 x 10*
5.12
6.05 x 10*
2.53
1.09 x 103
1.73 x 103
1.61 x 10°
1.46 x 103
1.51 x 10°®
1.55 x 10°
2.64 x 107°
5.28 x 101
2.74 x 103

F/O-rnax

1.68 x 10~°
1.13 x 107°
1.35 x 1078
2.41 x 10~*
1.04 x 1078
1.22 x 1077
5.08 x 107°
5.82 x 1077
9.28 x 10~
8.18 x 10~
2.76 x 1077
2.86 x 1077
2.89 x 107”7
2.81 x 107
4.74 x 1077
1.87 x 1076

4™ (cm)

1.72 x 10~
1.53 x 1078
1.63 x 107°
0.94 x 107°
5.99 x 1076
5.07 x 1077
1.21 x 107°
2.82 x 1078
1.77 x 1078
1.91 x 1078
2.11 x 1078
2.03 x 1078
1.98 x 1078
1.16
5.81 x 1077
1.12 x 1078

The maximum permissible
deviation of the mean mass
of CRGP from the field mass,
dm =m — m, is equal to

2
3O-rnax

— 1.5T,

5mmax ~
2m

So, the correction to the
fleld mass of the short-
lived resonances can be
essential, but for the long-
lived particles we can (and
we must) to neglect the
weighting effect.



e The pep fusion
'HilH+e = 2%D 4+, (E, = 1.44 MeV)

accounts for about 0.25% of the deuterium created in the Sun in the pp chain. It has a
characteristic time scale ~ 10'? yr that is larger than the age of the Universe. So it is
insignificant in the Sun as far as energy generation is concerned. Enough pep fusions happen
to produce a detectable number of neutrinos in Ga-Ge detectors. Hence the reaction must be
accounted for by those interested in the solar neutrino problem.

(a) (b) (c)

p o D T D g ’D
W Wt W
e e e
2 v, 2
e e VZ»
Wt wt A
e — — V. [ — e~
Ga '@ TGe Tq ! g

The Figure illustrates the detection of pep neutrinos with gallium (a) and electron (b,c)
targets. Unfortunately, the current detection thresholds for electrons in SK and SNO is higher
then the expected maximum of 1.44 MeV.



e The pe3 decay
B —e +Vetvy,

in the source can be detected
through quasielastic scattering with
production of e, u*, or 7T
of course, only p* production is
permitted in SM. The diagrams
(a) and (b) are for both Dirac
and Majorana (anti)neutrinos, while
diagrams (c) and (d) are only for
Majorana neutrinos.

In the Majorana case, the diagrams
(a), (d) and (b), (c) interfere.
Potentially this provides a way for
distinguishing between the Dirac and
Majorana cases. Unfortunately, the
diagrams (c) and (d) are suppressed
by a factor occ m;/FE., .

Dirac or Majorana

Majorana

Similar diagrams can be drawn for 7.3 and 7,3 decays.

T+




We will deal with the generic Feynman diagrams. ©

e The external legs correspond to asymptotically
free incoming (“in”) and outgoing (“out”) WPs in
the coordinate representation. Here and below: I
(F%) is the set of in (out) packets in the block X
(“source”), I (Fy) is the set of in (out) packets
in the block X, (“detector”).

e The internal line denotes the causal Green's
function of the neutrino mass eigenfield v;
(i =1,2,3,...). The blocks X and X, are
assumed to be macroscopically separated in
space-time.

x

4

-
—_—— Xd —_—
——

k

e For narrow WPs, the Feynman rules in the formalism are to be modified in a trivial way:
for each external line, the standard (plain-wave) factor must be multiplied by

{ e_ipa(xa_x)wa (pa; Ta

e+ipb(xb_x)zp§ (Pv, xp —x) for b€ Fs®Fy,

—x) for a € I[,®14,

(32)

where each function .. (p.., ) (3¢ = a,b) is specified by the mass m.. and momentum

spread o,..

e The internal lines and loops remain unchanged.



The additional factors (32) provide the following two common multipliers in the integrand of
the scattering amplitude [we will call these the overlap integrals]:

Vs(q) — /daj€+iqm 11 e—ipamawa (pa,wa . Zl}) eipbzcb,(p; (pb,xb _ ZIJ)],

acElg bEF,

_ - (33)

Va(q) = /dxe_iqx e P 4o (Pa, Ta — T) [ ey (py, T — ) ]

_CLGId ) _bEFd

The function V (V) characterizes the 4D overlap of the “in” and “out” wave-packet states in
the source (detector) vertex, integrated over the infinite space-time volume,

In the plane-wave limit (o, — 0, V)
Vs(q) = (2m)*6 (g —gs) and  Va(q) — (2m)*6 (¢ + qa),

where gs and g, are the 4-momentum transfers defined by
gs= Y Pa— Y po and qg= > pPa— > Db
acElg beFg aEId bEFd

The 6 functions provide the energy-momentum conservation in the vertices s and d (that is in the
“subprocesses” Is — Fs + v and v’ + 15 — F}) and, as a result, — in the whole process:

aclsPly beFsPFy

Information about the space-time coordinates of the interacting packets is completely lost.




In the general case of nonzero spreads o,., we may expect no more than an approximate
conservation of energy and momentum and lack of any singularities.

To quantify this expectation, we apply the CRGP model. It is a good approximation since the
main contribution to the overlap integral comes from the very narrow space-time region of
intersection of the maxima of all wave packets (see schematic illustration).




We define the tensors

T o2 (uhul, — g"), [tse = Do/ = T (1, V0]

4

Veala) = [ doexp [i(Ear — guar) = 3 T2 (e~ ), (0~ 2, |,
»€S,D
where S = I,®Fs and D = 165 F;. It is useful to define the overlap tensors

RLY = ZT,’{W and RI7 = Z TE”.

»EeS »xeD

A crucial property:
2 2 2 2.2
TE zpxy = o3, [(usxx)” — 27 = 05,% (50 > 0
U
REG zpwy > 0.
Consequently, there exist the positive-definite tensors R** and 3%2“’ such that

Rea = IR = gRoa9, Rea = IR

The explicit form and properties of these tensors and relevant convolutions are established
(studied in detail for the most important reactions 1 — 2, 1 — 3, 2 — 2).



The overlap integrals in CRGP are the 4D Gaussian integrals in Minkowski space.

s ~
Ve.a(q) = (27)*05.q (qFqs.q) exp [~ Gs.a £ i (q¢Fgs.a) - Xs.dl,

~

_ _ 1~,.
5s,d(K) = (471‘) 2|%s,d| 1/2 exp <_Z§R§,dKHKV> 5

~ 1
_ E : pv pno pu'v v
65 d = (5%%/T% = T%M/ gRs,d T%’y’) Loep L' vy

)

2,01’

B MY A
Xs,d = %S,d T%,jx%)\.

_ - Y,

Physical meaning of gs,d, Ss.a, and X 4.

: .~ d y : :
e From the integral representation §, 4(K) = / e 33)4 exp (—RYY zpz, + iKx) it follows
7T )

that ,.4(K) — 6(K) in the plane-wave limit [0, — 0, Vs = 5%’;2 — 0].

— just the factors Ss (¢ — gs) and Sd (q + qa) are responsible for the approximate
energy—momentum conservation (with the accuracy governed by the momentum spreads
of the interacting packets) in the neutrino production and detection points.



e The functions exp (—&;) and exp (—&4) are the geometric suppression factors
conditioned by a partial overlap of the in and out WPs in the space-time regions
of their interaction in the source and detector.

This can be seen after converting G, 4 to the form?®

6s,d — ZTJ/:(LV (37% - AXVS,d),u (33% - Xs,d)y (34)

and taking into account that both G, 4 and X 4 are invariants under the group of uniform
rectilinear motions (here, 7., are arbitrary real time parameters)

0 ~0 0 .
{x%l—>x%:x%—|—7'%, m%l—>X%=w%+’U%T%}
Due to this symmetry, (34) can be rewritten as

Goa =y 0% [(F2-1) (02)" + 62| = > a2 L),

b) = (xg — XS,d) — | e (@ — X o a), v, /|vs|, for v, #0,
n, =
b= (. — Xs.a) — [ (e — Xs.0)] T, 0, for v,, = 0.

The 4-vector b,, = (b2, b,.) is a relativistic analog of the usual impact parameter, so it is
natural to call it the impact vector. [Note that |b..| = |n,. X (x,. — X;.4)| for v, #£ 0]

The 4-vectors X, 4 can be called, accordingly, the impact points.

?In this derivation we have used the translation invariance of the functions &, 4.



The suppression of the overlap integral caused by the factors exp(—&;) and exp(—&4) can be
small only if all the world tubes in the source/detector inter-cross each other.

time

Artistic view of the “classical world tubes” of interacting wave packets. The tubes reproduce
the space-time cylindrical volumes swept by the classically moving spheroids which represent
the wave-packet patterns. The impact point X is defined by the velocities v,, of the packets
and the space-time points Z,, = Z,.(7,) arbitrarily chosen on the axes of the tubes. The axes
do not necessarily cross the point X.

The interacting packets behave, bluntly speaking, like colliding interpenetrative cloudlets.



7.9.1 Asymptotic conditions.

Now we can elaborate the physical conditions at which the in and out packets can be
considered as free. If the geometric suppression factors are not too small (only such
configurations of the momenta and coordinates contribute to the observables) then the
condition of macroscopic separation of the interaction regions in S n D is equivalent to the
macroscopic separation of the impact points X, 4. We'll hold that the intervals X — X7 and
X4 — X;| are large in comparison with |29, — 22,| and |x,. — x,./| for s, 5/ €S and s, 3/ €D.
Under such assumptions the packets certainly do not overlap = the sought conditions for the
packets in S and D must be independent.

We assume that the dimensions of the packets are large in comparison with the
interaction radius in the corresponding vertex of the diagram. Therefore our analysis will be
based exclusively on the properties of the geometric suppression factors exp (—65@) which
do not depend on the dynamics and do not appellate to the energy-momentum conservation.

1. First of all it is necessary to demand that the time intervals X| ; — z) (a € I 4) and

Ty — Xg,d (b € Fs q) are sufficiently large. They however cannot be arbitrarily large since the

packets s remain stable (do not spread) during the time ‘Xg,d — xi‘ only under the condition
‘Xg,(;) — 2209 |2 < mljos, ¥x€S,D. (35)

Since &5 and &4 do not depend from XS,(J) and 227 it is permissible to demand that the
left part of Eq. (35) is larg in comparison with the squared effective size of the packet that is

X209 209 > 1/02. (36)



Inequalities (36) do not contradict the stationarity condition since 02 < m2. If, in addition, s is an
unstable particle then one can expect that

0(sc 0(se
[X00) — 2 [~ e =1 (37)
The conditions (36) and (37) do not contradict to each other if 0272 >> 1; the latter is one of the
conditions of applicability of the CRGP approximation, the full set of which is

1/7'}2f<<ai<<m%/7'%<<mi. (38)

Since for all known long-lived elementary particles m . 7,, >> 1, the allowed values of the parameters
0, can vary in rather wide limits.

Thus the relativistic-invariant conditions for the time
parameters x¥ is fully consistent with the range of
applicability of the CRGP approximation (38), has the

form (36) and the correct time sequence in LF is given by
xg < Xg,d < xg (a S Is,d: b e Fs,d)' (39)

These inequalities are Lorentz invariant if the points
Zqp and X, 4 are separated by the time-like intervals.
If otherwise for some s the intervals (z,. — X, 4)2 are
space-like the inequalities (39) have sense only in LF.

This instance must be taken into account since the packet
(e.g., a € I5) can participate in the interaction even if
(rq — X5)2 < 0, but under the condition that the points

inside a part of its effective volume are separated with the impact point by a time-like interval because

the latter can come to be inside the classical world tube of the packet a.



From the geometric considerations it can be proved that for such events 0 < |b%| < d /2 Therefore
o2|bs|? < 0.605 and exp(—o2|b%|?) > 0.546.

Clearly there the micro-causality is not violated here since all “signals” propagate strictly inside the light
cones. However, in principle, the interactions of such kind would lead to observable effect which imitate
the causality violation.

2. The conditions of spatial remoteness of the packets from the impact points are not in general
necessary. Indeed, some packets (e.g., decaying meson or secondary charged lepton in the source, a
target nucleus in the detector, etc.) can be at rest in LF before or after interaction. In this case they
must be spatially close to the corresponding impact points; otherwise the amplitude will be small due
to the smallness of the factors exp (—65@).

However, all the packets must be spatially separated from each other, that is the differences of the
spatial coordinates for each pair of the packets s, 5/ must be large in comparison with the dimensions
of these packets. The simplest reference frame to formulate this condition is the CIF of the pair.

Since the packet momenta in CIF are collinear (p;, = —p}, = n.|p},|) and the only case is interesting

when the classical impact parameter !n* X (xj; — x*,)‘ is not larger than the transversal sizes of the
r

packets, the distance between the packets must be large in comparison with these dimensions.
1

(05, T%)* - (0,00 F;,)Q ' (40)

xt < [? >

It is not a simple matter to prove that these conditions do not contradict the conditions

!Xiig — ng%) |2 <m?/ol. (41)



As a practically important example,
we consider the charged-current induced
production of charged leptons ¢ and U
(0o, = €, u, T) in the process

L&l — FL+ 05 @ Fy+65,  (42)

We assume for definiteness that all the
external substates I, Iy, F., and I
consist exclusively of (asymptotically free)
hadronic WPs. Consequently, if « # (3, the
process (42) violates the lepton numbers
L, and Lg that is only possible via
exchange of massive neutrinos (no matter
whether they are Dirac or Majorana
particles).

In the Ilowest nonvanishing order in
electroweak interactions, the process (42)
is described by the sum of the diagrams
shown in the figure.

- - )
1{—’—’[ X, ] B }Fs'
N }Fs
W
___________ i A
I/j
_________ \. ls
W
Ay '
[d{_,5 X4 ; }Fé
—_— : ! e J

A macroscopic Feynman diagram describing the
flavor-violating process (42).

The impact points X and X, in the figureare macroscopically separated and the asymptotic

conditions are assumed to be fulfilled.



1. Quark-lepton blocks. We use the Standard Model (SM) phenomenologically extended by
inclusion of a neutrino mass term. The quark-lepton blocks are described by the Lagrangian

Lu (@) = = 5= @)W (@) + jo (@)W (@) + Hel
where g is the SU(2) coupling constant, j, and j, are the weak charged currents:

ji (@) = Z Vai T (2) O la(x),  ji(@) =Y Ve 7(2)0"d (), [0" =~"(1—s)].

Here Vi (a = e, p, 71 =1,2,3) and V, (¢ = u,c,t; ¢ = d, s,b) are the elements of the
neutrino and quark mixing matrices (V' and V', respectively).
The normalized amplitude is given by the 4th order of the perturbation theory in g:

Apo= (out|S|in) ({in|in) <0ut|out>)_1/2

B ) ' ro i (o .
=V (2—\/5) (Fs@Fd|T/ dada’ dydy’ : jo(x)W () <2 jo (YW (') :

< LW () 2 G YWY) « Sul L la). (43)
The normalization factor A in the CRGP approximation is given by
N? = (in|in)(out|out) = 1] 2F,.V..(p.,).

%els@ld@Fs@Fd



2. Hadronic blocks. The strong and (possibly) electromagnetic interactions responsible for
nonperturbative processes of fragmentation and hadronization are described by the hadronic
(QCD) interaction Lagrangian Ly, (z) and the corresponding part of the full S-matrix is

Sk = exp [i/dzﬁh(z)].
The following factorization theorem can be proved
(FLOFAIT |: 5 (@) Sn: i (v) o] [L@la) = T (ps) T} (p)

X[ 11 e—ipama¢a(pa’$a o x)} [ 11 eipbmbwl;k(pb’xb _ ZE)}
acls bEF!

> |: 11 e—ipal’aq?ba(pa,xa . y)i| |:
aGId

I] ezpbmb¢g (pb7 Tp — y)} )
beEF)
Here Js(ps) and Ja(pp) are the c-number hadronic currents in which the strong interactions

are taken into account nonperturbatively, and ps and pp denote the sets of the momentum
and spin variables of the hadronic states.

The proof is based on the assumed narrowness of the WPs in the momentum space, macroscopic
remoteness of the interaction regions in the source and detector vertices, and the consideration of

translation invariance.

The explicit form of the hadronic currents 75 and 74 is not needed for our purposes.



Now, by applying Wick's theorem, factorization theorem, and the known properties of the
leptonic WPs, the amplitude (43) can be rewritten in the following way:

4 Y A 4 *
Ao = i Vi WD) O GLLY (B ) Ore )TV (49
-V/ / d V/ . /
G " ({p..,zx}) = / (2:)4Vd(Q)AV (¢ —ps)A7(q)AL (¢ +pa)Vs(q). (45)

Here V. (q) and V4(q) are the overlap integrals; A7 and A, are the propagators of,
respectively, the massive neutrino v; and W boson.?

) . qA—ij

A (q) = = . 47
@)= 5w > —m2 £ i0 (47)
3The bare W boson propagator has the form
— k. k 2
Aoy (k) = —i v = Kk /iy (46)

k:Q—m%V—Fz'O

However, the explicit form of A, is not used below. So A,, can be thought of as the renormalized
propagator.



At large spatial distances between the impact points X and Xy, the integral (45) can be
evaluated by means of the Grimus-Stockinger (GS) theorem.?

Let F'(q) be a thrice continuously differentiable function such that F itself and its 1st and
2nd derivatives decrease not slowly than |g|™* as |g| — co. Then in the asymptotic limit
of L = |L| — oo,

dq gp(q)eiqL —QS (fE/L) exp (z\/EL) +O (L_3/2> for s > 0,
~ s
(2m)3 s —q? +10

O (L_Q) for s < 0.

Taking into account the definition (45), implicit form of the overlap integrals and neutrino
propagator (47) we conclude that in our case

L=Xy—-X,, T=X0-X° s=q¢-m’

'K

The integrand in (45) satisfies the formulated requirements.

aW. Grimus and P. Stockinger, Real oscillations of virtual neutrinos, Phys. Rev. D 54 (1996) 3414
[arXiv:hep-ph/9603430].



The function corresponding the function ®(q) in the GS theorem is, up to an inessential
(¢ independent) multiplier®,
0s (a4 = a5) 04 (q+ qa) Avur (g = Pp)(d + M) Aru(q + Pa), (48)

The first requirement of the theorem can be formally violated by the poles in the bare W
propagators (46). In order to exclude this small trouble, we will use instead of (46) the
renormalized propagator which has no singularity in the resonance region.

The simplest recipe consists in the standard substitution m%v — m%v —imw 'y, in the
denominator of the bare propagator (46); I'yy is the full width of the W boson.

Since the functions J, (¢ — qs) and 54 (q + qq) decay faster that any power of |q| ™' as
|q| — oo, we conclude that the function (48) satisfies the conditions of the GS theorem. As a
result, in the leading order in 1/L the function (45) behaves as

—6—106 oo
J _ € —i(@T—=a1L)S (. A NS (.
wapxu ({Pss T }) = ’n2l, /_oo dqoe (40 ! )55 (g5 — gs) 0a (g5 + qa) (49)

XAy (g5 —pp) (@5 +my) Apur(qi + pa),

where

q; = (q07qj>7 q; = Q(Q) - m? 17 1 = L/L7 S = 63 + 6d7 and 8 — qus + Xde-

2 We have to note that the term in Eq. (48) proportional to the neutrino mass m; does not contribute
to the amplitude due to the matrix multipliers or' nov.



7.12.1 Integration in q.

Since the factors ds (¢; — ¢s) and 04 (g; + ga) under the integral sign in the right-hand part of
Eq. (49) have, as the functions of gy, very sharp maxima close to each other, the integral is
saturated by the narrow vicinity of these maxima. So it cam be estimated by the standard
saddle-point technique. All calculations will be performed within the CRGP model. According
the the definition of the “smeared” & functions,

~ ~ 1 1
3 (01— 0:) 52 a5 + 00) = 0 |~ F5(an)|

exp
(47)% /1R [Ral

Fji(qo) = R (q5 — ¢s),, (a5 — as), + RE” (@5 + qa), (45 + qa4),-

We denote
FO - %ISUJQSMQSU + %gUQdMQdup Y'u — gﬁqusy - §f]:vequdl/7 RMV — 'S}VEI;U + ﬁgv, (50)

and rewrite Fj(qo) in the following form:

Fj(qo) = Fo — 2Y,q} + Ruuqjq; - (51)
The extremum of this function is given by
dF; 2
(B0) 2 Rglay] — (R) (a0 — lay])? — Yolay | + (YDao] =0, (52)

dqo B |Qj|



where

R = R"I,l, = Roo — 2(RI) + Z,
X = Rpnliln,
R = (Ro1, Roz2, Ro3), (53)
Y = (Y1,Y2,Y3),
l=(1,1, 1=L/L.

Here and be below we suppose conventional summation on repeating Latin indices
(k,n =1,2,3). The root of Eq. (52), g0 = E;, will be the saddle point, if the 2nd derivative

d%q) — R4 <qTq;|:qu‘> [(R1) (g0 +2/ay]) (q0 — ay]) — (Y1) (@0 + |a;)]  (54a)

is positive in this point. Let's define

v; =lq;|/q0 and I =qo/m;
Then Eq. (54a) can be rewritten in the following form:
d°F; 2
4 Fila0) _ gy - |(RI) (14 20;) (1 — ;) —

dq? VS

(YD)
m; Ff’ -

(546)

The straightforward method of the exact solution of Eq. (52) in the general case is described
in Appendix 18. Here we only consider the most interesting ultrarelativistic case, for which one
can obtain comparatively simple approximate solutions. The nonrelativistic case is described in
Appendix 19.



7.12.2 Ultrarelativistic case.

Let's consider the following configurations of the external momenta:
0 0
s ~ —qa ~ |as| ~ |aal. (55)

This particular case is realized in all (without exceptions) modern neutrino experiments and
thus is the most interesting.

PW, limit: In the plane-wave limit (o,. = 0, V) and for a massless neutrino (m; = 0) the
exact energy-momentum conservation in each vertex of the diagram requires the strict
equalities

¢ =—q1, qs=—qa=qsl, 1=L/L.
So, according to Egs. (50) and (53), the root of Eq. (52) is

Yo— (YD) _ o

go = lim qs - (56)

0,.=0, Vs R
It is nothing else than the energy of the real massless neutrino. Therefore
0 0 0 0 2
QjZQSl:(QS7q.S]'>:(qS?qS>7 q; = 0.
Below, we'll call this special case the “PWj limit".

The PWy limit suggests us the way of finding the saddle point in the general (ultrarelativistic)
case.



General UR case: In the general case, o,. # 0, under the conditions (55) and natural
assumption that m; < min(q?, —¢)) [where the minimization is performed on the set of the
most probable external momenta in S and D, defined by the given experimental conditions] the
solution (52) can be found as a series in powers of the small dimensionless parameter

2 2
ri =mj/(2E}). (57)
In Eq. (57) E. is the “representative” energy of virtual neutrino:

E, = (YIl)/R (v is not the Lorentz index!) (58)

which coincides with the energy transfer ¢¥ in the PWq limit and close to it in magnitude at
sufficiently small ... Due to Eq. (58), E, is a rotation-invariant function of momenta, masses,
and momentum spreads of all external wave packets. Due to the approximate
energy-momentum conservation this value is nonnegative and transformed (approximately) as
a zero component of a 4-momentum.

Now we can seek qo and |q;| = /g0 — m? as the power series

qOEEj:EV <1— E Cfr?), |qj|EPj:EV <1— E C;:T;I> (59)
n=1 n=1
It is convenient to rewrite Eq. (52) in the form

qolay| —m (g0 — la;|)* = Eu [(n + 1)|a;| — ngo] = 0, (60)



where we introduced two rotation-invariant dimensionless functions

_ (YD) _ (R1)
n—m and m—T.

From Eq. (60) it follows that the coefficients C} and C}’, ¥n > 1 are expressed only through
these two functions. The coefficients can be found by the standard recurrent procedure. The
firs three pairs are

CF =n,

CF—nfomy?

2 = n n—|—§ —m, (61)
C¥=n (7112 + 9n + g) — (bn + 2)m;

Cr =n+1,

P 1

Cy =(n+1) (Qn—i— 5)—111, (62)
Cs = (n+1) (7n2+5n—|—%> — (bn 4+ 3)m.

The quantities F/; and p; = P;1 can be naturally treated as effective (or most probable)
energy and 3-momentum of the virtual massive neutrino v;.



Then the effective neutrino velocity is v; = v;l = p;/Fj;
1 1
vi=1—7; — (2u—|— 5) re — (7112 + 5n + 5 —2m) i+ O (r}). (63)

As it could be expected,
0<1l—-v; K1,
that is the neutrino is ultrarelativistic.
Considering that
R=R"I,, =3§E,°, (64)

where

§=[R"q.q],—p,, >0, (65)
we conclude that the 2nd derivative (54) is positive in the point go = F; and thus the function
F;(qo) has the absolute minimum in this point.

The quantities F;, p;, and v; are unambiguously defined by the most probable momenta p..,
masses m,., and momentum spreads o,. of the external packets in S and D.

It will be demonstrated that the functions n and m can vary within orders of magnitude in
different kinematic regions of the reaction (42). Hence the smallness of the parameter r; does
not yet ensure that that the corrections ~ " with n > 2 in Eqs. (59) and (63) are small in the
whole phase space of the reaction. Now we'l just assume that

n|r; <1 and |m|r; < |n|, Vj. (66)



A summary: The integral over go has been evaluated by the regular saddle-point method.
In the ultrarelativistic approximation (¢% ~ —q > m;, j = 1,2, 3) the stationary saddle point
qo = E; was found as a series in powers of the small parameter r; = m>/(2E}) ~ I'7 /2.

The NLO result reads

r

qo

|qj|QO:Ej

i)
E

i 1
Evjzl—rj—<2n+§)r?+(9("“?)a EJQ— j m
J

= E; =E, [1—nrj—mrj2-+(’)(r?)],

= /7 = /3y [1—(n—|—1)rj—(n—|—m+%>r —|—O ]

Yl 3 1 non non
—, = — 2 - ( s ) ln)
v m n<2+ n>+Rn1223 K. + Ry
V= R~ R qa, R= (R R Ll
Yl L

E,=— 1=(0, Il==2, L=X4—X..
R (1) L ¢

The quantities F;, P; = P;1 and v; = v,1 can naturally be treated as, respectively, the
effective energy, momentum and velocity of the virtual neutrino v;.

@

The ultrarelativistic approximation is, of course, reference-frame dependent.
That is why the obtained result is not explicitly Lorentz-invariant.




In the limit of m; = 0 and assuming the exact energy-momentum conservation,

E;=P;=FE, =q, = —q.

But, in the general case, the effective neutrino 4-momentum p; = (Ej, p;) is determined by
the mean momenta and momentum spreads of the external WPs involved in the process (42).

corrections are needed to define properly the range of applicability of the obtained result.

Below, we'll limit ourselves to the 1st order of the expansion in 7;. However, the next-order

Finally, by introducing the notation
—~ 2
2;(T,L) =i (E;T — P;L) + 2 (@j/Pj) (P;T — E;L)*,
O =X.qs +Xaqa, L=|Xa—X|, T=Xj—X,

5 _o. <1+ SirjE,%@?L)”Q o _ Lt
J J PJB ) J \/ﬁ )

we arrive at the saddle-point estimate of the function (45):

~

i(2m)3/2L

Gt =AY (pj —pp) (B +mi)AL (p; + pa)[Va(pi)Vs(p))]

This formula can be (and must be) somewhat simplified by putting r; = 0 everywhere
wherever it is not a factor multiplying L or T (whose values can be arbitrary large).

Somewhere the 4-vector p; is replaced by the light-cone 4-vector p, = (E,,p,) = FE.L.

(67)



Now, by applying the identity
P_puPy = Pou_(p,)T-(p,)Ps, Pi=5(1%7%),
where u_(p,,) is the Dirac bispinor for the LH massless v, we define the matrix elements
M, = (¢°/8)T—(p,) T A (b + pa) Owrulp) (I = Fl 4 €5 +v)
Mg = (9°/8)B(ps) O AL (b — ) T4 u(p,) (v +La = Fy+L5),

These describe the reactions with production and absorption of a real massless neutrino v.

The final expression for the amplitude (44) is

M M
i(2m)3/2N'L

Age = N D[V (ps)Valps)| Vi Vg e~ % TEI7€. (68)
J

e The form of eq. (68) suggests that it is common for essentially any class of macrodiagrams,
with exchange of virtual neutrinos between the source and detector, until we do not specify the
explicit form of the matrix elements M and M.

e To obtain similar answer for the macrodiagrams with an exchange of virtual antineutrinos,
one has to replace (besides the matrix elements) V — VT,



®a3zoBasi pyHkuns (144) MoxkeT BbITb TOXXAECTBEHHO MepenucaHa B nMpubanxeHHo®

JIOPEHL-VIHBAapUaHTHO dpopme:

N2
29
EZ

Q2;(T, L) =i(p; X) + [(p; X)* —m; X7,

J

rae X = X4 — X,. Paccmotpum cnegytownii dpaktop B amnantyge (146):

i (p); u-(py) R T (py) e ()

—e
L
[MpenHebperas Imfiv)? 3TOT PakTOp MOXXHO 3anncaTb B BUAE NPOU3BEAEHUS
—17J j
[ Xa — Xs| Wk, (P, Xa — X)W, (Py, Xs — Xa),
B KOTOPOM

Wos0) = o0 {-itos0) - 22 (30 ~ mia?] b ().

D2

W ps.2) = [0 )] 20 =1 05) xp {ips0) - 2 [(030)* = mda?] .

2@yHkuymns D/, nHBapnaHTHa C TOYHOCTBIO 4O MOMPaBOK O(t?).

(69)

(70)



CpaBHuBas crnivHopHyto pyHkumto Py, (p;, ) ¢ BONHOBOU pyHKUME PepMUOHHOro nakeTa
obwero sBuga B npubnavxerun CPITI

2
o

___—ipx _ . 2 2 2
by (P, s,7) = e” " us(p)Y(p — y) = us(p) exp | —ilpy) — —5 [(px)” —m"a”] o,
BUAUM, YTO CMUHOPHYIO PYHKLNIO LI)?Xd(pj,XS — X4) MOXHO VHTEPMNpPEeTNPOBaTh Kak
BOJIHOBYIO (PYHKLMIO B Z-NPeACTaBEHNI, OMUCBLIBAIOLLYIO BXO4SLUMI BOHOBOW MakeT
peasibHOro MacC/BHOIO HEiTPUHO V;, POJib MapaMeTpa o B KOTOPOW UrpaeT BeN4YUHA
Ej EV

O = — I = — ~
I mji My

o o —J
BTopoii cnuHopHelii comtoxutens B (70), Uy (pj, Xa — Xs)/|Xa — X, ecTecTsenHo
NHTEPMNPETNPOBATb KaK BbIXOASLYYH U3 UCTOYHMKA COEPUYECKYIO BOJIHY HEWTPUHO Ha
pacctosinum | Xy — X;| oT Toukn poxgeHus Xs.

MNockonbky ”}5j — KOMMEKCHO3HaYHas dyHKkuus, dakTopusauns suga (70) B obwem cnyqae
CTaHOBUTCA HeBO3MOXXHOW. COOTBETCTBYIOLWLYIO NOMPaBKY, NPEeACTaBASOWYIO OYEBUAHbIN
NHTEPeC ANSA HEliTPUHHON acTPodU3NKN, MOXKHO NHTEPNPETUPOBATh Kak pe3ynbTaT
cBoeobpaszHoli NHTepdepeHUnN pacnbIBAOWMXCA in- 1 out-nakeToB HelTpuHo. [lonpaska
CTaHOBUTCS CYLLIECTBEHHON NpW o4YeHb bonblimnx paccTosHmax L v npusoanT K obemy
nogassieHnto amnanTyasl (44) n K MogndrKauny oCLNIISLNOHHBIX PaKTOPOB

ox exp [ilm$2; (T, L)]. JetancHoe nsyyeHne aTux 3¢pdeKTOB BO3MOXKHO TOJIbKO MOCPEACTBOM
aHanun3a HabnogaemMbix BennyuH (Takux, Kak CKOpPOCTb cyeTa cobbiThii AaHHOrO Tuna B
YCTaHOBKE), KOTOPbIE MOJYYalOTCS MOC/E HAANEXALLErO YCPEAHEHUSI KBagpaTa MOZY/s
aMMINTyAbl MO BCEM HEM3MEPSIEMbIM MEPEMEHHbBIM, OT KOTOPbIX 3aBMcuT amnantyga (44).



Takoe ycpeaHeHune 3aBUCKT OT CTaTUCTUYECKUX pacnpegeneruii (B bonee obliem cryvae — ot
KWHETUKM) aHCaMbell in-nakeToB 1 OT MPoLEeaypbl 4ETEKTMPOBAHNS. 34ECh Mbl OFPaHNYUMCS
ciy4aem, Korga aTumu scpdpektTamu MoxkHO npeHebpedb. Vicnonesys (143) v (145) 3anuwem:

10° / m; \2 (1T3B L
ST (1 38) ( E, )(104 KM>' (71)

Otciopa BUgHO, 410 t; < 1 ANst BCEX COBPEMEHHbIX SKCMEPUMEHTOB C
peakTopHbiMu (£, > 1 M3B, L < 10° km),
yckopuTtensHeimn (E, > 100 M3B, L < 10° km) u
aTmocdepHbiMu (E£, > 100 MsB, L < 1.3 x 10* km) (aHTun)HeiiTpuHo

npu ycnosuu, 4to m; < 1 3B u F > 107. Mbl ybegumcs Ha TUNUYHBIX NPUMEPAX, HTO MpU
BbINOJIHEHMN ycnoBuii npumerumocty mogenn CPIT ycnosne § > 107 BbinonusieTcs “c
bonbwunm 3anacom’. lNpu atom D2 ~ @? ~ D? u, cnegoBaTenbHO,

i D2 1 1

~Y

m? ~ EZ  2E2R 2§

(72)

OTcroma, € y4eTOM MPUHATBIX HAMW YCAOBUY Y30CTW BHELLIHMX MAKETOB B MMMYJbCHOM
NPOCTPaHCTBE, 02 < M2, aBTOMATNYECKN CAEAYET, YTO ai/m? < 107" n 0?L2 < mf/o?

(ycnoBue ctabunbHocTy nakera).

HeonpeneneHHOCTV SHEPruy 1 KOMMOHEHT UMMYJIbCA Y/IbTPAPENATNBUCTCKOrO BOJIHOBOIO
naketa B npubauvxkerun CPIT1 ectb

§Ep ~ |0p| = |6p| ~ V2In2[po, [0pi]|~2VIn20 (dpyxp=0, dpL-p=0).



T.0. cooTBeTCTBYIOWINE HEONPEAENEHHOCTN A1 YIbTPAPENSATUBUCTCKOrO HEMTPUHHOIO NakeTa
pPaBHbI

SE; ~ |0p;| ~ |6p;| = 2VIn2D, [dp;.|~2V2In29/I; < [6p,l,

T.e., PyHKUMa D, 3aBuCsLLAs OT MAcC, NMMYJbCOB N Pa3Ma30K UMMYJbCOB BHELIHUX in- 1
Out-MakeToB, XapaKTePN3yeT HEONPEAENEHHOCTb SHepruy HeliTpuHo, a 1/® onpegensiet (c
TOYHOCTbIO 4O YUCJIOBOrO MHOXMTENSI MOPsAKa eAnHULbl) 3¢pdeKTUBHbIT pa3mMep
HeATPMHHOIrO BOJIHOBOrO MakeTa MonepeYHblii K UMNYNbCy Pj.

HarnsgHbeim obpa3om BOSIHOBOro nakeTa y/ibTPapensiTUBNCTCKOrO HEMTPUHHO MOXKET CNY>XXUTb
OrPOMHBIN, HO Ype3BblHallHO TOHKNI ANCK, OTHOLLUEHME MONePEeYHOro N NpogoJIbHOro pa3mMepoB
KoToporo paBHo [; > 1. OTHocuTenbHas HeONpPeaeNeHHOCTb SHEPTUN N NMMNYAbCA HEATPUHO

5Ej/Ej ~ 5PJ/PJ N@/Eu ~ 1/\/§

BCeraa o4eHb Majla U He 3aBUCUT OT BHEPrum U Maccbl HelnTpuHo. imeHHo B 3TOM cMmbicne
cnefyeT NOHUMaTb CTaHAAPTHOE KBAHTOBOMEXaHWYECKOE MPEeAnONOXKEHNE O TOM, YTO
COCTOSIHVSI HEMTPUHO C OnpegeneHHbIMU Maccamu |v;) (@ cnepgoBaTesnibHO 1 COCTOSIHMS C
onpegeneHHbiMu deliBopamm |V, )) obnagatoT onpegeneHHbIMM 4-rMnynibcamum,

Kak n Bcsikuii CPIT1, HeMTpUHHbBIA BOSIHOBOW NakeT B CPeAHEM ABUXKETCS MO ' KJIaCCUYECKOW
TpaekTopun” L; = v,;T’, KBaHTOBbIE OTKJIOHEHUS1 OT KOTOpPOIA, dL;, nogaBneHbl pakTOpOM

exp {—207 [(0L;)?/ I + (LSL;)* /L?] }.

N3-3a manoctn sennymHel @2/Fj2 ~ m?/g nonepeYHble OTKJIOHEHUS MOTYT ObITb
MaKpoCKonunyeckmn Besnnky (6eckoHe4HO Benuku B cnyyae be3maccoBOro HeATPUHO).



Ntak, mbl ybegunnce, 4to 3dbdbeKTUBHbBIA BOSHOBOW NAKET Y/bTPaAPESATUBUCTCKOrO HEMTPUHO
BocnpounssogunT Bce ceolictea CPIT1 obwero Buga, ¢ Toli ANWb CyLWECTBEHHOW OrOBOPKOWM, 4TO
napamMeTp o; 3aBUCUT, BOODLLe roBopsi, OT UMMy/bCOB (a TakXe MacC U AUCNepPCUii
MMMYJIbCOB) BCEX BHELUHVX MaKeTOB.

3aecb HEOBXOANMO OTMETUTL, YTO 3Ta 3aBUCUMOCTb OTHIOAb HE SABASIETCA cneunduyecknm
CBOWCTBOM HETPUHO NN KOBapMaHTHOro popMannamMa, NOCKOJIbKY BOJTHOBOW MakKeT,
onuncbiBalOLWNIA COCTOsSAHME 1060/ MaCCUBHOI YacTuLbl AOJSXKEH 3aBUCETb OT MMMYJIbCOB
4acTuL, Y4aCTBOBAaBLUMX KaK B ee obpa3oBaHUM Tak 1, BoobLle roBopsi, NOrJoLWeHUn, a
MNCNOJIb30BaHHOE HaMK COrJialleHne o,, = const sBnsieTcs He bosiee yem Npuban>keHnemMm,
NPUHATBLIM AJ1S1 YPOLLEHNS TEOPUN.

Hu>ke Mbl BEpHEMCA K 5TOMY BOMPOCY MNPV PacCMOTPEHUMN MpoLiecca ABYXHaCTUYHOro pacnaga
a — EV;‘ B NCTOYHUKE.



It can be shown that
Vaa(p)? = (27)*65,a(pvFgs,a)Vs,a, (73)

where &5 ¢ are the “smeared” § functions (analogous to the functions gs,d) and V 4 are the
effective 4D overlap volumes of the external packets in the source and detector;

5a(K) = (2m) 2 [Raa| 2 ex (“?RZZK K) (74)
Sd—/dle 1] 1= @,z — o) :%\ Real~'/? exp (—26..4). (75)
»€S,D
U
Agal? = ~(2m)*6s(py — qs)Vs|Ms|? (2m)*6a(pr + qa) Va|Ma)?
- [1,.cs2E.V.. [L.cp2E.V..
D2 —0.(T,L)—-6; |2 (76)
><(27T)—3LQ zj:vajvﬂje o ’

Here

m;l [Roo% — (Rl)2] .
ARE? ’

@j ~ (77)

see Appendix 21 for details.



Equation (76) defines the microscopic probability dependent on the mean momenta p_, initial
coordinates x,,, masses m,., and parameters o,. of all external wave packets participated in the
reaction. By using the explicit form of the functions d5 4 and ©, one can prove the following

approximate relation:
27085 (pv — qs) a (pv + qa) F(pv) = /dEL5s (pv — as) 6a (P + qa) F(pl,), (78)

where F'(p,) is an arbitrary slowly varying function and p,, = (E,,p)) = E,l. The relation is
valid with the same accuracy with which the amplitude (68) itself has been deduced that is,
with the accuracy of the saddle-point method. With help of (78) the squared amplitude (76)

transforms to

s

A2 :/ g () 0s(py — qs)Vs|M|® (2m)*0a(py + qa)Va|Mal”
[I.cs2E:Vs [1.cp2E: V..

£y « oy _o. |2
> VoV e 4705
j

(79)

X/ (2n )P L2

The expressions (76) and (79) are equivalent within the adopted accuracy, but from (79) it is
apparent that the energy-momentum conservation is governed by the factors ds(p, — gs) and
dq(pv + qq) which, at sufficiently small o,,, could be substituted by the usual ¢ functions.

The probability (79) is the most general result of this work. However, it is too general to be
directly applied to the contemporary neutrino oscillation experiments.



7.16.1 General formulas for %t."; and ﬁg’é

Consider the general properties of the tensors

sd_ZT'uV

Z o2 (ubu
»

The explicit form of the matrices R 4 reads

rz—1
2 — 1 3 Uzl
Rs.a = g o,
— 1 3 U2
P
2 U3
Vo
2 —Us1
= (0.I%)
— U2
2
—V53

Wil —d 3 U2
1+ uil Uzl U2
U2 U1 14+ uig
U3 U1 Use3U 2

— U,

1 — iy — vl
V32VU31
V33VUs1

V3c1U;2
1-— Uig
V33V;2

L) and R = (RD)

Uzl U3

U32U53
2

1 —|— U,.3

W33
—Us2 —Us3
V3c1U53
2
— U1 V3:2U53
2 2
I — v — v

As above, the index s ranges over the sets of initial (5 4) and final (Fs ;) one-packet states;
Us; and v, (0 = 1,2,3) are the components of the vectors u,. = p../m.. and v.., respectively

(Usei = I5:05e). Clearly, |15 | =

T.|v,. =0 = 0 while |Rs 4] > 0, as judged by strength of

positivity of the quadratic form R." x,2, and assuming that o,. > 0 for all »2. Moreover, all
principal minors of |R 4| are positive.



We will use the following notation:

2
E O'% —I—um, w = oous, g oo, Wi = E O UsejUsk. (80)
el

»

Here and below in this Section, the indices s and d are omitted for short. The spatial indices
denoted by i, j, k range over 1,2,3, and (if not stipulated otherwise) ¢ # j # k. With this
notation, the determinants of s and R, are given by

[Rs,

= w Hwi + 2w Hw@ —+ Z’U@'wi (in@- — Vjw; — U]gwk)

3 s (2500 = wws) = ofusen].

7

The matrices inverse to R 4 are straightforwardly (but not trivially) determined through the
adjuncts A", of | R, ql:

—1 —1
sd = [Rs.al ATl (82)

Q(g?d = Hwi — Zw?wi + QHwi,
Ay = ViwjWr — VjWEWE — VW w; + w; (Vjws + vrwr — viw;), (83)

i 2 2 2
Asg=w (ijk — wi) + 2wV vk — Vjwr — VipWwj,

Q[ikd — (Ujvk - sz‘) Wi + U; (ini —V;W; — Ukwk) + ww;jwkg.




The elements of the matrices R, and gﬁd are given by
= |Re,a| AL
s d - s,d s,d>
Where ~ . . ~ .. . .
Q(sd _9’[3 d» led :Q(sd - _Q(s ,d» Q(?,d :Qli?d :Q(?,d
The positive-definiteness of the quadratic forms ﬂ%g‘,dquqy provides a set of strict inequalities,
in particular,

~ ~n N\ 2 ~ .~ ~ . 2
RG>0, RORL - (R) >0, RPRE - (RE) >0 (84a)

The left parts of these inequalities correspond to the principal minors of the matrix 5 4
of the 1-st and 2-nd orders. It is assumed here that there is no summation in repeating
indices but, of course, the sums of the corresponding minors are also positive. One more
useful set of inequalities is

ww; > v?.

Similar inequalities are valid also for adjuncts 2A7"; and 22[“ (since |Rs.a| > 0), and for the

elements of the matrix ||R""|| = ||R™ 4+ R~ ||:
R, >0, RooRii — R(2)Z >0, RjjRir— R?k > 0. (84b)

These inequalities lead to important corollaries, in particular, to the positivity of the functions
% and m — ng — n3 which enter the amplitude.



Indeed, in the coordinate frame where the z axis is directed along the unit vector 1 we have
RooZ — (R1)? _ RooRs3s — R{,
R? (Roo — 2Ro3 + Ra3)?

Since these quantities are rotation invariant, from Eqgs. (84b) it follows that

2
%:R?,g, m-—1npg — Ny =

Z >0 and m—ng—ng > 0.

From the last inequality it is seen that

4R( no — 110) B m? [Roo% — (RI)Q}
AF? N ARE?

(see (150)). This leads to a suppression of the probability (79).

> 0.

@j"“

The functions n and m can be now constructed from the tensor components RO = R0 4 37321'
and 4-vector Y = Y, + Yy, where Y/ = R*¥q,, and Y= —3% Gdv -

Note that for computing the functions n and n we actually only need to know the inner
product Y1 = (Ys + Yy)l = E, R and zero-component Y° = Y0 + Ya?. Moreover, it is
sufficient to calculate these quantities in the PWg limit, in which the calculations are
essentially simplified.

From here on we will use the symbol [f] to indicate that the function f is calculated in the
PWjy limit. In these terms

Ys,al — %Z,ZQMZV B =F,' [[3?“ dQuquﬂ and Ys(zd — [[%giiq“ﬂ'

To illustrate the general formulas, we consider several examples important for applications.



7.16.2 Two-particle decay in the source.

Let us investigate the simplest process — the leptonic decay a— /v, in the source, where a is a
charged meson (7%, K=, DE,...), £is a charged lepton and v, denotes a virtual neutrino or
antineutrino. Forasmuch as such decays provide the main source of accelerator, atmospheric
and astrophysical neutrinos of high energies, we will study this example circumstantially.

Assuredly, the formulas of this section can be straightforwardly translated to any 2-body decay a—bvx,
for example, to an electron capture decay of relativistic ions (e.g., 149Pr®"+ — 140Ce®"+1,) in a
gedanken experiment capable of detecting the electron-capture neutrino interactions. With certain
stipulations, they can also be applied to the sequential processes of emission and resonant absorption
(by induced orbital e-capture) of M'ossbauerantineutrinos, e.g., SH — 3He + Ty, Usx + SHe — 3H).

Arbitrary momenta.

In the considered case, the determinant of the matrix 35 can readily be obtained from
Eq. (81) written in the rest frame of the meson wave packet:?

1Rs| = o2ogos|us|’. (85)

Here 05 = 07 + 0 and uy = pe/me = Iyvy.

aWe use the star superscript to denote the meson rest frame. The subscripts a and ¢ indicate the
corresponding particles and should not be confused with Lorentz indices. A similar index convention is
used in the subsequent text.



Since |Rs| is a Lorentz invariant, Eq. (85) can be transformed to the laboratory frame just by
substitution

\/(Egpa — Eap£)2 — |pa X Pe|2 \/(Va — Vg)2 — |vg X Vg|2
— (U’auﬁ)vaﬁa Vae = .
MaMy 1 —vgvy

lug| =

Here V,/ is the relative velocity of the meson and lepton in the lab. frame.

Notice that the kinematic variables in this formula are not in general constrained by the
energy-momentum conservation. By adopting that the virtual neutrino is on-mass-shell and
neglecting both the neutrino masses and the smearing of the meson and lepton momenta, one
may use the standard 2-particle kinematics, according to which

2 2 2 2
*| My — My d x| Mg — My
vi|=Va=—F—= and |u/|=—F—-".

mg + mj 2MmqMmy

In a little bit more complicated way one can calculate the adjuncts 215" defined by Egs. (83):

A = 03 [03 (0oL2 + 0L I7) + 0207 [ua x uel’],

A = 03 {0q [0alu + 07 Te(uaue)] wai + 07 [00 Ty + 0gTa(uaue)] wei },
AL = o3 {02 [Osum + Og(uaue)uez’] Uai + 07 [Uz?uﬂi + US(UCLW)“M} thes (86)
+oiof [(Feua — Fau£)2 — |ua ¥ uﬂﬂ }7

ngk - 05 [O—iuajuak + O—zluﬁjuﬂk: + U?LU?(UCLUE) (uajuﬂk: + uﬁjuak)] ) ] # k.

No kinematic constraints were imposed for derivation of these formulas.



Using Egs. (86) and taking into account Eq. (82), we obtain (for arbitrary q)

R quqy = \3? A5 + Z (—2912qu + Qlffqz-) g +2> Arqq
s j<k
AQ q2
— T 2.2 22 27 (87)

ozopoz|ui? o3
where we have defined the Lorentz-invariant function
Ay = [ag (U?LFCLQ + agﬂ?) + o020y (Tu, — FaUE)Q] %
—2{0g [0alu+ 0ilv(uaur)] waq + 07 [07 T2 + 0gLa(uate)] ueq} qo
+ ) [oaua: + ofug; + 20507 (ate)uaite] ¢

+2)  [oatiastiak + ooueiuok + 0a07 (uatie) (Uajtier + Uarue;)] ¢ k.
i<k

By applying the identities
(taq) (ueq) = Taltqo — [T (0eq) + Iz (1aq)] g0 + (uaq) (ueq),
(Waq) (ueq) = Y [(waigi) (weiqi) + (va;a;) (werar) + (wargr) (we;q;)];

i
we arrive at the compact formula for the function As:

Ay = 0, (uaq)® + 07 (ueq)” + 20507 (uatie) (uaq) (ueq). (88)



Now we can write out the 4-vector Ys; whose components are defined by

- 1 .
Yso = §Rqusu — [Q(OO (Ea - Ef) - Qloz (pa - pﬁ)z} )
| R
Yi= Rq., = 1 [Q[z'j (Pa —pe), — A° (B, — Eg)}.
S S |§RS| i

After elementary manipulations with Egs. (86), we arrive at the expression:

{22 15[ 15)

2
oy m; os

Even simpler:

1 ogfa Uffg
Ra) = i {225 )| (o) + [ 25 + )| (wre) |
PW() limit.
In the PW, limit (¢ — po — pe = pv = E,1, p2 = 0 in this instance) we have
E} oy
uaUE:—K, an:Erj, Ueq — ma b )
My mye
where ) ) ) )
gp="Te M g gy = Me T
2ma 2ma

are, respectively, the lepton and neutrino energies in the meson rest frame.

(89)



By applying the above relations to Egs. (88) and (87), we obtain

2 2
X uv my m,
H%? QMQV]] = o2 + h (90)

The shape of the effective neutrino wavepacket.

To illustrate Eq. (90) let us consider the special but quite realistic case when one can neglect
the contributions into the full function © caused by the reaction in the detector. For this we
have to assume that the parameters o, for all sz € D are large enough in comparison with o,
and o¢.). Then from Eq. (90) we obtain:

m2 m2 —1 m2- m2 m2 -1
@2%E3[2(—§+—“)} < E., o=~ 3( L+ “) < m5. (91)

o, o2 2 o, o2

So, in this simplest case, the effective wavepacket of virtual neutrino with a given mass
definitely defined by the mass and momentum spreads of the packets of a and ¢ and the values
of o; for all three known neutrino are mightily small for any values of o, and o, allowed by the
CRGP approximation.

Moreover, taking into account that the masses of the known neutrinos are many orders of
magnitude smaller than the masses of all other known (massive) elementary particles, we can
conclude that 032- <K ag,g.



While the estimations were done neglecting the detector contributions, they partially explain
the success of the standard quantum-mechanical assumptions that the light neutrinos have
definite momenta in spite of the fact that they are produced in the processes with the particles
having comparatively large momentum spreads.

From (91) it in particular follows that 0; = 0 as m; = 0 that is the massless neutrinos can be
treated as plane waves. With obvious limitations this remarkable fact can be used in the
analyses of the processes in which the light massive (or massless) neutrinos participate as
external wavepackets.

From the conditions of applicability of the CRGP approximation for unstable particles
(0%/0,12160()4 <1, o) =vm,TI,.

(where I',, = 1/7,. is the full decay width of the particle s¢) it follows the important limitation:

2 ~1
m; m mMa
0; < 2”<Fj+ra> .

Therefore, for the two-particle decays of any mesons with a muon in the final state (7,2, K2,
etc.) we obtain the upper limit

2 O_max

I _ .
g a1ax107® = L«
ms my, o5 my,




This leads to the lower limit for the effective transversal and longitudinal dimensions of the
neutrino wavepacket:

: d+ .
dy > 2.5 (0 ! ev) km and d} = >25x107° (1 Gev) (O ! eV) cm.

mj Fj EV mj

e The size djL is on no account the size of the neutrino wavepacket in rest, since all our
estimations were performed in the ultrarelativistic approximation and are therefore valid
only for such frames in which the neutrinos remain ultrarelativistic. The Lorentz invariance
of the effective neutrino wavefunction 1, (p;, ) also takes place up to the same reserve
requirement.

e The limitations for the characteristics of the neutrino wavepackets created in a2 decays
depend on the type of the decaying particle. For example, in the case of a Ds meson
decay we obtain o7 /m7 < 2.2 x 107"

e The effective dimensions d;- and dy define (on the order of magnitude) the allowed
transversal and longitudinal quantum deviations of the center of the neutrino packet from
the “classical trajectory” L; = v;T.

e The transversal deviations 5LjL ~ djL can be huge, wittingly larger than the dimensions of
the present-day neutrino detectors and the natural widening of the accelerator neutrino
beams even in the distances of about ~ 10° km from the source. This fact should not
cause bewilderment and confusion if we remind ourselves that the standard
quantum-mechanical description of the massive neutrino as a state with definite
momentum implicates, as a direct consequence of the Heisenberg uncertainty relation,



that its “dimensions” (both transversal and longitudinal) are infinitely large. Such
description does not lead to unphysical results since the neither transversal dimensions nor
transversal quantum fluctuations enter the transition amplitude and thus do not affect the

observables.

Bknagbl B pyHkumm n u m. U3 obweii popmynsr (89) Haxoanm 4-sekTop Ys B
[NBo-npunbnn>xxernn:

vom L [(mepma),, e T 1 m_?+m_3 _mi
S moE o? o2 Pa o2 Py maE} o? o2 be o7 Py

CkansipHble Npovn3BefeHunsi, KOTOpblE TPEDYIOTCA ANns pacyeTa age BKNAZOB B PyHKUUM N 1 M,
NMEIT BUA

~ 1 m2  m? 1
V= g ] - = (2 me) L
9wq E, (0? + c2 ) E,
I m2  m?2 makE m? E
Y=Y -V, =2 ¢ a)(1—- 2w ) fe v
E; K o7 o)( EE) 72 E]
OTctopa HaxoanMm:

Yl mio? E, | E,
— Fa] ]_ - = - ]_ = S ECL’E]/ .
Y.l { (m2a§ —I—mfag) Ea] Ex s ( )




[Mockonbky, npn drkcmpoBaHHOM 3HadeHun F,, dpyHKUUA ng nuHeliHo 3aBucnuT oT F,, TO
MMeeT MeCTO CJieflyloLliee HepPaBEHCTBO:!

B KOTOPOM

; me [ E E
Emln — a v v
' 2 (E:; " E)

€CTb MVWHUMAJIbHAsA 3HEPrusi 4acTuubl a, Heobxognmas ans poxaeHusi beamaccosoro
HENTPUHO C aHepruein F, B ago-pacnage. Takum obpasom, abcontoTHBIR MUHUMYM dPYHKLUN
Ns OTPULIATESIEH:

2 2 2 2
i N (ma —me)(fe i 1 my
o ) = gy <5 (17 0)

PyHKUMA Ns BO3pACTAET C YBEINYEHNEM SHEPTUUN HETPUHO U MOXKET BbITh CKOMb YrOAHO
Benuka npun E, > EJ;

- 1 - E,\? E*
s > s ;ﬂln, y S 1 _ ;nln) 1% )
ng >n (E E ) 5 ( 2ng (_E;> [1—|—(’) (_Ey)}

Ecnn npeanonoxuts, uto |Y| > |V v Ysl > Yyl, To dyHKUMSA s MOXKET CIIY>KUTb OLLEHKOV
ANs noJiHOW hyHKLMU 1. Kak XOpoLlo W3BECTHO, pacnpepesieHne SHEPrun HeliTpuHO B
a¢2-pacnage paBHoMepHo (T.e. He 3aBuUCKT OT F,) BHYTPY KUHEMATUYECKMX rPaHML

E;l,(1—|va]) € By S EJTL(1 + |val),



OTKyfa clieflyeT, YTO CPeAHAsa 3Heprus pacnagHoro HelitpuHo pasHa E, = I, E}. MNostomy
NPV BbICOKUX SHEPIrMsX pacnafatolnxcst Me3oHoB, [, > 1, ¢ TOYHOCTbIO [0 (’)(FQ_Q) nMeeMm:

— 2
v (B0 B) = 1 (1= ) = (1 ) (£2)

1 min myq ?
nrilp,m, ~ 5 (1 ., \) (E) < 1.

Mpy Tex >ke NpeanonoXeHUsIX N yaepXKneasi Toabko nuaupytowume no I, n E, /E} 4ynensbl,
MO>XHO OLIEHUTb BKJ1ag ay¢2-pacnafa B pyHKLUIO m:

n, cnegoBaTeENIbHO,

4 4
OpMig,

20_2E* E 2 E 2
et i b i ()} )
{ (m202 4+ m2o?)? [ mq (02 4+ 07) ] \ Ea E>

OTcroga BUAHO, 4TO M > Ng; TEM HE MEHEE npegnoJsiaraemolie B pasgene 7.12.2
HepaBeHcTBa (66) ocTatotcsi cnpasegnuesimu npu E, ~ E,,.




7.16.3 Quasielastic scattering in detector

B kauectBe npocTeiiwero (1 Hanbosiee BaXKHOro) nprMepa peakummn B LETEKTOPHOW BEPLUMHE
AvarpaMMbl PacCMOTPUM «KBa3Myrpyroe» paccesiHne BUPTYasibHOro HeTpuHoO v.a — b, B
KOTOPOM 4acCTNLa-MULLEHb 4 MOXET DbITb 3/IEKTPOHOM, HYKJIOHOM Unun sigpom, a £ —
3apsiKeHHbIN fenToH. [MocKoNbKy B TUNMYHOM HEMTPUHHOM 3KCMNEPUMEHTE YaCTULbI-MULLEHN
obnapatoT oyeHb MasbiMy (TEMIOBLIMU) CKOPOCTSIMY OTHOCUTENBHO 1ab. cuctembl, byaem
cYnTaTh, 4TO NIab. cmcTema coBnagaeT C C.C.0. BOJIHOBOrO NakeTa, OMNUCHLIBAIOLLIEr0 COCTOSIHMNE
yacTuubl a. Pasymeetcs, npn HeobxoammocTy Bce hopmynbl MOryT BbITh Npeobpa3oBaHbl B
NODYIO0 APYryto CUCTEMY OTCYETA, MOCKOJILKY Mbl UMEEM AENO0 NMLb C BEKTOPAMU ©
TEH30paMu, 3aKOHbI NPeobpPa30BaHNA KOTOPbIX XOPOLLO W3BECTHbI.

Arbitrary momenta.

B c.c.o. naketa a onpegenntens matpuubl g nMeeT BUA,

1Ra| = (7§ {(ag + 02) agaf (ubug)2 Vge + 2020503 (upue) (Upuy) +

—I—J?L [ag (02 + ai) ug + a? (02 + a?) u%] } .

(92)
3pecb Ve ecTb OTHOCUMTENbHASA CKOPOCTL YacTuu b n £, a a§ = 02 + ag + af. Ba>xHbli BbIBOA,
cregyownii n3 3Toil bopMysibl 3aK/IOHAETCS B TOM, 4TO onpegenutens |Rq| ocTaercs

HEOTpULaTEbHBIM faXke ecin oaHa (HO TOMbKO ofHa) U3 Yactuy a, b nnu £ onucbiBaeTcs



nnockoii BonHoli. Ecnn, Hanpumep, npeHebpedb YieHaMu, NPONOPLMOHANLHBIMY 0, dopMysa
ansi onpegenutens (92) npuobpertaer Bng, cosnagatowmii ¢ (85):

Ra| & o20h (02 + 07) " Jwsl”. (93)

DTO Ba)KHOE CBOWCTBO AA€T BO3MOXXHOCTb 3HAYNTEIbHO YNPOCTUTL aHa/IM3 MHOIOMAKETHbIX in-
N out-cocTosiHWiA, NpeHebperasi BKAagamMm NakeToB o4eHb DONbLUVX MPOCTPaHCTBEHHbIX
pa3MepoB (XapaKTepr3yHOLUMXCSt OHEHb MasibiMy 3HAYEHUSIMY NMapamMeTpoB o). [pn aTom
crefyeT VMeTb B BuAy, Y4TO npubnvkeHHas dopmyna (93) nprMeHnMa TONIbKO Mpu yCnoBmn
|up| # 0%. AHanorudHasi oroBopka foJikHa ObiTh y4TeHa 1 B obwem crydae, T.e. npu
OoTOpacbiBaHUN BKIALOB MAaKETOB C OYEHb MaJsibiIMU 3HAYEHUSIMUN O, CJIEAYET Bblpe3aTb
OKPEeCTHOCTU Pa30BOro NMPOCTPAHCTBA, BHYTPY KOTOPbIX onpegenutenu |Rs| n R4,
BbIYNC/IEHHbIE B TaKOM npubnvxeHnn, obpawatotcst B Hynb. Kak npasuno, Takme obnactm
PacnoJioXKeHbl BOAN3U KMHEMATUYECKNX FpaHuL, pa30BOro NMPOCTPaHCTBA U HE JalOT BKAaha B
3KCMEPVMEHTANIbHO N3MEPSIEMbIE XapaKTEPUCTUKN.

®HanomHum, 4To Benu4qmHa |uj| B (85) BCErga oTaM4YHA OT Hyns.



Cornacho (83), anrebpaundeckne gononHenus AL” nmetot Bug,

22[20 — 0'§ [o’% (0‘3 —|—O'§Fb2 +O'?Fg2> +0'130'£? ‘ub X U_g|2] )

A — 2o [(02 I ag) I, + Jg(ubw)] Upi + 0507 [(02 + ag) Iy + a?(ubue)] Ui s

i 2/ 2 2 2 2.2\ 2 2/ 2 9 2 2.2\ 2
Ag = oy (030, — 0a000z) Uy + 04 (0307 — ogopuy) ug+

_ (94)
+ 20i0; [aszfg + (02 + 0?) (ubw)] Upities + 05 7| Ral,

jk 2/ 2 2 2 2.2 2/ 2 2 2 2 2
A = oy (03% — 0,0y Ug) UpjUpk + O (0305 — aaabub) UpjUok

+oy0f [oalvly + (0F + 07) (upue)] (upjtier + upnties),  J # k.
OTcrona gna Npon3sBosibHOro 4-sekTopa ¢ nosyyaem:
Ral R g = 23+ > (—20%q0 + Aiai) i + 2> A s
: i<k
= 03 [05 (02 + o3Iy + 0717) + o5oi [wy, x uel?] g5 —
— 20’%0’5 [(0'2 + O'g) Iy + O'?Fg(ubUg)] (ubq) go—
— 20307 [(02 + 0?) Iy + agfb(ubw)] (ueq) o+
+ 0 [of (woa)® + o (wee)® + 20707 (uot) (10) (e)] +

+ olopo} {{(up x u)ql® — (up X ug)2q2} + o3 °|Ralq”.



KomnoHeHTbl 4-umnynbca Yy Hailgem, ncnonb3ys (94):

2 2
03

YY) = =2 (ma — L Ep — U E , Yo = 23 (cpup + couy) .
d md|< v Eb — coEy) d md|(b b+ coug)
Purypupytowme 3gecb KoaprueHTHbIE PYHKLMN AAOTCA CleayowmnmMmmn popmynamm:
2
co = o4 (03 +osly +0i17) +osop (Dl — 1)° — (wewe)?] + (o5 Ty + 07 1%) ",
ch = 05 [U?L-I-Ug-l-ggﬂz 1 —vpvye) ] ;

Cp = a§ [ai—l—a?—l—agfb 1 —vyvy) ] ,

c, = of { {maafl} — My (ab + O'g)] (upue) + maoi Ly — My (05 + 0?)} +
+ 02 {mbafuf + 0?, [y (meq — mely) — mb]} :

co = o { [maagfb — myp (ag + a?)] (upue) + maeos s — iy (ag + 0'?)} +

+ o2 {mgagu% + 0? (I (Mg — mply) — mg]} .

Kak n gon»Ho bbiTb, BblLLENPUBEAEHHbIE BbIPAaXKEHUA CUMMETPUYHBI MO OTHOLLUEHUIO K 3aMEHE
nHaekcoB b <> £, a nx sIBHO HEKOBapuaHTHas popMa CBA3aHa C MCMNOJSIb30BAHNEM CMELNanbLHOR
CUCTEMbI OTCYETaA.



PW; limit.

B MNBo-npegene knHematuka peakumun 2 — 2 nossonsiet 3anucats sBenuyutsl |Rq|, £57quqy v
Y 41 B TepMuHax AByx Npon3BOJIbHBIX HE3ABMUCHMbIX MHBAPUAHTHbLIX MEPEMEHHbIX; Mbl byaem
NCNONb30BaTb CTAaHAAPTHYIO Mapy NepPeEMEHHbIX:

S = (pa +pu)2 = Mg (2E1/ + ma) n Q2 — _(pl/ _p€)2-

Onsa Toro, 4TOOLI 3aNMCaTb BbIPAXKEHNSI NPEALIAYLLErO pa3fesa Yepe3 3TN NEPEMEHHbIE
NpUMeM BO BHMMaHNE TOYHble KMHEMATNYECKNE COOTHOLLUEHUNS:

1 * g% * 7%k EV R % ek
Ey=— (E E, — E,P; cosby), pspr=— (Ey E, — FE, P, cosb.,),
ma ma
1 *k * *k *k EV *k * *k *
Mg “
FE, P; sin 0,
lup X ug| = ¢ ,  (up xw)p, =0,
mpiny
2 2 *
S—mj; —m 2+/sP,
UpUe — ’ £ , Vp = \/2_ ‘ 2

B KoTopbiX ), = |p,| = (s — mZ) /2mq v p, = E,l ecTb, COOTBETCTBEHHO, SHEPIUS ©



MMMYSibC be3MacCcoBOro HeMTpPUHO B nabopaTopHOl cucTeMe OTCYeTa, a

2 2 2
E*_S—ma E;_S—I—mg—mb
v 9 - 9
S+m2 s—m2+m2
Er=—2 n E = ¢ b

NG 25

ecTb aHeprum vactuy v, £, a v b B C.U.M. CTaNIKNBAKOLWNXCA 4acTuUL, ™ 1 a, KOTopasi 3aJ1aeTCs
yCNnoBUAMU

E,+E,=E,+E/, p,+Pa=p+P;=0;
HakoHell, P; = |p}|. Yron paccesnus nentoHa 6. B c.u.M. cBA3aH ¢ Q:
Q* =2E; (E; — P, cos6.) —mj.
KunemaTuyeckn gonyctumas obnacte ¢pa3oBoro npocTpaHCTBa AAETCA HEPaBEHCTBAMMU
S > Sth = Mmax [mz, (mw 4+ me)] (95)
QY <Q*<QY, Qi =2E)(E[£F)—mj. (96)

Tenepb, nocsie afleMeHTapHbIX, XOTSt U 4OBOJIBHO FPOMO34KUX asirebpanyeckux



npeobpa3oBaHnii, HAXOAUM:

2

2
[Ral] = —5= ApstQ?,

Am2m2m>
am"b T k1=0

[[‘%dm%d QMC]]] 4m2mbm£ Z kLS Q

o3

3
[IRa[Yaq] = —5 > Cus"Q™.

k,l=0

SABHble bopmynbl ansi koapdpuunentos Ay, Br; n Ck; Boinucanbl B [Mpunoxennn 22. Tam xe
NpuBeAEeHbl AOMOJIHUTENbHbIE PE3Y/bTaThl, OTHOCSALINECS K PaCCMaTPUBAEMOMY MPUMEpY.

Taknm obpasom, kBagpaTudHas dpopma &Ed qu.qv W CKansipHoe npoussegeHne Y 4q SABASIOTCA
paLMOHabHbIMN PYHKLMSIMU ABYX MEPEMEHHbIX s U Q2

> Bris® Q'
[[%d QMQV]] Z:iAleka —gd(S,QQ)a

C k 21
[Yoal = § S g = e @l )




3peck Mbl BBEAN pyHKLMIO®

o [[Ydl]] o l Zk:,l ClekQQZ
N [[Ydl]] - 2 Zk,lBMSkQQZO

[NonesHo Takxe BBECTN PYHKLUMNIO Dy C MOMOLLBLIO C/IEAYIOLErO ONPeaeSEH IS

k 21
D3 11 D ki ArisTQ
EZ  28a 2 ), BustQ*
XoTs H1 Dy, HM g HE NMET camMun no cebe o4eBUAHOro PU3NYECKOro CMbICNA, OHW MONE3HbI
ANA UNNKOCTPaLMM NOBEAEHUSI MHTEPECYIOWNX HAaC dOYHKLUUA D 1 1 B TOM CneymanbHOM

cNny4ae, KOrga MOXXHO MNpeHebpeyb COOTBETCTBYHOLMMMN BKAagamMu B D 1 n, obycnoBaeHHbIMA
peakuunen B NCTOYHMKE®, @ UMEHHO, NPY BbINOJIHEHNIN YCNOBNA

[ qua.| > [ qua| v IYall> [y,

ng

B npocTeiiwem 4acTHoMm cnyyae, Korga oq/me = op/mpy = o¢/me = A = const, (3T
COOTHOLLEHWS OMUCLIBAtOT CBOEODPasHbIli CKelNMHT 3dPPEKTNBHBIX Pa3MEPOB MAKETOB) MOXHO
nokasaTb, 4To dyHkumn A\’Fq (a cnegosaTensHo n D4/\) 1 ng He 3aBUCAT OT NapameTpa A u
ONpefenstoTCs NCKIIOHNTENBHO KUHEMATUKON. DTOT «U3bICKAHHbIA» (XOTS, BOSMOXHO, U He
OYE€Hb PEANMCTUYHbINA) CayYail NNNCTPUPYETCH Ha prucyHkax 33 n 34 gns wecTn peakuuii

aCnepyeT oOpPaTUTUTL BHUMAHWE, YTO, B OTAMYMNE OT §4, PYHKLUNA Ny HE ABNAETCA PENATUBUCTCKUM
MHBAapMaHTOM, HECMOTPS Ha TO, YTO Bbipa)kaeTcsi (B /1.C.) B TEPMUHAX ABYX MHBAaPUAHTOB.
bItoT ciyyaii NpsiMoO NPOTMBOMNONOXKEH PAaCCMOTPEHHOMY OJIS dpo-Pacnaga.



KBa3Myrnpyroro pacCesiHUs HEMTPUHO N aHTUHERTPUHO Ha cBoboaHbIxX HyknoHax. Obnactu
onpegeneHusi PyHKUNUA Fq U g OrpaHnyeHbl KnHemaTudeckumm ycnosusimu (95), (96), v
pa3nn4ns popMbl MOBEPXHOCTEN, N300Pa’KEHHbLIX HA Pa3HbIX NaHensix, obyCNOBNEHbI, r1aBHbIM
obpasom, pasHbiMu noporamu peakumii (95), T.e., Mo cyLwecTBy, MacCaMn KOHEYHbIX JIENTOHOB.
[MosToMy pasnnynsi HUBENVPYIOTCS NPU AOCTATOYHO BbICOKUX SHEPIrUsiX, T.€. Mpw

s > max(sih). Obpawerne dyHkummn §q B Hynb npu £, — 0 ana becnoporosoii peakuuu

VN, — pe  He MMeET OTHOLUEHUSA K Halwel 3afa4en, OrpaHNYe€HHON PacCMOTPEHVEM
Y/IbTPAPeNsiITUBNCTCKIX HERTPUHO (HanomHuMm, 4To B ciyydae E, ~ m; cdopmynbl ans
AVICMEPCUN CUJIbHERLWIMM 0Dpa3oM BUAON3MEHSOTCS.



Puc. 33: Function A*F4 vs. s and t = Q? (both variables are in GeV?) for quasielastic reactions
vn — pe” (top left), vn — pu~ (top mid), vn — pr~ (top right), Zp — ne™ (bottom
left), Zp — nu™ (bottom mid), and p — n7" (bottom right). Calculations are done with
Op/Mp = On /My = 0r/me = .
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Puc. 34: Function ng vs. s and t = Q? (both variables are in GeV?) for quasielastic reactions
vn — pe” (top left), vn — pu~ (top mid), vn — pr~ (top right), Zp — ne™ (bottom
left), Zp — nu™ (bottom mid), and p — n7" (bottom right). Calculations are done with

Op/Mp = On /My = 0r/me = .



Puc. 35: Functions Ig(F4) (top panels) and n,; (bottom panels) vs. s and t = Q? (both variables
are in GeV?) for quasielastic reactions vn — pe™, vn — pu~, and vn — pr~ (from left to
right). Calculations are done with o,/m, = on/m, = 1073, 0¢0/me = 107%,



B obwem cny4dae noseaneHune doyHkumnii §4 1 ng CTaHOBMTCSA ropa3go bonee cnoxHeiM. Ha
puc. 35 nokazsanbl npumepsl pyHkunii 1g(Fq) n ng gna peakuunin vn — pe” , vn — pu” u

Un — pT, B NPEANONOKEHUN, 4TO 0p /My = 0y /My = 1000 /me = 1073, PasymeeTcs, 310
NPeAnosIOXKEHNE, MPUHATOE 30ECh NCKIIOUYNTENLHO B WIIOCTPATUBHbLIX LENAX, COBEPLUEHHO
NPoOu3BOJIbHO 1, Bonee Toro, coBepLUEHHO HepeanucTuyHo. B bonee peannctuyHoin cutyayunm,
05 /M, <K 1, parke pyHkumst 1g(Fq) 04eHb CUNBHO N3MEHSIETCS BHYTPU CBOel obnacTu
OMpefeNeHns 1 feTanun ee NoBeAeHUS TPYAHOBOCMPOU3BOANMbI Ha AByMepHOM rpaduke. [ns
NIyYLIEro NoOHUMaHuUsl CBOMCTE pyHKUUIA Fq 1 Ny, Mbl npueogum B MNpunoxeHun 22 Hanbonee
Ba)KHbIE NpefefibHble CayYan, aCUMNTOTUKN N HEPABEHCTEA.



7.16.4 Three-particle decay in the source.

Obuwme popmysbl, onncbiBatowWmMe TpexHacTuYHbli pacnag a — b+ £ + v, cdopmanbHo
COBMafaloT C TAKOBbIMU /11 paccesiHust 2 — 2, ecnym paccMaTpuMBaTh UX B C.C.0. YacTuubl a.
[naBHoe pasznu4ne obycnoeneHo kKnHemaTukoii. [MosTomMy MblI paccMoTpum 3TOT ciy4yaii
kpaTko. MogobHo cny4yato paccesiHusa 2 — 2, B pyHkuum |R;| v gﬁ’;”quqy MOryT ObITb
3anuncaHbl B TEPMUHAX OBYX HE3aBMCUMbIX WHBAPUAHTHbLIX MEPEMEHHbIX, B Ka4ECTBE KOTOPbIX
MOXXHO MCMOJIb30BaTb, HanpuMep, by napy NMHBapMaHTOB

s1=(po+pe)> = (Do —1v)°, s2=(pv+D0)° = D0 —1)*, 3= (pv+1p)° = (pa—pe)?

CBSAA3aHHbIX TOXKAECTBOM S1 + S2 + 83 = mfb + mz + m?. Pusmyeckas obnactb ANA 3TUX
NnepeMeHHbIX 33aaeTCsA YC/IOBUSAMU

(mp +me)? <s1<mi, mg <s2< (Mo —me)?, mp <s3< (Mma—myp)°.

Onsa onpeneneHHoctn bygem ncnosb3oBaTb napy (si, s2). Obnactb onpepenerns ans aTon
napbl snsietcs guarpamma danutua

_ 2 2
S1 §81§8T, my < s2 < (mq —mye)”,

roe

N ) ) (s2 +mj) (s2 — mi +mj) F (s2 — mj) \/(32 —m2 —m32)? — 4m2m?
§1 = mp +my —

282

)



Bocnonb3oBaBlwnCh pe3ynbTaTamMu npeabigywero pasgena, HaligemM, Hanpumep,

[1%s]] = 4m2mbm£ Z Akl31327

k,1=0

[ R S

k,1=0

CnepoBaTenbHo, kBagpaTtudHas dpopma RL7q,q., sBnsieTcs paymoHanbHOW yHKLUMEN
MepPeMEeHHbIX S1 U S2,

Ty Zk;lBk:l3152
|:|:§Rg QHqV:|:| Zkl ;clsksé = 38(81782)-

OTnuuHbie oT Hyna koadduunenTsl A, n By, Boinucanbl B Mpunoxennn 22. Tam xe
npusegeHbl popmysibl Ans pyHKunn §s(S1,S2) B ClyHae CUSIbHOR MepapXumn NapamMeTpoB O, .



To obtain the observable quantities, the probability must be averaged/integrated over all the
unmeasurable or unused variables of incoming/outgoing WP states.

Such a procedure can only be realized by taking into account the conditions of a real experimental
environment. For these reasons and in this sense, further analysis is model-dependent.

A thought experiment:

Assume that the statistical distributions of the incoming WPs a € I 4 over the mean
momenta, spin projections, and space-time coordinates in the source and detector “devices”
can be described by the one-particle distribution functions f,(p,, Sa, ). It is convenient to
normalize each function f, to the total number, N, (z)), of the packets a at a time z3:

dx,d
Z/ %uf@(paasaawCJ — Na(w2> (CL c Is,d)-

For clarity purposes, we (re)define the terms “source” and “detector”:

&= SUPP o, aers) Hfa(pa,Sa,iEa), b= SUPPro,: aery} Hfa(pa,Sa,iEa).

We'll use the same terms and notation S and D also for the corresponding devices.



Suppositions:

[1] S and D are finite and mutually disjoint within the space domain.

[2] Effective spatial dimensions of S and D are small compared to the mean distance between
them but very large compared to the effective dimensions (~ o,') of all WPs in S and D.

[3] The experiment measures only the momenta of the secondaries in D and (due to [2]) the

background events caused by the secondaries falling into D from S can be neglected.

[4] The detection efficiency in D is 100%.

With these assumptions, the macroscopically averaged probability (79) represents the total

number, dN,g, of the events recorded in D and consisted of the secondaries be F; having the

mean momenta between p, and p, + dp,:

B de.dp, fo(P,, SasTa) / dxydp,
<<\«4/3a\ =dNag =) / 11 (27)32E,V, H (2m)32E,Vy,

spins aclg

acly

£y « —Q(T,L)-0, |
X Vi Vaj gR= g
2\/E(27r)3L2‘2j: o VA3 ©

\

< / dE, (2m) 46, (py — 4)| Mo |*(2m)*6a(ps + qa)| Ma]’

V.

dxa.dp, fo (P, Sa, Ta) / dxy [dp,]
/ H (27)32E,Va H (2m) 32EbeVd

~

J

(97)

> > pins denotes the averaging/summation over the spin projections of the in/out states.
>  Symbol [dp,] indicates that integration in variable p, is not performed, i.e., [[dp,] = dp,.



Under additional assumptions, the unwieldy expression (97) can be simplified in a few steps.
Step 1: Multidimensional integration in WP positions.

Supposition 5: The distribution functions f,(p,, Sa, Za), as well as the factors e %% L2
vary at large (macroscopic) scales.

The integrand []_ |¢s (P,,, 5 — z)|? in the integral representation of the overlap volumes (75) is
essentially different from zero only if the classical word lines of all packets s pass through a small
(though not necessarily microscopic) vicinity of the integration variable.

Supposition 6: The edge effects can be neglected (a harmless extension of supposition [2]).

As a result, expression (97) is reduced to the following:

Y /da;/dy /d‘Bs/d‘Bd/dE 67772y~ al? , (98)

spins

where T' = yo — xo, L = |y — x| and we have defined the differential forms

dp jh Py Sa, X dpb 4 2
s— “ = s\Dy — (Qgs A4g ,
> CE (27)32E, H @m)o2E, 2T 0Py = 4s) M| (992)
dpg fa(Pys Sa,y) [dp,] A )
— a a __L7Eel 2 5 M .
dPq (2m)32E, (27T)32Eb( ) 6a(pv + qa)| Ml (99b)
acly, bEF,



Step 2: Integration in time variables.

Supposition 7: During the experiment, the distribution functions f, in S and D vary slowly
enough with time so that they can be modelled by the “rectangular ledges”

fa(Pa, Sa;w) =0 (5130 - 56(1)) 0 (:13(2) — ZIJO) fa(pa,sa;m) for acls,

- 100
fa(Pga,sa;y) =0 (y° —47) 0 (v8 — v°) fo(Ps, Sa;y) for acly. (100)

Supposition 8: The time intervals needed to switch on and switch off the source and detector

are negligibly small in comparison with periods of stationarity 7, = x5 — 2 and 74 = y5 — Y.

In case of detector, the step functions in (100) can be thought as the “hardware” or “software”
trigger conditions. The periods of stationarity 7s and 74 can be astronomically long, as it is for
the solar and atmospheric neutrino experiments (75 >> 7, in these cases), or very short, like in the
experiments with short-pulsed accelerator beams (when usually 75 < 74).

2;-927

Within the model (100), the only time-dependent factor in the integrand of (98) is e~
So the problem is reduced to the (comparatively) simple integral

yg 0 33(2) 0 —Q;(y?—2°,0L)—Qr(y°—2°,L) ﬁ . 2
/O dy /0 dr- e ’ ’ = %Td exp (ZSOij - fQ{w) Sij- (101)
Y1 zy



In relation (101) we have adopted the following notation:

exp (—%%; 2 L
S, = p4(7_d© J) Z (— 1)l+l Horf {2@ (Cliz — yl/ + U“) — z',%’ij}, (102)
L1 =1 I
27O L AFE; ™
,Q{i' == — V; L — , %Z —= Jt == , 1
5= (5 —0)D EuLi TT D T 201y, (103)
el B, 1 _1(1 1
Yij = Li;’ . Amfj’ vi; 2 \vi wv;)’
Am?j — mf - m?a AE@J = Ei — By,

lerf(2) = / dz'erf(2") + % = zerf(z) + %6_22,
0 i s

For a more realistic description of the beam pulse experiments, the model (100) could be readily
extended by inclusion of a series of rectangular ledges followed by pauses during which f, = 0.

Then substituting (101) into (98) we obtain:

ANo5 = TdZ/dm/dy/dms/ded/dE ”"y mT;D, (104a)

spins

Td /d:c/dy/d@y/dayppa/g(Ey,\y—w\). (104b)
VpVs

The differential forms d3; 4 in (104a) are are given by eq. (99) after substitution f, — f,.




Explanation of the factors in eq. (104b).
> Vs and Vp are the spatial volumes of the source and detector, respectively.

>  The differential form d®, is defined in such a way that the integral

dx . dms
Vs/ =dz ) / ly — al? (105)

spins € S

is the flux density of neutrinos in D, produced through the processes I, — F.{lv in S.

More precisely, it is the number of neutrinos appearing per unit time and unit neutrino energy in
an elementary volume dx around the point « € §, travelling within the solid angle d€2, about the
flow direction I = (y — «)/|y — «| and crossing a unit area, placed around the point y € D and

normal to L.

>  The differential form do,p is defined in such a way that

dyd
7 / dydo,p = > / dyPa (106)

spins € D

represents the differential cross section of the neutrino scattering off the detector as a whole.

In the particular (and the most basically important) case of neutrino scattering in the reaction
va — F’Eg, provided that the momentum distribution of the target scatterers a is sufficiently
narrow, the differential form do,p becomes exactly the elementary differential cross section of this

reaction multiplied by the total number of the particles a in D.




>  Now let us address the last sub-integral multiplier of (104b), given by

Pap(Bu, L) = > VaiVa;VaiVi;Sij exp (i0i; — ;5 — Oi), (107)
]
Oij = 6; + 0, (108)
O, m [(n —n)+1(m—n—n2)r~—|—(n+1> (m—n—n?)ri+0(r)) (109)
7292 0 2 J 9 J il

Let’'s remind that the function ng coincides with n in the case of exact energy-momentum
conservation in the vertices of our diagram. Therefore in the vicinity of the maximum of the
product ds(p. — gs)da(pr + qa) (that is at ¢s &~ —qq =~ p. ), which gives the main contribution
into the event rate, one can neglect the alternating quantity ng — n in (109). Taking into
account the properties of the function n one can also neglect the O(r?) contributions in (109).
In this approximation

mjR(m—n—n?) miR(m—no—n3) mj[ReoZ — (RI)?]

Y —_—

Y — >
AE2 AE2 ARE? =

@j%

e The factor (107) coincides with the QM expression for the neutrino flavor transition
probability,
PO (B, L) = VaiVisi Vi Vi exp (ispij). (110)
(]
provided that S;; = 1, ©;; =0, and 7;; = 0. So it can be considered as a QFT refinement of
the QM result.



BUT!

e A probabilistic interpretation of the function P,z can be only provisionally true, because the
factors S;; and 7;; involve the functions ©, n, and m strongly dependent on the neutrino
energy F, and external momenta p_; all these (except for the momenta of secondaries in D)
are variables of integration in (104b).

As a result, the factor P,3, as function of o and 3, does not satisfy the unitarity relations
Z P(QM) Z p(QM) 1 @
o B

which are a commonplace in the QM theory of neutrino oscillations.

The point is that the domains and shapes of the functions ®, n, and m are essentially different
for each of the nine leptonic pairs (£, %3). These differences are governed by kinematics of the
subprocesses in S and D (in particular, their thresholds), that is, eventually, by the leptonic masses
(me, mu, my) and by the momentum spreads (e, ou, o+) of the leptonic WPs, which are not
necessarily equal to each other, perhaps even within an order of magnitude.

So Pos(Ew, L) is not the flavor transition probability!

Having this in mind, we will call it probability factor for short.



Two more drawbacks.

e The probabilistic treatment of P, is even more problematic
in real-life experiments, because the detector event rate (with
{3 appearance in our case) is defined by many subprocesses of
different types in the source and detector.

E.g., in the astrophysical, atmospheric and accelerator neutrino
experiments, the major processes of neutrino production are
in-flight decays of light mesons (7.2, K2, Ku3, Kes, etc.)
and muons, and neutrino interactions with a detector medium
consist of an incoherent superposition of exclusive reactions of
many types, — from (quasi)elastic to deep-inelastic.

e A “technical” drawback is the dependence of the function S;;

(which will be referred to as decoherence factor) on the four

“instrumental’ time parameters z¥, 23, v?, y9.

So far we have made no assumption concerning a “synchronization” of the time windows

0

(29, 29) and (y{,%3). Thus, it is no wonder that the decoherence factor turns to be vanishingly
small in magnitude if these windows are not adjusted to account that the representative time
of ultrarelativistic neutrino propagation from S to D is equal to the mean distance, L, between

S and D.

Before discussing the role of the decoherence factor, we perform one more, and the last,

simplification of the formula for dN,g3.



Step 3: Spatial averaging.

Lq
e
.
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Detector

We'll use again the requirement that the characteristic dimensions
of § and D are small compared to L. Under certain conditions, this
allows us to replace approximately

2Q2

dd, Md@,,, do,p — do,p.

— 1
vl —T=go [ do(Lh+LY),
Qs

The range of applicability of this approximation is in general much
more limited than that of (104b), as a consequence of additional
restrictions implicitly imposed on the distribution functions f,
absolute dimensions and geometry of S and D.

These issues are bit more complicated then the considered above and
must be the subject of special attention in the neutrino oscillation

experiments.

Finally, we arrive at the very simple but rather rough expression:

N5 = Td/d@/dawmﬁ(ﬂ,j). (111)

In particular, it is not applicable to the short base-line experiments.



Let us now return to the decoherence |

factor, limiting ourselves to a —Tys /2 x
consideration of  “synchronized”
measurements, in which
0 Ts 0 — __ Td _ ! >
$1,2::F§7 y1,2:L:F§- L—1;/2 L L+74/2  y°

With certain technical simplifications, the factor (102) can be expressed through a real-valued
function S(t,t',b) of three dimensionless variables, namely:

Sij = 5 (D7, D74, Bij),
2t'S(t,t',b) = exp (—62) Re [lerf (¢ + "+ ib) — lerf (¢ — ¢’ +ib)].

7.18.1 Diagonal decoherence function.

S(t,t',0) = 2%, [lerf (t +t') — lerf (t — ¢')] = So(¢,1), (112)

This function corresponds to the noninterference (neutrino mass independent) decoherence
factors S;;. The following inequalities can be proved:

0< So(t,t') <1, So(t,t') <t/t for t' >t, So(t+ 6t,t) > erf(6t) for 5t > 0.



1.0
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0.0

S(t,t',0)

0.995

The strong dependence of the common suppression factor Sy (,t') on its arguments at ¢t < ¢’

provides a potential possibility of an experimental estimation of the function © (or, rather, of

its mean values within the phase spaces), based on the measuring the count rate
dR.g = dNap/Tq as a function of 74 and 7, (at fixed L) and comparing the data with the

results of Monte-Carlo simulations.

The optimal strategy of such an experiment should be a subject of a dedicated analysis.




For the important special case, t" = ¢ (representative, in particular, for the experiments with

accelerator neutrino beams), we find

2t 2t 8t
=1 - = 4+ f 1
1 — e 4 ﬁ( 3 +15> ort<d,
So(t,t) = erf(2t) — 2—\/%15 ~ 1
1— for t > 1.
2/mt

[

(113)

|

Smallz asymptotics |

0.8 —

0.6 —

S(1,4,0)

0.4 —

0.2 —

10 10°
t



7.18.2 Nondiagonal decoherence function.

The decoherence function S(¢,t',b) at b # 0 is much more involved.

10" 8

1: t=0.05 4: =050 7: t=3.00
1 2:t=0.10 5. t=075 8 t=5.00
3:t=025 6: t=1,00 9: r=10.0

S(t,4.b)

At very large t, the function S(t,t,b) becomes nearly independent on ¢, slowly approaching the
asymptotic behavior S(t,t,b) ~ exp(—b?) (¢t,t — o).
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S(t,t',15.0)/So(t,t").

S(t,t',0.10)/So(t,t"), S(t,t',0.75)/So(t,t"), S(t,t',1.50)/So(t,t"),
S(t,t',0.50)/So(t,t"). S(t,t',1.00)/So(t,t"). S(t,t',4.00)/So(t,t").



7.18.3 Flavor transitions in the asymptotic regime.

In the asymptotic regime,
S(t,t',b) ~ exp(=b>) (t,t' — 00).

the probability factor (107) takes on the form already known from the literature,®

Pas(Bv, L) =Y ViiVa;iVaiV3; exp (ii; — o5 — Biy — Oi5), (114)

1j

but with the essential difference that the factors «7;;, %;; and ©;; do depend (through the
functions ©, n, and m) on the neutrino energy and momenta of the external WPs.

This dependence drastically affects the magnitude and shape of these factors if at least some of the
WPs have relativistic momenta (that is always the case in the contemporary neutrino oscillation
experiments). For sufficiently small and/or hierarchically different momentum spreads o,., the
functions «7;; and Z%;; may vary in many orders of magnitude through their multidimensional

domain.

aSee, e.g., C. Giunti C and C. W. Kim, Fundamentals of Neutrino Physics and Astrophysics (Oxford
University Press Inc., New York, 2007); M. Beuthe, Oscillations of neutrinos and mesons in quantum
field theory, Phys. Rept. 375 (2003) 105 (arXiv:hep-ph/0109119); M. Beuthe, Towards a unique formula
for neutrino oscillations in vacuum, Phys. Rev. D 66 (2002) 013003 (arXiv:hep-ph/0202068).



7.18.4 Major properties of the transition “probability”.

e The factors exp (—QZE) (with i#7) suppress the interference terms at the distances
exceeding the “coherence length”

1
A’Uijg

Lt = > |Lij| (Avij = |v; — i),

when the vWPs 1|)§<d (pi, Xs — X4) and 1|)J)'<d (pj, Xs — Xg4) are strongly separated in space
coh
]
e The suppression factors exp (—%’fj) (i#j) work in the opposite situation, when the
external packets in S or D (or in both S and D) are strongly delocalized

and do not interfere anymore. Clearly L;7" — oo in the plane-wave limit.

The gross dimension of the the neutrino production and absorption regions in S and D is of
the order of 1/®. The interference terms vanish if this scale is large compared to the
“interference length”
g L _ 2Ly
4AEW ™m
In other words, the QFT approach predicts vanishing of neutrino oscillations in the plane-wave
limit. In this limit, the flavor transition probability does not depend on L, E,, and neutrino

masses ™m; and becomes

PWL 2 2
Pas ==Y Vel *[Vail® < 1.

Thereby, a nontrivial interference of the diagrams with the intermediate neutrinos of different
masses is only possible if © # 0.



e Our detailed analysis of the generic subprocesses 1 — 2, 1 — 3, and 2 — 2 shows that
© = 0 if in both vertices of the macrodiagram there are at least two interacting WPs s (no
matter in or out) with o, # 0.

e The same requirement unavoidably leads to the vanishing of the non-diagonal terms, when
the mean distance between & and D becomes large enough in comparison with the coherence

h
lengths L57".
e As a result, the range of applicability of the standard QM formula for the neutrino
oscillations probability is limited by rather restrictive conditions,

2mDL\’ m \”
1 1 d Oij 1.

The angle brackets symbolize an averaging over the phase subspace of the process (42) which
provides the main contribution into the measured count rate.

The obtained conditions were obtained under a number of assumptions and simplifications, which are
not necessarily adequate to fully represent the real-life experimental conditions. Our consideration
suggests that in the analysis and interpretation of real data one should take into account the
operating times of the source and detector, their geometry and dimensions, explicit form of the
distribution functions of in-packets, and other technical details.




7.19 Intermediary conclusions on the QFT approach.

e The standard QM v-oscillation formula has rather limited range of applicability.
e The QFT modifications drastically depend upon:

> momentum spreads of the external “in” and
' m “out” wave packets;
| > reaction types in the neutrino production and
absorption regions [‘source” and "detector”,
respectively] and phase-space domains of these
reactions;
> time interval of steady-state operation of the
source “‘machine " and detector exposure time;
> dimensions of the source and detector and

distance between them.

e Essentially all QFT effects are decoherent and thus lead to a “smoothing”, distortion or
vanishing of the interference (oscillating) terms and to a general suppression of the
neutrino event rate in the detector.

e The effective neutrino energy uncertainty (or “fuzziness”) © and dispersion correction
factors n and m, responsible for the decoherent effects, are rather involved functions of the
momenta p,. masses m,. and momentum spreads o,, of the external packets ». However,
these functions can be studied in special synchronized or desynchronized measurements.
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8 Tests of Lorentz invariance.

Michelson-interferometers lasers and resonators
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Improvements of the Michelson-Morley experiment since 1881.

[Figure is taken from S. Herrmann et al., “Test of Lorentz invariance using a continuously rotating optical

resonator’, Lect. Notes Phys. 702 (2006) 385-400.]



The constancy of ¢, i.e. its independence on laboratory velocity and orientation has been
verified experimentally at improved precision by numerous repetitions of the MM-experiment,
providing a firm experimental basis for special relativity so far.

e The best current limit for a possible anisotropy of the speed of light is

Agc/c < 10717,

[Ch. Eisele et al., Phys. Rev. Lett. 103 (2009) 090401; S. Herrmann et al., Phys. Rev. D 100 (2009) 105011
(arXiv:1002.1284 [physics.class-ph]).]

The sensitivity of the next-generation Michelson-Morley type experiments to violation of the
Lorentz invariance is expected to be in the 107 to 10™%° regime.

[M. Nagel et al., arXiv:1112.3857 [physics.class-ph].]

v=p/\/pE+m? (115)

is confirmed in the accelerator experiments for 1 — v down to 2 x 10~ ".
The relation (115) has been tested in the SLAC accelerator by comparison of relative
velocities of v quanta with mean energies ~ 15 GeV and electrons with energies in the
interval 15-20.5 GeV by using a time-of-flight technique with 1-psec sensitivity and a flight
path of about 1 km. At such energies, the expected value of vy —ve =1 — ve was
(3.1 — 5.8) x 10719, No significant difference in v, and v. was observed to within 2 x 10~7,

e The relativistic relation

[Z. G. T. Guiragossian et al., Phys. Rev. Lett. 34 (1975) 335.]

The accuracy of the earlier experiments was order of magnitude lower.



9 Accelerator measurements of neutrino velocity.

In all v experiments it is assumed that the relation (115) holds for muons, pions, and kaons.

o FNAL 1976 [345 m (decay pipe) + 550 m (shield), (ES™) = 25 GeV, (ES)) = 75 GeV]:
v, — v, < 4x 107" (99% C.L.)
[J. Alspector et al., Phys. Rev. Lett. 36 (1976) 837.]
o FNAL 1979 [345 m (decay pipe) + 550 m (shield), ES™) = 30 to 200 GeV]:
v, =T, <7x107°, [0 0l <5 %107, |vww — 1] <4x107° (95% C.L.).

[G. R. Kalbfleisch et al., Phys. Rev. Lett. 43 (1979) 1361.]

e FNAL Tevatron — FMMF (1995) [Hadron & muon shield is located 542 m downstream of
the neutrino target, the FMMF (E733) detector is located 1599 m downstream of the
neutrino target; wide band neutrino beam]

There were some time anomalies but there is no definite conclusions concerning v,.
Seems to be in agreement with the FNAL 1979 limits.

[E. Gallas et al., (FMMF Collaboration) Phys. Rev. Lett. 52 (1995) 6; E. Gallas, PhD, Michigan State
University, 1993; FERMILAB-THESIS-1993-36, UMI-94-06493.]



e FNAL-SOUDAN (MINOS experiment) 2007 [734 km, (E,) ~ 3 GeV, E, S 120 GeV]:
ot = (126 + 32tat £ 644ys) ns (68% C.L.),
4 (7)
(v, — 1) = (5.1 & 2.84tat & 0.30sys) x 107° (68% C.L.).

The measurement is consistent with the speed of light to less than 1.80.
The corresponding 99% confidence limit on the speed of the neutrino is

—24x107° < (v, —1) < 12.6 x 107° (99% C.L.).

This measurement has implicitly assumed that the mo and ms neutrino mass
eigenstates that comprise the beam are traveling at the same velocity. This assumption
is borne out in observing that the arrival times at the far detector match the expectation
distribution. Indeed, if the two eigenstates were to travel at velocities differing by as
little as v/v > 4 x 10~ 7, the short ~ 1 ns |~ 29.4 cm, VN| bunches would separate in
transit and thus decohere, changing or destroying oscillation effects at the far detector.

[P. Adamson et al. (MINOS Collaboration) Phys. Rev. D 76 (2007) 072005.]

A few details:

* MINQOS measures the absolute transit time of an ensemble of neutrinos, to < 100 ns
accuracy, by comparing v arrival times at the near detector (ND) and far detector (FD).
The distance between front face of the ND and the center of the FD is 734298.6 0.7 m.

x The beam flavor content: 93% v, 6% 7., 1% ve + Ve at ND. After oscillating, the
beam at FD is approximately 60% v,,.
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[Borrowed from G. Brunetti, “Neutrino velocity measurement with the OPERA experiment in the CNGS beam,’
PhD thesis, in joint supervision of the Université Claude Bernard, Lyon-lI and Universita degli Studi di Bologna
(May 2011), N° d’ordre 88-2011, LYCEN-T 2011-10; http://amsdottorato.cib.unibo.it/3917/,
http://tel.archives-ouvertes.fr/tel-00633424. |



Part 1V Neutrino Velocity Measurements

e CERN-LNGS (OPERA experiment) 2011 [730 km, (F,) ~ 17 GeV, E, < 350 GeV]:

ot = (57.8 & 7.8tat 157 (syst)) ns,
4 (7)
(v — 1) = (2.37 £ 0.32tar 1054 (syst)) x 107°.

[T. Adam et al. (OPERA Collaboration) arXiv:1109.4897v2 [hep-ex] (November 17, 2011).]
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< Summary of the results for the
measurement of Jt.

The left plot shows dt vs. neutrino
energy for v, CC internal events.
The errors attributed to the two
points are just statistical in order
to make their relative comparison
easier since the systematic error
(represented by a band around the
no-effect line) cancels out.

The right plot shows the global
result of the analysis including
both internal and external events
(for the latter the neutrino energy
cannot be measured).

The error bar in the right plot includes statistical and systematic errors added in quadrature.

The result provides no clues on a possible energy dependence of it in the domain
explored by the OPERA, within the statistical accuracy of the measurement.




10 Astrophysical constraint.

v burst from SN 1987A (Kamiokande-Il, IMB, BUST)
[~ 51 kps, (Ew) ~ 15 MeV, Ey S 40 MeV]:

v, — 1] <2 x 1077,

[K. Hirata et al. (Kamiokande- Co"aboration) Phys. Rev. Lett. 58 (1987) 1490;
R. M. Bionta et al. (IMB Co"aboration) Phys. Rev. Lett. 58 (1987) 1494;

E. N. Alekseev et al. J. Exp. Theor. Phys. Lett. 45 (1987) 589]

Arguments: [M. J. Longo Phys. Rev. D 36 (1987) 3276]

The arrival time of the antineutrinos is known to be within a few seconds of 7:35:40 UT on February
23, 1987. The arrival time of the first light from SN is less well known. The last confirmed evidence of
no optical brightening was at approximately 2:20 UT?2. The earliest observations of optical brightening
were at 10:38 UT by Garrad and by McNaughtP.

Standard SN theory expects that the neutrinos and antineutrinos are emitted in the first few second of
the collapse, while the optical outburst begins ~ 1 h later, when the cooler envelope is blown away.

Altogether this leads to an uncertainty of about 3 h. Hence

lvy — 1] 0y ~ 3 h/(1.6 x 10° x 365 x 24h) ~ 2 x 10~7.

However Longo’s limit is generally not robust.

a]. Shelton, IUA Circular No. 4330,1987.
bG. Garradd, IUA Circular No. 4316, 1987; R. H. McNaught, ibid.
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[G. G. Raffelt, “Particle physics from stars,” Ann. Rev. Nucl. Part. Sci. 49 (1999) 163—-216 (hep-ph/9903472).]



Kamiokande |l result

40
TABLE I. Measured properties of the twelve electron events
detected in the neutrino burst. The electron angle in the last
column is relative to the direction of SN1987A. The errors on
electron energies and angles are one-standard-deviation Gauss- ,; 30
ian errors. o
=
Event Number Electron Electron ~
Event time of PMT’s energy angle g
number (sec) (Nhit) (MeV) (degrees) é:-;') 00
1 0 58 20.0+2.9 =
2 0.107 36 13.5E3.2 152217 g
3 0.303 25 1:5:20 108 £ 32 =
4 0.324 26 9227 70 = 30 2
5 0.507 39 12.8::29 13523 o
6 0.686 16 31D  68%77 = 10
7 1.541 83 354%8.0 3216
8 1.728 54 21.0%x4.2 30+ 18
9 1.915 51 19.8 £3.2 38+ 22
10 9.219 21 8.6 2.7 12230
11 10.433 37 13.0x2.6 49 + 26 0
12 12.439 24 89%1.9 91 £ 39 B

[K. Hirata et al. Phys. Rev. Lett. 58 (1987) 1490-1493; K. Hirata et al. Phys. Rev. D 38 (1998) (448-458).]



IMB result

TABLE III. Characteristics of the contained neutrino events recorded on 23 February.

Time Energy® Angular distribution®
Event No.* (uT) No. of PMT’s (MeV) (degrees)
33162 7:35:41.37 47 38 74
33164 7:35:41.79 61 37 52
33167 7:35:42.02 49 40 56
33168 7:35:42.52 60 35 63
33170 7:35:42.94 52 29 40
33173 7:35:44.06 6l 37 52
33179 7:35:46.38 44 20 39
33184 7:35:46.96 45 24 102

*The event numbers are not sequential. Interspersed with the contained neutrino events are fifteen enter-
ing cosmic-ray muons.

YError in energy determination is = 25% (systematic plus statistical).

Individual track reconstruction uncertainty is 15°. Note that this angular distribution will be systemati-
cally biased toward the source because of the location of the inoperative PMT's.

[R. M. Bionta et al. Phys. Rev. Lett. 58 (1987) 1494-1496.]

TABLE 1. Energies and angles of the eight events from supernova SN1987A. (a) Absolute UT is ac-
curate to 50 ms. Relative times are accurate to the nearest millisecond. (b) Additional systematic er-
ror in energy scale estimated to be £10%. (c) Angle with respect to direction away from SN1987A.
Angle errors include multiple scattering and event reconstruction. (d) assumes events are due to
V+p—e* +n on free protons.

(a) (b) () d
Time (UT) Measured energy Polar angle Antineutrino energy
Event 23 Feb. 1987 (MeV) (deg) (MeV)
1 7:35:41.374 38+7 80+10 4117
2 7:35:41.786 377 44115 39+7
3 7:35:42.024 2816 56420 3046
4 7:35:42.515 39+7 65120 . 217
5 7:35:42.936 3649 3315 3849
6 7:35:44.058 3616 52+10 38+6
7 7:35:46.384 19+5 42120 21+5
8 7:35:46.956 2215 104420 24+5

[C. B. Bratton et al. Phys. Rev. D 37 (1988) 3361-3363; see ]
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We have to remember about
the first low-energy antineutrino
pulse (Ey =7 —11 MeV)
detected by LSD? at 2:52:36 UT
that is 4"44™ earlier the second
(Kamiokande-II-IMB-BUST)
pulse. This fact is usually
ignored by the community.

Naive estimations:

Assuming that Jdv is energy
independent and dtr—730km =~
60 ns (OPERA) we obtain

Otsnigs7a =~ 4 yr.

So it seems that any case there
is a huge contradiction between

the MINOS/OPERA result and
astrophysics.

aV. L. Dadykin et al., Pisma v
Zh. Eksp. Teor. Fiz. 45 (1987) 464.
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11 A possible explanation.

In the previous lectures we have developed a covariant QFT approach which operates with the
relativistic wavepackets describing initial and final states of particles involved into the neutrino
production and detection. The neutrino is described as a virtual mass eigenfield travelling
between the macroscopically separated vertices of Feynman graphs. Thus we make no any
assumption about its wavefunction. Instead, we compute it and prove that it is a wavepacket
with spatial and momentum widths defined and functionally dependent on those of the
external particles involved into the neutrino production and detection subprocesses.

Explicitly the effective neutrino spinor wavefunction reads

Py (pj, @) = exp {—i(p;y) — 05 [(psr)* — mja”]}u—(p;)

, 2
= exp |:—'LEj (yo — vjy) — 0315 (x) — vjzo) — U?XQL} u—(pj),

where y = (yo0,y) = Xaq is the interaction point and = = (20, x) (x = x| + x1) is the distance
between the production and interaction (impact) points, x = X4 — X5.

The main (but not the only) processes of v, production in the MINOS and OPERA
experiments are the 7,2 and K2 decays. It has been shown that the neutrino wavepackets
from these decays appear as huge but superfine disks of microscopic (energy dependent)
thickness in longitudinal direction, comparable with the thickness of a soap-bubble skin, and
macroscopically large (energy independent) diameter in the transverse plane.



Summary of the previous results:

We can neglect the contributions into o; from the particles, interacting with neutrinos in the
detector (reasonably assuming that their 4-momentum spreads are much larger than o, ok,
and o,,). With this simplification we have derived that

2 2 2\ 1

ms [m m

2

o5~ ]( >+ 2“) , a=rmor K.
2 o oh

Then from the above-mentioned conditions of stability for the meson and muon wavepackets it
follows that o; must satisfy the following conditions:

2 —1
m: [(m My
7) < 2j(r:+ra) ’

where 'y, = 1/7, and I'), = 1/7,, are the full decay widths of the meson a and muon.
Considering that for any know meson m,, /I, > m,/I'4, we conclude that the neutrino
momentum uncertainty is fantastically small:

2
o I'

S
ms; 2my,

~1.4x 108,

From this inequality one can immediately derive the lower bounds for the effective spatial
dimensions of the neutrino wavepacket:

: d+ .
dj > 2.5 (0 ! eV) km and dl=-L >25x%x107° (1 Gev) (O L eV) cm.

mj Fj E’V mj

This provides us with an idea of how to explain the MINOS-OPERA anomaly.




12 Qualitative estimations.

‘. = Neutrino
. wavepacket

Source

AB=AD =1

Puc. 36: Neutrinos are emitted from the “Source” and are registered in the “Detector’. The
centers of the neutrino wavepackets will arrive at the points B and D simultaneously, while the
signal from the neutrino wavepacket (shown as an extremely oblate spheroid) which moves under
the angle 8 = ZBAC to the beam axis will arrive earlier since DE > 0. Neutrino velocity vector
v; lies in the plane of the figure. Proportions do not conform to reality.



The school-level planimetry suggests that the advancing time is given by
ot =L (1/cos® —1) ~r’/(2L). (116)
Here we assume that
(i) 1—v, <« 1,
(ii) the neutrino wavepacket effective width is much larger than the detector dimensions, and
(iii)) 0 < 1.

R N B R B
0 1000 2000 3000 4000 5000 6000
r (m)

Puc. 37: Advance ét as a function of r.



A point particle a
cannot affect the
space-time point X.




A finite size body a
(or a wavepacket)
whose center
moves along the
same world line
as the particle
a can affect the
space-time‘point X.




What is the probability to find a neutrino at a distance r from the beam axis? This could be
estimated taking into account that neutrino production is dominated by two-particle decays of
pions and kaons. The angular distribution of massless neutrinos from these decays is

dl 1 —v? 1

- ~ : 117
dQY  4An(1l —wvgcos0)?2  w(1+ [262)2 (117)

Here 6 is the angle between the momenta of the meson a and neutrino (0 < 6 < 7), vq is the
meson velocity, and I, = (1 — v2)~Y? = E,/ma. The second approximate equality in

Eq. (117) holds for small angles and relativistic meson energies (6 < 1, 4I'2 > 1). In the latter
case, the main contribution to the neutrino event rate comes from the narrow cone 6 < 1/175,.

Considering that the mean neutrino energy, E,, from the muonic decay of a meson with
energy E, is E, = [L,EL"), where

B = (m2 —m})/(2ma)

is the neutrino energy in the rest frame of the particle a, the characteristic angle can be
defined as .
0wy = ES JE,.

In the case of OPERA, one can (very) roughly estimate the characteristic angles for the
“low-energy” (LE) range (£, < 20 GeV, F, ~ 13.9 GeV) and “high-energy” (HE) range
(E, > 20 GeV, E, ~ 42.9 GeV), assuming that the main neutrino sources in these ranges are,
respectively, 7,2 and K2 decays:

Oe 2

Y Y

Oy =2.1x107°, e S Ox) =5.5x 107°.



This provides us with an order-of-magnitude estimate of the mean values of r and advancing
times ot:

11 km;
36.7 ns.

TLE 1.7 km, THE

2 S
OtLE Z 5.6 ns, OtnHEe S
Since the LE and HE ranges contribute almost equally to the CNGS v, beam, there must be a
definite trend towards earlier neutrino arrival to OPERA with approximately 21 ns mean
time-shift and a “tail” or, better to say, “fore” of the same order coming from the “edges” of

the CNGS beam.

Similar estimation for the low-energy NuMI beam at Fermilab producing neutrinos for the
MINOS experiment can be done with a better accuracy, since the 7,2 decay is here the
dominant source of neutrinos and the radial distribution of the beam is expected to be very
flat. So, by using E, = 3 GeV we obtain

r~ 36.2 km, 6t~ 120.7 ns. (118)

The latter number is in surprisingly good agreement with the MINOS observation. Obviously,
MINOS should observe at the average a much earlier arrival of neutrinos, in comparison with
OPERA, because of the lower mean neutrino energy which corresponds to a wider transverse
beam distribution and hence to a larger input from the misaligned neutrinos.



13 Numerical
estimations.

Let us now reevaluate the rough
estimations given above with a somewhat
detailed but still simplified calculation.
In particular, we could profit from the
simulation of expected radial distribution of
v, charged current (CC) events performed
by the OPERA Collaboration.

This distribution (pcc(r)) which we
digitalized for our purposes is displayed in
Fig. 38. Being dominated by the 7,2 and
K2 decays, the transverse beam size at
Gran Sasso is of the order of kilometers
and the full width at half maximum of the
distribution is about 2.8 km.

[Figure is taken from <http://proj-cngs.
web.cern.ch/proj-cngs/Beam™Performance/

NeutrinoRadial.htm>.]
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Puc. 38: Probability of neutrino charged current
interactions expected in OPERA as a function of
the distance from the beam axis r.



The distribution pcc(r) transformed (with help of Eq. (116)) into the 6t distribution as
rpcc (7 (9t))

/ drrpcc(r)
0

is shown in left panel of Fig. 39. Its average (§t) is about 20 ns with similar variance and with
the tail extending up to about 100 ns.

Pcc(5t) =

—~ 0.024 = - ! ! ! ! e
= w 1 —
< 0.022 v i ]
—~ 0.020 5 . ]
= a° 0.8 ]
= 0.018 _ ]
@) ] u -1
A 0.016 H 0.6 - —
0.014 [ - .
0.012 ff 0.4 - ]
0.010 | i ]
0.008 F 0.2~ ]
0.006 > , , , , s
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100

0t (ns)

Puc. 39: Left panel: Advance &t distribution expected in OPERA. Right panel: Pcc(< dt)
distribution expected in OPERA.



Right panel of Fig. 39 shows the integral distribution

ot
Pcc (< 5t) = / dtpcc(t).
0

Examination of this figure suggests that all CC events roughly equally populate the following
intervals in 0t:

(0,20) ns, (20,45) ns, and (45,100) ns.

Finally, we compute the expected time distribution in OPERA, ¢(t), as a convolution of the
probability density function of arrival time f(t) taking into account an earlier arrival of
neutrino signal as follows:

[ £+t pectryrar
g(t) = =2 = .
/0 pcc(r)rdr

The resulting curve g(t) is displayed superimposed in Figs. 40 (for the first beam extraction)
and 41 (for the second beam extraction) by dashed lines. On the average, time distribution is
shifted to the left by about 20 ns. However, and this is even more important, the leading and
trailing edges of the signal are shifted by two-three times larger amount as they accumulate
the advance effect from the total f(t) distribution, including long tails. In general, the impact
of the misaligned neutrinos is predicted to be asymmetric in time.

(119)



OPERA data extractionl
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Puc. 40: Top panel: time probability density function for the first beam extraction, measured
(points) and expected (solid curve) by the OPERA Collaboration after account of the systematic
“instrumental” shift. Dashed curve is obtained according to Eq. (119). Bottom left and right
panels: zooms of the top panel for the leading and trailing fronts of the signal, respectively.
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Puc. 41: The same as in Fig. 40 but for the second beam extraction.



14 Preliminary conclusions.

Large transverse size of the neutrino wavepacket and uncollimated beam of neutrinos seem to
explain the earlier arrival of the neutrino signal in OPERA and MINOS. The neutrino signal is
estimated to arrive in advance by about 20 ns in the mean (with a similar variance) for OPERA
and by about 120 ns for MINOS. In the case of the OPERA experiment only this effect
essentially reduces the statistical significance of its observation. Moreover, we have evaluated
the expected time distribution of the neutrino arrival in OPERA and obtained that the left and
right fronts are shifted to the left by about 40-50 ns. This probably explains the observed
anomaly almost all-in-all without any exotic hypothesis, like Lorentz violation and so on.

Let us underline that in our calculations we do not use any adjustable parameter. In the case
of the MINOS experiment there is also a surprisingly good agreement between our expectation
(118) and experimental result. Therefore, we argue that observations of superluminal neutrinos
by the OPERA and MINOS experiments can be (at least partially) treated as a manifestation
of the huge transverse size of the neutrino wavefunction.

This kind of effects could be investigated in the future experiments (in particular, in the
off-axis neutrino experiments) with more details in order to prove or disprove our explanation.

Let us note that one should not expect an increase in the number of neutrino induced events
due to the misaligned neutrino interactions because this effect will be compensated by the
corresponding decrease of the number of aligned neutrinos.



15 What about SN1987A7

Let us briefly discuss the situation with the observed (anti)neutrino signal from SN1987A. A
proper treatment of these neutrinos should take care about the dispersion of the neutrino
wavepackets at astronomical distances. Deliberately neglecting the dispersion, it appears that
any terrestrial detector is sensitive only to the aligned neutrinos, since the misaligned neutrinos
will have negligible impact due to the smallness of their wavepacket transverse size relative to
the astrophysical scale of about 50 kps. Therefore, no advance signal should be expected.
However this problem is not so simple and needs in a more detailed theoretical analysis.

~

Supernova 1987A « December 2006
Hubble Space Telescope « Advanced Camera for Surveys
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16 Multi-packet states.

e The multi-packet state can be written in two forms:

n 1/2
I{p,s,w}n>=<H2Epi> AL, o (@) AL, (22)- AL s, (n)[0) (120a)

and

n 1/2
| {p,s,a},) = (£1)" "D/ <H2Em> AL o () AL, (22) AL o (21)]0),  (120b)

=1

where the sign “+" (“—") is for bosons (fermions). Let us check the equivalence of these
definitions. It is evident for n = 1,2. For n > 2 we obtain after n successive permutations:

n+41 1/2
‘ {p787x}n—|—1 (:l:]‘) (H 2Epz> AI’ +18n+1 (xn—i_l)AI)lSl (xl) Al-)nsn (xn)‘0>

Assuming validity of Eq. (120b), the right-hand part of the last equality can be written as

n+41 1/2
(il)n—i_n(n_l)/z <H 2Epz’> ALn+1Sn+1 (xn‘i_l)AI)nSn (CEn) ) 'A1>181 (371)|0>

i=1
Since (_1)n—|—n(n—1)/2 _ (_1)—n+n(n—1)/2 — (_1)n(n+1)/2 _ (_1)(n—1—1)[(n—|—1)—1]/2’ the
equality (120b) is proved by induction on n.



e Let us now prove Eq. (111). It is obviously satisfied for n = 1.

By direct calculation one checks that

M> = (q1,71,Y1; 92, T2, Y2|P1, 51, T1; P2, S2, T2)
= exp i ((1y1 + q2y2 — P11 — pax2)]
X [0s1m 0sora D(P1, d1; 21 — Y1) D(P2, 925 T2 — Y2)
+051r50s5r D(P1,d2; T1 — Y2)D (P2, q1; 22 — y1)]

2
= exp [%Z (qiyi — pizs)

=1

|D2|7

that is, Eq. (111) is satisfied also for n = 2. Now we calculate the matrix element
Myt1 = ({a, 79} ,,01 [{Ps 8,2}, 1) for n > 2. According to Eq. (120b),

n+41 1/2
M1 = (H 4Fq, Ep@') <O|Aqn+17“n+1 (yn+1)' : 'AOIQTQ (92)ACI17’1 (yl)

=1
X AL1S1 (xl)A;rnSz (:132) ) 'A;r)n+18n+1 (wn+1) ‘O>

=1

n+1 1/2
- (H 4qu’ Epz') <O|ACI17“1 (yl)' ) 'Aann (y”)AQn+17’n+1 (yn+1)

X A—Ir)n-i-lsn-i-l (wn"_l)ALnSn (:Bn) ) .Al_)lsl (:Bl)|0>



Then, after successive permutations of the operator ALn-‘,—lsn-i-l (zn+1) with the operators

Aaprn(Un), - Aqyr (Y1), by applying Eq. (111) for the n-packet matrix elements, and
taking into account the (anti)commutation relation (106), we obtain

n+1 1/2 n+1 .
Mn—l—l — (H 4EQ¢EP¢> Z(il)n+3+158n+17"j exp [i(ijj — pn+1xn+1)]

i=1 j=1
—1/2
X (4Eq; Fp, ) 2D (Pn+1,d55 Tnt1 — Yj)
X <O‘AQ17’1 (yl)' . 'AQj—lrj—l (yj—l)ACIj+17”j+1 (yj+1)' "
o 'Aann (yn)Aqn—l—lrn—i—l (yn—i_l)ALnSn (wn) ) 'AI)1S1 (:131)‘0>

The right-hand part of this relation can be rewritten in compact form as

n+1 n+1
exp [Z Z(Qiyz’ - pil’i)] Z(il)nﬂH(Sanrﬂ? (Pn+1,95; Tnt1 — Yj) \ng)q%
=1

Jj=1

where \]D)gflﬂ is the minor of order n of |D,,41| obtained after deleting from the latter the
(n + 1)-th row and j-th column. The sum over j in the last expression just represents the
minor expansion of |D,1| over the bottom [(n + 1)-th] row, hence

n+1
M,+1 = exp [z Z (qiyi — pizxs)

=1

Dy l.

This completes the proof by induction.



17 Gaussian integration in Minkowski spacetime

We are frequently dealing with the Gaussian integrals
G(A, B) = / da exp (— Aas” + Buzh) (121)

where A = ||A,v|| is a symmetric and positive-definite matrix and B,, are some complex
constants. While these integrals are well known we reconsider this issue here, because there is
some confusion in the literature concerning the correct definition of the matrix inverse to A in
Minkowski space. In our case A,, and B, form, respectively, a tensor and 4-vector, though
this fact is not used below. Moreover, the main steps of the subsequent derivation are not
affected by the space-time dimension and signature.

The matrix A can always be diagonalized by an orthogonal transformation O = ||O,.||:
AH’V — Z a/aO,uaOya, Z O,uaOya — 5,uy, (122)

where a,, > 0 are the eigenvalues of A. Taking this into account, the quadratic form in the
integrand of Eq. (121) can be rewritten as

—A, 2" x” + Bzt = — Z ao (Opaz”) (Opaz”) + Byx"

(o

-3 (<o + 3 80w (123
o %



where yo = Opuax” (and thus 2 = 3" Ouaya). The Jacobian of this transformation is
|O] = 1, hence dx = dy. Substituting Eq. (123) into (121) reduces it to the standard Gaussian

quadratures:
2
s 1
g(A, B) = H a exp [E (Z BMOMQ)
o n

According to Eq. (122)

Y ' 0paOva = (A71) = A" and  []aa =14

Therefore, for the 4D Minkowski space-time

2

G(A,B) = \}Tm exp [i Z (A—l)/ﬂ B.B,

[73%

2
T

1 ~
= ——exp| -A""B B,,) : 124
Note that A = gA~'g and thus |[A] = 1/|A| = 1, aa". Therefore the matrix Ais
positive-definite and of course symmetric.




18 Stationary point: general case.

[Npusesem 3peck MeTop peweHusi ypasHeHus (52) B oblem ciy4yae, T.e. Afsi NPOV3BOJIbHON

KOHpUrypaumnm BHewHNX nmnynbcoB. ObLiee pelweHne npeacTaBaAsieT NHTEPEC KaK C METOANYECKOL

TOYKWN 3pPEHNA, TaK N ONA NPAKTNHECKOro CYMMNPOBaHNA gnarpaMm C TA>XKEJIbIMN N N€ETrKNMN HeI7ITpVIHO

B MPOMEXYTOYHbIX COCTOAHUNAX. XoTs npe,u,naraeMb||7| ajaropmntm goBOJIbHO rpoOmMo340K, OH JIErko

MOXXET ObITb peann3oBaH B BUAE KOMMbIOTEPHOI NMpOrpaMmMbl Ha YAOOHOM si3blKe MPOrpaMMupoBaHNS 1

NnO3TOMY NOJNIE3EH NMpeXae BCEro npm HNCA€HHOM aHANN3E.

VaobHo paboTaTb ¢ ypasHeHuem (52), 3anucanubim B Buge (130), B KOTOPOM HEN3BECTHOI
BEJINYMHON SIBNSIETCA CKOPOCTb BUPTyanbHOro HeiTpuHo. Boseogs obe qactu (130) B kBagpar,
MPUXOAUM K anrebpanyeckoMy ypaBHEHUIO YETBEPTOro MOPsiAKa

4 3 2
v+ c3v” + v +c1v+co =0,

K0P PULMEHTBI KOTOPOro NMEKT BUA,

_ (RI)? — (n1)?
- RD2+n¢ 7

R2? + 6(R1)2 4 4R(R1) + (n1)2 — 7

2
0

co =

(R1)2 + n?

3aeck 1, = Y, /m;; BCtogy Aanee npegnonaraercs,

(125)

BB +2(R)* — o))
L (R1)2 + n2 ’
JR(RI) + 2(R1)? + o (1])

(R1)2 4+ n2

C3 = —

4yto m; > 0 (cnyyait beamaccosoro

HEATPVHO TPUBMANEH), @ UHAEKC «j», HYMEPYIOLWUN HelTprHO, He nuweTtcs. Bce ocTanbHble

0bo3HavyeHnsa Takue XK€, KaK U B OCHOBHOM TEKCTE.



Pewenne ypaBHerus (125) moxeT bbiTh HaligeHo meTopgom [ekapTa-diinepa. CornacHo atomy
mMeTogy, 3anuwem ypasHeHue (125) B «HenonHoM>» BuAe

c3\4 c3\2 C -
(v—l——3> —|—62(v—|——3) —|—c1(v—|——3>—|—co:O. (126)
4 4 4
PelweHuns 3Toro ypaBHeHUs CTPOATCA N3 KOpHel Kybndeckoro ypaBHeHUs
2% +az® + a1z +ao =0, (127)
B KOTOPOM
a ——52—1 a —AQCQ—_@/O a —5—2
7 s T 16 0 P 2

VpaBHeHue (127) Takxke MOXET ObiTb TOXXAECTBEHHO NMpeobpa3oBaHO K «HEMOHON» copme

(cbopme KappaHo):
(z+a—2)3+ (4 %) +a=0
3) TP 3) A=

3pechk NCNOMb30BaHbI cneaytowmne obosHaveHns:

o B[R ARRD —mi + ()]

3 48 [(R1)2 + 3" 7
aia2 az\ 3 A
= a0 — —I— 2 (—) = — y
1= a3 3 864 [(R1)? + 12]°

A= Ay + A (RI) 4+ Az (R1)? + A3(R1)®,



Ao = R® =3 [n5 — ()] B* +3 [5 + 16n5(n)” + (n)*] B* — [ng — (n))*]"
Ay = 12R{R* — 2[5 — (n)*] R* + [15 — Tno(nl) + (n1)*] (n1)*},
Az = 48R* [R* — nj + (n1)?] + 54(nl)",

Az = 64R°.
Yucno BeleCTBEHHbIX KOPHEl onpeaenseTcs 3Hakom byHKLUM
2
s @0 [mmDR- ()R] B
427 27648 [(Rl) +n3°

coBMagarolnM co 3HakoM nonuHoma B = By + Bi(R1) + B2(R1)* + B3(R1)?,
K0P PULMEHTBI KOTOPOro NMEKT BUA,

Bo = R® —3[n3 — (n)?*] R* + 3 [ng + T3 (n)? + (n1)*] R* — [ — (n1)?]”
B = 6R{2R" — 4 [n5 — (n))*] R* + [2n0 — (m1)] [no — 2(nD)] (n1)*},

By = 48R” [R® — ng + (n1)?] + 27(nl)*,

Bz = 64R°.

[Mpn B < 0 nmeeTcst Tpn passinyHbIX BELWECTBEHHbIX KOpPHSA, Npun B > 0 — oAWH BeLLECTBEHHbINA
N Napa B3aVIMHO COMPSIXXEHHbIX KOMMJEKCHbIX KOpHel, npn B = 0 gBa wunn Bce Tpun
BELLECTBEHHbLIX KOPHS MOryT coBnagaTtb. Mo)xxHO gokasaTb crieaytollee None3Hoe TOXKAECTBO:

A= B+ 27 [n(m)R — (nl)*(RD)]" . (128)



PeweHne ®Peppo-Taprtanba-KapgaHo B pagukanax.

KopHu «HenonHoro» kybnyeckoro ypasHenusi (127) pasHbl

V3

1
o=at(Ar+4-), zx=a-S(As+A-) Fi- (A — A,

roe

as B Co +C4 (Rl) —+ CQ(R1)2 + Cg(Rl)3

a=— = ,

3 12 [(R1)2 + n2]?
A B
g ()R — (n)*(R1), %'
Ai ~_4 + VB = :
2 96 [(R1)2 + n2]°
Co= —mn [2R* — 205 — (n))?], C1 = — 2no [4n0 — 3(n))] R,

Cy = R* —2(nl) [5n0 — (n1)], C3 = 4R;
d=0npn B>0wud=1npn B <0. BolpaxeHnune gns AL ynpowaercsi, ecnm y4ecTb
Toxaectso (128):
2 .5 2/3
13v/3 o (n1) R — (30)*(RY)| +i° \/TB]|

As = 12 [(RI? 1 2]




PeweHne B TpuroHometpudeckoii popme Buera.

Ons nonHoTbl npueesem Takke 6onee KOMNAKTHYIO TPUrOHOMETPUHECKYIO popmy pewterus (opmy
BueTa), koTopasi MoXeT oka3zaTbcst 6osiee yaobHOW Npu YNCAEHHBIX payYeTax v BO BCAKOM Ciydae
NoJIE3HA AJ1S KOHTPOJIS TOYHOCTU BbIYUCJIEHNI NYyTEM CPAaBHEHUS C KAHOHNYECKMM pewieHunem. SBHbINA

B, TPUFOHOMETPUYECKOrO peLleHNs 3aBUCUT OT 3Haka pyHKuun B.

Cnyvan B < 0. Kak yxe oTme4anocb, B 3ToM ciy4ae (MHOrga Ha3biBaeMOM
«HEeMpuBOAVNMbIM>» ), ypaBHeHue (127) nmeeT Tpy BELLECTBEHHbBIX KOPHSI:

o o+
z0:a+Cocos—, Zi:a—COCOS( ),
3 3
rae
_|R? +4R(RY) — 78 + (m))?) A

0 CoOs&x = —

6 [(R1)2 + n?] ’ |R2 +4R(RI) — 72 + (n))2|>

Cnyvan B > 0. B stom cnyyae ypasHeHue (127) nmeeT oanH BeLeCTBEHHbIA U ABA
KOMMNEKCHbIX KOpHS. Beegem obosHaveHus:

tana’ = \B/tang, sin 8 = — A :%|R2—|—4R(Rl)—ng—|—(nl)2}3, \B|§g

COS «x

(Bo BCex cnyvasix bepetcs peanbHoe 3HaYeHne KyOnyeckoro kopHsi). Torga KOpHU paBHbl
s

20 = a — (pcosec 20, z4 =a+ %O (cosec 20/ + i3 cot 20/) : |o/\ < 1



KopHu ypaBHeHus (125).

KopHu «HernonHoro» ypaBHeHusi YeTBepToii ctenern (126) gatotcss kombuHauusimu

=n = E\/2- £ +v/20 £ /2+,

B KOTOPbIX HETbIPE N3 BOCbMWN BO3MOXHbIX COYeTaHnIn 3HAKOB BbI6VIpa}OTC$I Tak, 4TODbI
BbIMNOJIHANOCbL yC/ioBUE

e = _ @ _ Do+ Di(RD) + D>(R1)? + Ds(RD)* + Ds(RD)*
VEi-vVzo/z = 3 SIRD? 1 o2° .

3pecbk ncnosib3oBaHbl 0OO3HAYEHUS:
Do = no(n) (R* +ng) ,
Dy = g [R* = 35 + 4m0(nl) — 2(n)*] R,
D2 = 1o {2 [3n0 — ()] R — (1) [6n5 — 310(nl) + (n1)*] },
Ds = [9n6 — 8no(ml) + (n1)°] R,
Dy = 2(nl)?.
Bce yeTbipe kopHsi ypaBHeHusi (125) moryT bbiTb Tenepb HaiifeHbl no dopmyne
vy =52n —c3/4 (n=1,2,3,4).

EovHCTBEHHBIN MHTEpeCcyOW N HaC BELECTBEHHbIVI HEOTPULATENbHbIVI KOPEHb,
COOTBETCTBYOLWNIA CTAaLNOHAPHON TOYKE, [OJIKEH YAOBJIETBOPATL YCJOBUIO NOJIOXKNTENBHOCTM
BTOpOIi npon3seogHoii (54).



HaligeHHble B OCHOBHOM TEKCTE peLUeHUst NS ABYX MPOTMBOMOJIOXKHbBIX MPeaebHbIX ClyHaeB
(1-v<1nv~ 1) MOryT cnyxuTb SONOJHNTENBHBIMY KPUTEPNAMMN €GNHCTBEHHOCTN
peleHnsi obuiero Bmaga, OCHOBaHHOrO Ha OMMUCAHHOM 34€Chb aJIFOPUTME, MOCKOJIbKY OHU
AOJDKHbBI TNAfKO «CLUMBATBHCAY» C NPaBUbHbIM YUCJEHHbIM PELUEHNEM MPU COOTBETCTBYHIOLLINX
BapuaumnsX NMMMyJbCOB BHELLUHUX BOJIHOBbIX MAaKETOB U AUCKPETHbIX MapaMeTpoB,
ONpeaensoWmnX BenYnHy 3peKTUBHON CKOPOCTY BUPTYaNbHOMO HEATPUHO.



19 Stationary point: nonrelativistic case.

34ecb Mbl N3Yy4YUM 4YacCTHbIA CyYaii, oTBeYarowmnii Ceayowen KOHPUrypaunm BHELWHNX
NMMNYbCOB:
v y . 129
s ~ —qa ~ m; > |as| ~ |adl. (129)
DTOT ciiyyaii NpefCcTaBAsieT NOTEHLMANbHbBI UHTEPEC AJISt SKCMEPUMEHTOB Mo noncky (noka
FMNOTETUYECKNX) TSXKENbIX HeliTpMHO. YaobHo nepenuncatb (52) B TepMuHax ckopocTu
BUPTYaNbHOrO HelTpuHO v; = |q;|/qo:

L {R _ (RI)M] —Y, — (Yl), (130)
\/1— 22 Y Y
Beegem be3pazmepHblii 4-BekTOp 05 = (Qg-), Q;) C KOMNOHeHTamu
1 1
b — (Re— —yH 131
g = (R - v (131)

HeTpyaHo Bugetb, 4To npu BbinosHeHun ycnosuii (129) aTu KOMNOHeHTbI Masbl Mo
abcontoTHoli Benu4unHe. B camom gene, nogctasue B onpegenerue (131) BoipaxkeHne ans
4-BeKTOpa Y, KOTOPOE B MOKOMMOHEHTHOW 3anncu UMeeT BUA

~

YH =R — RE0q + Rl — REF g,



Haraem
1

mj%
Mockonbky Bce cnaraemble B (132) cogepaT manbie Muoxutenn (1 — q2/m;, ¥ /m;j, n 1.8.),

MOXHO 3aKN4UNTb, 4TO |0, <K 1. YuuTbiBas 310, byaem nckatb pewenne ypasHerns (130) B
BUAE OBOMHOrO CTENEHHOro psaaa

—— v n _m — (Ql)
L+) ) Ci(e)"efs| . v = 1_:@3_0- (133)

o = —— [ (my — q8) + 4" (m; + ) — RE"gb + Ri5h] (132)

vj =

n=1m=0

Boinvwem nepsble wecTb be3pasmMepHbIX KO3PPULMEHTHBLIX OYHKL NI o).

v 1 o . 3(R1
Cio) - = §C§1) — 30{2) = %7

(v) 9(R1? Roo 1
020 - 9 =~

X7 2% = 2
2 (134)

oW _ 18(R1) N 3Roo N 3

21 7z °% | 2
o _ 3(RD) [45(RD*  10Reo 23

0T 87 7z 7 3|

N3 (133) n (134) nonyyaem

.2

v 3 1
Ej:mj—I— 5 (1-|—Z5j—|—...), Pj:mjvj(l—l—§5j—l—...). (135)




3peck yHKLUSA

3(RI1
5= (e [14+ 2B g1y gy

onpeaenseT BEINYNHY MaBHbIX PENSTUBUCTCKUX NOMPABOK, @ TOYKaMN 0DO3Ha4YeHbl MOMPaBKU
BbICLLUUX NOPSIAKOB MO (le) n 0jo. Kak BUgmMm, HepenaTUBNCTCKOE COOTHOLLEHME MEXIY

3P PEKTUBHBIMIU CKOPOCTbLIO, SHEPrMER N UMMYJBLCOM OCTAlOTCS CrpaBea ivBbIMIK BNIOTbL A0
BTOPOro nopsigka no (le) N YTO PeNsTUBUCTCKUE nonpasBku K F; n P; nonoxuntenbHbl.

Huxe byget gokasaHo, 4To doyHKUuA Z nonoxuTtenbHa. YynTbiBasi 3TOT pakT HETPYAHO
BUAETb, 4TO BTOpasi npoussoaHas (546) nonoxxntenbHa B CTaLuMOHAPHOW TOYKe.
OeiictentensHo, noactasus (133) n (134) B (546) nonyuum

d*F;(qo) 2% 6(RI)
RS YA =2R+ — [1- —~%(0.;1) +0j0+...| > 0. 136

BosHukarowasn 3gece ocobeHHocTb npu ¥; = 0 He JO/KHA BbI3bIBaTb HEAOYMEHUS, MOCKOJIbKY
OHa JINLWb MNOATBEPXKAAET NHTYUTUBHOE OXMAAHUE TOro, YTO aMNAMTyAa npouecca C

& MNOKOSILLUMCS» HEATPUHO B MPOMEXKYTOYHOM COCTOSIHUM [AOJIXKHA PAaBHATBLCS HYMO. TeM He
MeHee, 3TOT cny4aii TpebyeT bosee AeTaNbLHOrO U3YYEHNSI YCIIOBUIA NPUMEHNMOCT METOAA
nepesana n teopembl ['C. DT Bonpockl byayT obcykgaTbcs B oTAenbHON paboTe.

ObpaTtumcsi K cneyranbHOMY CJly4ato TOYHOro basiaHca nepegaqy SHEPruU-MMMNyabLCa B
BEpPLIMHAX Makpoguarpammel. bygem ucnonbsoBaTb cnegytowmne obosHaveHus

G0 =-q=E>0, qs=-qa=Pl, P >0/ (137)



B cooTtetcTBUN € ycnosuem (129), npumem, uTo

0§5/mj—1<<1 n O§77/mj<<1.

1 P E
= |RMly— — RN — —1
o 74 [ k kmj 0 (mj )]
n, cnefoBaTesbHO,

(RI) P Roo(g _1>7 (o,1) - P _(Rl)(€ _1).

0i0 = e@ m; - 9? m; m; e@ m;

Nmeem

MopcTasne HaligeHHblie cooTHowerns B (133), yunteieas (134) n nepepasnoxue noayyeHHoe
BblpPa>XeHUe MO CTEMEHsIM ABYX MasblX He3aBUCKUMbIX napameTpoB P/mj; u £/mj — 1,
MPUXOAUM K CrieflyloLieMY BbIPa>keHUto A5t 3PPEKTUBHOW CKOPOCTU BUPTYasIbHOrO HeliTPUHO:

v; = 7, {1+ %mﬂj + {}2}’ - 3%12)2] (ni - 1) +} ;= (o1). (138)

N3 (138) Haxoanm 3chdeKTMBHYIO SHEPrUIO N NMMY/bC BUPTYaslbHOrO HEATPUHO B
nugupytowem nopsigke no P/m; n £/m; — 1:

~ 2 ~ .99 .
E; =~ m; +m;v;/2, Pj~m;v;.

ITn npocTble hOPMYJibl MOSHOCTHIO OTBEYAIOT UHTYUTHBHBIM OXNAAHUSMA LWL NPU
E/m; — 1| S P?/m3. B 3Tom (1 Tonbko B 3TOM) 4acTHOM ciyuae

Vj %P/mj, Ejzmj —|—772/(2mj) n Pj ~ P.



20 Stationary point: ultrarelativistic case.

Ons nnntoctpaunm obymx pesynbTaToB, MNOJIYHEHHbIX B YNbTPapeiTUBUCTCKOM Ciy4ae,
PacCMOTPMM CrneunanbHy0 KOHUIYPaLmio BHELWHNX VMMY1bCOB

o =—q1=E>0, qs=-qa=Pl, P>0, (139)

OTBEYAlOLLYIO TOHHOMY COXPaHEHUIO SHEPTUU U UMMY/bCA, «nepeTekatowmxy ns S s D.
Bynem HasbiBaTb BENNYUHY Q=& P2 BUPTYaNbHOCTbIO HEWTPUHO.
VnbTpapenaTUBUCTCKNIA CNy4Yai onpeaensieTcs yCaoBUsMY |Q2\ < En m? < 52, HO
BMPTYaNbHOCTb, KOHEYHO, He 0bsizaHa coBnagaTth C m? Ja>ke Mo nopsaky BeJINYUHbI.
HeTpyaHo nokasaTb, 4to ans koHdurypaumm (139)

w-efion ()], weme () (5 5) o (- )]

roe

noz—:m—
R

Paznoxue E, u n no manomy napametpy Q*/E2, nonyunm:

B Q* o> ot
Ey_gll+uoﬁ(1+282+884+ ,

(R) - % %; (140)

Q2
n:no—i—(m—no—ng)@

2 4



rae, Kak obbl4HO, ToHkaMy 0bo3HaYeHbl NONpaBku BbicWKX nopsgkos. T.0. K, — & nn — ng
npu Q* — 0. MNepepasnaras nony4eHHble Bbille BbipakeHUs ans F; n P; no symMm Manbim
(HesaBucumbim) napametpam Q% /€% u m?/E? nalipem:

2E 4E2 4E2

02 — m? 0? ) m>
Pj:7>+TJ [(n0+1) (1—1—@)—|—(4no—|—5no—2m—|—1)ﬁ—l—...].

2 2 2 2
EJ:HM[M (1+Q_)+(4n3+3n0_2m>&+._.],

OTctoga BNAHO, B 4acTHOCTHU, 4TO 3cpdpekTuBHAsH sHeprust (MMMybC) HEATPUHO MOXKET ObIThb
KaK MeHblue, Tak 1 bonblie nepegaHHoin sHeprun £ (nepegaHHoro mmnynbca P); eCTeCTBEHHO,
E; =& wn P; =P npn Q> = m; (1 Tonbko B 3ToM cnydae). [pyrumn cnosamu, faxe npu
TOYHOM DanaHce nepefaHHbIX 4-UMMYNLCOB B BEPLUMHAX AvarpaMmbl, 3PeKTUBHbINA
4-umnynbc BUpTyanbHoro HelitpuHo (E;, P;l) Boobuwie rosopsi He coenagaet c (£, Pl).
PaznoxeHne gns adppekTNBHON CKOPOCTY HEATPUHO UMEET BU,

2 2 2
m; m=
’UjZl—ﬁ 1—110%4—(4]104—1)@4—... ,

TaK YTO rJlaBHas NOMNpPaBKa K yNbTPapensiTUBMCTCKOMY npegeny v; = 1 He 3aBNCKT OT
BUPTYaNIbHOCTN HENTPUHO.



21 The amplitude: More details.

Bbiwe 66110 fOKa3aHO, YTO Kak B ybTPAPENSATUBNCTCKOM, TaK U B HEPENSATUBUCTCKOM Cly4ae
dbyHkumna Fj(qo) umeer abcontoTHbiti MuHnMym npu qo = E;; B OKpecTHOCT MUHMMYyMa OHa
MOXKET ObITb annpokcMMnpoBaHa rnapabonoii:

(g0 — E;)*
Fj(qo) ~ Fj(Ej) + 5 (141)
3aeck BBeAEHa MONOXKUTENBHO onpedeneHHas pyHKUNS
2 2 —1/2
D; = {[d Fj(QO)/qu]qozEj} : (142)
B ynbTpapensaTuBncTCcKOM cilyyae, paCCMOTPEHNEM KOTOPOro Mbl OFPaHNYMMCS B AaJibHenLwewm,
EV EV

E~2R V2

B pamkax caenaHHbix Hamu npubav>KeHnii 3Ta BenMYmMHA He 3aBuCuT OT j (T.e. yHMBepcasbHa
A1t BCEX HEMTPMHO) N Masa Mo CPAaBHEHUIO C PEMPE3EHTATMBHON SHEPruei HeliTPMHO

(D < E,). lNpumem Tenepb BO BHMMaHME, HTO B OKPECTHOCTM CTaLMOHApHONR Touku F; Bce
MHOXXVTENN MOALIHTErPASIbHOIO BblpaXkeHMsi B npasoii 4actu (49), 3a nckaoveHnem

1 .
exp [—ZFj(qO) —1 (qOT — /% —m; L)} :

SKCMOHEHTDbI



ABNAOTCA CNabo MEHSAWUMNUCS PYHKLUSIMN NePEMEHHO NHTErPUPOBAHUS o U MOTYT BbITb
NO3TOMY BbIHECEHbI N3 MO4 UHTerpana B Touke qo = F;. Wcnonesysi (141) n pasnoxerue

2 2 _p. 4+ 1( E) mi( E')2—|—
do — M5 = L v—qu— g ——2pj3 qo — L

Mbl NMpunxoamm K cieayrowemy npoCtomMy MHTErpany:

0 L

— 00 UJ

1 1 im3 L
— 4 FilEs) = (8@2. + 5ps ) (q0 — Ej)2:| .
J J

Beoasi komnnekcHo3Ha4Hyto ha30ByO0 PyHKLUMIO

2
2;(T,L) =i (E;T — P;L) + 29} (Uﬂ —T) , (144)
J
i ~ D2 D2 Am2D%L Am2D%L
D2 — I~ = i T (145)
R T B S R p3 E3
nony4aem:

I; = 2279, exp [—iFj(Ej) — (T, L)] .

KomnnekcHas “gncnepcus’ ©; 3aBUCUT OT 3(PPEKTUBHON SHEPrUY HERTPUHO 1 OT
MPOCTPAHCTBEHHOrO PaccTosAHUA L Mexxay npuuesbHbIMU TOYKaMU B NCTOYHUKE 1 OETEKTOPE;



ee MOZy/lb U aprymMeHT AatoTCs caegyownmmn dopmynamu:
~ —1/4 ~ 1
9| ~D (1+ t?) / ,  arg(9;) ~ 5 arctan (t;) .
Cobpas BCE MHOXMTENMN, Mbl MOJIYHaEM CJIEQYIOLLEE OKOHYATEbHOE BbIPAXXeHNE ANt PYHKLUMY

(49):

~

@je—ﬂj—i@
i(2m)32L

G ({Poes oY) = A (D7 = P3)Di A (5 + Pa)|Valpy) Vs (py)] (146)
3aeck BBegeH 4-sektop p; = (Ej, P;l) n onywen Bkiag, nponopumoHanbHbiii m; (cm.
npumedarue a). Mazossliii hakTop —ie “© B (146) HecyleCTBEH, NOCKOJIbKY OH MCHE3aeT B
KBagpaTe MOAYAS aMMnTyabl.

Bnaronaps Hannuuto “pasmasanHbix’ O-dpyHKL M Ss (p; —qs) m Sd (p; + qa), BXOASALLMX B
BblpaXkeHns Ans nHterpanos nepekpbitust Vg (p;) n Vi(p;) n oTBeTCTBEHHbIX 3a
NpubIvXKeHHOE CoXpaHeHMe Heprum-nMnynbca (p; & gs & —qq), a Takxe Npeanosiaraemor
MaJIoCT MacCC HEMTPUHO MO CPaBHEHUIO C penpe3eHTaTNBHON 3Heprueln F,, Mbl MoxxeM
nonoxnte m; = 0 BO BCEM NpefsKCroHeHUnanbHOM dakTope B npasoii Hactu (146).
[MpumeHnM Tenepb TOXXAECTBO

P_p, Py =P u_(pv,)u—(py)Pr

_ 1 _ < <
(8 koTopom Py = 5(1£7s5), pv = Eul, n u—(py) — 0bbIYHbIV gupakosckuii bucnuHop ans
cBobogHOro 6e3maccoBoro JIEBO-CNMPasbHOrO HERTPVHO V) 1 OMPEAESIVIM C €rO MOMOLLbIO



MaTpN4Hbl€ 2/1EMEHTDI
2

M = %U_ (pl/)jsuA,up/ (pl/ _|_pa)0,u u(poé)7

2 /
Mj = 20(ps)0" Ayru(py = pa) T3 u(pv),

(147)

OMUCbIBatOLLIE POXKAEHNE N MOMOLLEHNE PEeasIbHOro HE3MaCCOBOro HENTPUHO B peakLmsix
I - Fittvvwuvly — Fc'iﬁ/g cooTBeTCcTBEHHO?. Torga, C y4eTOM BbILIENPUBEAEHHbIX
pe3yNbTaTOB, Mbl MOJyHAaEM OKOHYATENILHOE BbIPaXkeHUe asst amnantygbl (44):

|Vs(pj)Vol(pj)‘]\48]\4&k * — Q. —iO
Apa = TN T VD Veje 97, (148)
J

[NonesHo BbiAennTbL B 3TOW POpMYy/e HE3ABUCALLWIA OT j ODLUNIA MHOXUTESb, OTBETCTBEHHbIN
33 NPUBNVIKEHHOE COXPAHEHNE SHEPrUM-MMMYAbCA B BepwmHax. [ns 3Toro, ncnonbsys sBHbINA

a 2 2 2 2
[Mpu pononHuTenbHbIX ycnosusx |(py +pa )| K miy, n [(py —pg)“| K mj;,, nponaratop W-6030Ha
MOXHO NPUBIVKEHHO 3aNNCaThb KaK —igu, /M3, YTO COOTBETCTBYET HeTbipexdepMUOHHON Teopun cna-
boro B3ammopelicTeusi. Toraa, BOCNO/Ib30BaBWNCL N3BECTHbIM ToXaecteom CM g2/8 = Gpm%/v/\/i
MOXXHO MepenncaTb MaTpudHbie anemenTol (147) B Buge

Ms =~ —ZE U— (pu)jsuo,uv(pa)a Md ~ —’LE u(pﬁ)deO“u_ (py)

O,D,HaKO 3TO HECKOJIbKO OrpaHnN4YnTEJZIbHOE ynpoweHmne (HenpmmeHmmoe, B HaCTHOCTU, Npn CBEPXBbICOKNX
3Hepr|/|s|x) HE ABNAETCA HeOGXO,DlVIMbIM n He 6y,u,eT ncnosb30BaTbCA B p,aanel‘/'lUJeM aHaNn3e.



BUA pa3MasaHHbIX O-PyHKUWIA, 3anuem

0s(pj — 4s)0a(p; + qa) = 0s(pv — qs)0a(py + qa)e %,

roe
0; = i [2 (YM - Ruu’p/;/) + Ry (pv —pj)ul} (pv —p;)" =
= S {B[(R) = Roo] + Yo} (B — By) + 3 {Bu [(R) — 7] — (YD} (B, — P}) +
+ i [Roo (B, — Ej)* —2(R1) (E, — E;) (B, — P)) + % (B, — P;)°].

Torpa amnantygy (148) MOXXHO NpefCcTaBUTH B CleAYIOWEM BUAE:

Ao = Vs()Va(py)|Ms Mg
oo i(2m)3 PN

> VD, Ve Hm0iTe (149)
J

Ncnonbsys (59) moxHo npeacTaBnTb pyHKUno ©; B BUAE Pa3NOXKEHNS MO T

2 1 2 1 2y .2 3
©; =m;R |(no —n)+ 5 (m—n—n)r; + (n+ 5) (m—n—n")r; +0(r;)| .
HanomHum, 4to dyHkuus ng onpeaensietcs cornacHo (140) n coenagaet ¢ n B ciyyae
TOYHOTO COXPaHEHUs SHEPrUU-UMMyNbCa B BepwmHax (cMm. pasgen 7.12.2). MNpwn BbinosHeHUn
NPUHSATLIX HaMun ycnoBuii (66) MoXKHO HanmcaTb NPUbAVIKEHHO:

@j%m?R[(no—n)—l—%(m—n—nQ)rj},



a B OKPECTHOCTU MaKCUMyMa MPOU3BEAEHNS s (py — qs)gd(p,, + qa) (Te. npu gs = —qa ~ py)

MOXXHO npeHebpeyb 1 3HaKOHEONpeAeNeHHONR pa3HoCTbIO Ny — n. Torga

O ~ mjR (m —ng — nj) _ mj [RooZ — (R1)?]
¢ AE?2 ARE?

(150)

Hu>xe mbl AOKa>XeEM, HTO 3Ta BEJINHMHA MNMONOXKNTEJIbHA.

13 BoiBOna dbopmynbl (149) n ee CTPYKTYpbl BUAHO, YTO OHA CMpaBef IMBaA HE TOJIbKO AN
PacCMOTPEHHOrO KJlacca NMpoOLEeCcCoB, HO, MNPV COOTBETCTBYIOLWLEM MepeonpesesieHn MaTPUYHbIX
anemenToB (147), n ans nobbIX APYrux NPOLECCOB, UAYLLMX 32 CHET 0OMeHa BMpPTyasibHbIMY
HEATPVHO MeXAy BepwmnHamu Makpoaunarpammel. HetpygHo 0606wmnTe dpopmyny (148) n Ha
cnyyai peakuuii C OOMEHOM aHTUHENTPUHO, ANA YEro CneayeT CAenaTb B HEW 3aMeHy

V — VT (e, VI — Vaj, Va; — V3;) n pomkrbim obpasom moanduuymposaTts
MaTpryHble 3nemeHTbl (147).



Overlap volumes.

Mpn aHann3e namepsieMbix xapakTepPUCTUK (Taknx, HaNprUMepP, Kak CKOPOCTb CHETa
HEATPUHHBIX CODbITUI B YCTAHOBKE) MOJIE3HO MCMOb30BaTh NPEACTABIEHNE At BENYUH
Vs(q)]1? u |[Va(q)|?, Heckonbko oTnuyatoLwmecs oT TOro, KOTOPOe MOXKET BbiTh MONyHeHO B
pe3ysibTaTe HEMOCPEACTBEHHOMO MPUMEHEHNS IBHOW hOPMYJbl NS NHTErPasiOB MEPEKPLITUS.
VYnobHee BO3BPaTUTLCA K ONpeAeNeHmto 3TUX UHTerpanos u 3anucats |V 4(q)|* B cneayrowem
BUAE:

Vealq) = / da / dy exp [i (qe.a £ @) (@ — ) — Toa() — Toa(y)],

roe

Yoa(z) = Y  T& (x—2), (xx—2),, S=IL&F, D=I®F.
»€S,D

[Mocne 3aMeHbl NEPEMEHHBIX MHTErPMPOBAHUS
/ / / /
r=z +y/2 n y=x —y /2

(c eauHNYHBIM AKOOMAHOM) MOCNEAHMNIA NHTErpan MOXHO MEPENnncaTh Kak

/ . / 1 v !/ / / /
Va.a(q)? = /dy exp [z (gs.a *q)y — 5%5@%%} /da: exp [—275,q(z")] . (151)



Beoasa obosHaveHuns

1~
exp (—ES%ZZKMKV>

dx 1
0s.a(K :/ exp (in— — R x x,,) = , 152
d( ) (27_‘_)4 9 s, dTH (27T)2\/m ( )
2

26,
Vs,d — /dx H |¢% (p%,CC% — 33)|2 = il eXp( = ’d)7 (153)

»€S,D 4 V ‘%s,d‘

npeactasum (151) B cnegytowieii komnakTHol opme:

Vs,a()I* = (27) 65,0 (¢ F gs,a) Vs.a- (154)

Pyrkunn ds(K) n dq(K) KOHEHHO HE COBMAJAtOT C MCMOJb30BABLUMMUCS paHee PyHKUMSMY

6s(K) 1 64(K), HO MMeIOT TOT e cambiii NaockoBoNHOBOI npeaen (T.e. 8s.q4(K) — 0(K)) u
nopobHble >xe colicTBa. Pusnyecknii cMbica U cBoiicTBa cummeTpumn dyHkunii (153)
O4YeBUAHbI N3 MpeablayLero pacCCMOTPEHUSA, @ UX UHTerpasibHoe NpeacTaB/ieHne NoAcKasbiBaeT,
4TO Benn4YnHbl Vg 1 V4 MOXXHO TPaKTOBaTb Kak 4-MepHble 00beMbl NEPEKPLITHS iN- 1
out-nakeToB B NCTOYHUKe 1 AeTekTope. /13 siBHOro Buga aTux yHKUnii cnegyeT, HTO OHY
MPUHNMAIOT MaKCMMaJibHble€ 3HAYEHNS,

0 m?

Vs,d 4 /—|%S,d|7
Korga KnacCcCn4yeckmne MmpoBble JIMHUN MaKETOB NEPECEKAOTCA B NpPpULUENBbHbBIX TOYKaX, 4YTO
oTBeYaeT yI'IOMVIHaBLIJeVICFI Bbille H3FJ'IFILI,HOI7I KapTUHE CTaJIKNBAKOLWNXCA (,EI,J'IFI in—I'IaKeTOB) nnn
pa3neTakoLnxcs (,EI,J'IFI OUt-l'IaKeTOB) B3aMMONPOHUNKaKOLWNX 0bn1aykKos.



Microscopic probability.

Tenepsb, ¢ nomowsto (148) n popmyn anst HeTbipexmepHbix 06beMOB nepekpbITUsi Vs 4 Mbl
NOJiyHaeM Bblpa>keHne 1Sl MUKPOCKOMUYECKO BEPOSITHOCTU npouecca (42)

|A |2 _ (277)455(]71/ _ Qs)vs‘Ms‘Q (27T>46d(pu + Qd)vd‘Md|2
g 1‘[%65 2E.,.V.. H%eD 2E..V,.

2

(27T)3L2 ‘ Z Va] Vsje ) (155)

DTO BbIpa)keHWe 3aBNCUT OT KOOPAUHAT X, N CPeQHNX UMMYJbCOB P, BCEX YHACTBYIOLMX B
Peakuuy BOJIHOBbLIX MAKETOB, @ TAaKXKE OT MapameTpoB o,.. BeposithocTs (155) ncuesatowe
MaJsia, ecan Mano npovssegeHne obbLEMOB MepeKpbITUS

T\ 4 _
ViVa= (5) (Ralla)™ 2 exp[-2(64 + Sa)l,

T.€., €CN INn- 1 out-NakeTbl B UICTOYHUKE N AETEKTOPE HE MEPECEKAOTCHA B
MPOCTPaHCTBEHHO-BPEMEHHbIX 001aCTAX, OKpYy>KaloLwmx npuuenbHble Toukn X n X .

OTmeTnM, 4TO 1 4-BEKTOP P, ABNAETCA (DYHKUMNER D, U T,, NPUYEM Dy = (s = —(4 B
npegene o, = 0, V. [NoaTomMy npn goCTaToOYHO ManbIX O,

55 (pv — 45)8a(pu + qa) = 85(0)8a(0) = (2m) ~* (|Rs[Ral) ~/%.



A 4dem e onpegensercsi NpubanN>KeHHOe PaBEHCTBO s U ¢4’

[nsi oTBeTa Ha 3TOT BoMpoc npeobpasyem BbipaxeHme (155) cnocobom, npepnoxeHHbIM
Kapgannom®. Vicnonb3ys siBHbIli BUA yHKUUIA O g 1 D, HETPYLHO BbLIBECTU CliefytoLee
NpUbIN>KEHHOE COOTHOLLEHNE

27085 (pv — gs) 0a (pv + qa) F(py) = /dEL(Ss (P, — gs) da (v + qa) F(p.), (156)

B koTopoMm F'(p,) — Npon3BosibHasi MEAIEHHO MeHsIoLWascs PYHKLMUS Dy, a
/ / / /
Py = (Eu7pu) = FE,l
CooTtHowenne (156) cnpaBeasviBo C ToOli Xe TOYHOCTLIO, C Kakoii bbina mosyyeHa

cpopmyna (148) pnsi aMnAUTYAbI, @ UMEHHO, — C TOYHOCTbLIO NCMOJIb30BAaHHOMO MpW
BbIBOAE MeTOoha MnepeBasa.

C nomowbto (156) nonydvaem

s

» (2m)*0s(py — qs)Vs|Ms|? (2m)*6a(py + qa)Va|Mal?
[Asal” = [ dE. T...2E.V I1..,2E.V
»eS 7 ¥ »ED x Vo
D ; (157)

X Vi Veje 7%,
2./m(2m)3 L2 zj: §EE

L J

roe Wrpux y ‘Hemoli" nepemeHHol nHTerpuposanusi I, onylueH, HO Ternepb OHa (Kak 1 BEKTOP
pr = EL1) yxxe Hukak He CBsi3aHa C mMapamMeTpamMy BHELLUHUX MAKETOB.

3C. Y. Cardall, “Coherence of neutrino flavor mixing in quantum field theory,” Phys. Rev. D 61 (2000)
073006 [arXiv:hep-ph/9909332].



B pamkax cgenanHbix npubnvikennii bopmynel (155) n (157) skereaneHTHbI, Ho 13 (157)
BUAHO, YTO 3aKOH COXPaHEHWUS SHEPIUN-UMMYNbCA PErYNPYETCA NOAbIHTErPasbHbIMM
dakTopamn ds(py, — qs) 1 dq(py + q4), KOTOpPbIE, NPU [OCTATOYHO MaJsbIX O, MOXKHO
3aMeHUTb 0DbIYHLIMUN O-PYHKLUAMUA.



22 Formulas for the processes 2 — 2 and 1 — 3.

B aTom pononHeHun Mbl NpnBefeM HEKOTOpPbIE rPOMO3AKNE (POPMYAbl N TEXHNYECKNE NogpobHocTH,
noJsie3Hble AN NPAKTUYECKNX PacHeTOB aMMINTYAbl MaKpPOMpPOLECcca, BKJIKOYaOWeEro KBasnynpyroe

paccesiHne BUPTYaslbHOroO HEMTPUHO B AeTEKTOpeE.

Koadduunentol Ay, By n C.

Otnunynble oT Hyns koapduumenTsl Agy, Br (0 < k, 1 <2)n Ci (0 < k,1 < 3)
dburypupytolme B BoiparkeHuax ans dyrkuuii [Rql, Fa(s, Q%) v ng(s, Q?), oTHocAWwMXCA K




paccesiHuo 2 — 2 B AEeTEKTOpPE MMEKT BUA

Ago = agmimf [aa (ai + ag) (mi — 2m§) + (7? (ag + 0?) (m% — 2m§) — BJgafmg] +

AOl

AOQ —
A1 =

All —

A12

Ao =
Ao =

= mim? {0—2 (mi + m?) [aa (mi + mg) + 05 (mi + mz) -+

Bo1

Bo2

Bio =

2

2 2 2 2 2 2 2 2
+ O3My [meb (O'amg —|—O'gma) + 04,0y

02 {of [202m? (m2 + m}) + o7 (m? +m3) (m2 +2m?)] +
19 [ggmf (mi + m%) + afmg (03 + 0?)] } ;

2 2/ 2 2 2 2
030, (mez —+ 0£mb) :

207 (mi — 4m3m?)].

— 03 {0—5 [02 (mi + mg) (2m§ + m?) + 20?m3 (m% + m?)] +
+2 [mei (mg + mf) + ngg (02 + 03)] } ,

— 0407 [03 (Mg +mg +mi) + 205my]

2 2 2
— 04010y,

2 2 2 2 2 2
030y (Uamb + mea) )

2 2 2,
0q0p0yp,

2 2

+o; (my +mi)] +mi (oami + oymi + oooymi) },

mi {QJZngm? + 02 (m% + m?) [05 (mi + 2m§) + agmg] +
—|—0§m§ [03 (2m3 + m% + m?) + 202 (m? + mi)] } ,
2 2/ 2 2 2 2
03Myg (mee -+ Uemb) ;
—m; {Uf [agmi (mi +mj + 2m§) + oomj (mi + mg)] +

—|—0§a§ (mi + mg) (mg + 2m2) + 2m2 [aﬁmg + af,l (mg + mi)]} ,



Hun3kosHepretunyeckmne npegenbl pyHKUNR 4 U ny.

MNpepenbl dyHKUNG 4 1 g HA KWHEMATNYECKOM Mopore KBasuynpyroi peakumm v +b — b+ /4
B AETEKTOPE NMEKT creayrownin sug:

2 2
(mp +me)>  m? 0 (02 + ag) [(mb +mye)” — ma]
Fa(sth, Qi) = + —2 n4(sen, = — .
alseh, Qrn) Ug 4+ af o2 1(sth; Qun) 2 [02 (mp + 7ng)2 4+ ngg 4+ agmg]

3p4ech npeanonaraeTcs, 4To mq < mpy + my. [Noporosble 3HaueHnst BennunH s 1 Q2 pasHbi
npy 3TOM

2
2 2 me
Sth = (mp+me)” n Qe =mg|mp— —— ).
mp + My
- 9 N2 2 .
Ons 6ecnoporoeoii peakunn (mq > mp + me, Sth = My, Qf, = —Mj) HaxoguM:

o3 [Qngg + of (mi +mi — mf)]

20202 (M2 +mi —m2) +oimi +opm2]

Sd(stha Qtzh) — 0, nd(sth7 QtQh) =1 —

Taknm obpasom, ToyHoe obpatlueHmne PyHKUMN 4 B HYJlb BO3SMOXXHO TOJIbKO A1
becnoporoeoii peakunn (Hanpumep, vn — pe) npu E, = 0. Pasymeetcsi, aT70T popmasbHbiii
Npeen BbIXOAUT LANIEKO 3@ PAMKU YIbTPAPENSiTUBNCTCKOrO npubamxenunst B2 > max(m?),
NCNONb30BaHHOrO Mpu BbiBoge dpopMya ans PYHKUNA 4 U Ng N NPaKTUYECKOro 3HAYEHUS He
MMEET, MOCKOJIbKY BCE COBPEMEHHbIE HEMTPUHHBLIE SKCMNEPUMEHTLI PaboTaloT NCKJIIOYUTESIBHO C

aBce dopmysnbl HanucaHbl B «[1Bg-npegene», npegnonaratowem TOUHbIN 3aKOH COXPaHEHUS SHEPTrUm-
umnynbca B peakumm 2 — 2 nmoc m; = 0, Vj. Kpome TOoro npegnosnaraeTcsi, €C/iu HE OroBOPEHO
J )
MPOTUBHOIO, YTO BCE MapaMeTpbl 0,, OTJINYHbI OT HYJS.



NyYKaMU YAbTPapPeNsiTUBUCTCKUX HEMTPUHO 1 aHTUHEATPUHO®. VIHTepecHO OTMETUTL Mpi 3TOM,
—mj (mns Gecnoporosoii peakuyuu),

4To npegen Fq npu B, = max(m;) = m, n Q* =
KOTOPbIA [AETCsi BblpaXkeHneM
2 2/ 2 2 2 4, 2 4, 2 —1
AmZmim?2 | 0.0% (ma—l—mb—m)+0bm + ogMmy m3+m%+m§
2 2522 2 2 2 ;
03020307 | (m2 —m2)® — 2m2 (m2 + m2)* + m? Oa Oy  0f

BCE €LLle MOXET ObITb BONbLINM MO BENNYUHE, €CAIN MO KpaiiHeli Mepe ABa U3 Tpex NapaMeTpoB

Oq, Op N O¢p Masnbl NO CPABHEHWNIO C 11, .

Bbicoko3HepreTndeckne acmmMmntotukn pyHKUnn §, n ny

B npeanonoxeHuun, 4to g4 b 7 0 © Q2 < 00, aCUMNTOTUYECKOE MoBefeHne PYyHKL NI
)/S NpN BbICOKMX SHEPrUsiX HE 3aBUCUT OT MEPEMEHHON S, @ NMEHHO

Fa(s, Q%) nna(s
2 2 2 2 2\ 2 2 2 2\ —1
2 m my, . my mg, mb Q m my
s—oo 02 o} o o2 o} o3 o2 o}
—1

2 s [mi  mi  mi  oimi (mi  mp
nd(S7Q ) ~ 2 2 7 T 2 2 T —
s—oo 202 | 02 o; o, o,;Q o2 o}

b3ﬂ,er YMECTHO HANOMHWNTb, 4TO bonee O6LLI,I/II7I dHaJIN3, OXBATbIBAOWNN HEPENATUBUCTCKNN CayHaln
npeacTtaBasAaAcT I'IOTGHLI,VIaﬂbeIVI MHTEPEC B KOHTEKCTE N3YHEHNA BO3IMOXHOCTUN AECTEKTUPOBAHNA PEJINK-
TOBbIX HEUTPWNHO, a TaK K€ OJ1A YCKOPUTEJIbHbIX U aCTpO(bVIBVI‘-IeCKVIX SKCNEPNMEHTOB MO NMONCKY rmno-

TETNHECKNX CBEPXTAXKEJIbIX HeI7ITpVIHO n «K3BHbIXY» CTEPUNNIbHBIX HENTPWUHO



TN aCMMNTOTUKN YAOBNETBOPAKOT CieaAyrolwnM HEPABEHCTBAM!

2 2 2 2
m; 5 m mi  mj
) < g (87Q ) < 2a + 2 + 2
¢ Oa o Oy
2 2/ 2 2 1
Oy0 (mb —ma) 2 O'CQL m% m%
2 (2,2 5oy <Md(s,Q°) < 5—5 |1+ — > T — ;
205 (02mj + ofm?2) 2m?2 m2 \ o; o;

(s — o0, Q? < 00), @ NX NpeaesibHble 3HA4YEHUs] HA KUHEMATUYECKMX PaHMLaX TaKoBbl:

5 2 2 2 2 2

: 2\ _ My . 2y _ Ob (ma—mb)_gemb

A, Sals Q=) = o g nals Q2) = T 2 ¢ oZm2)

5 2 2 2 2 2

. 2\ _ My . 2, Ou (ma_m£>_0bm£
Slgrolo Sd(S7Q+) = 02 ) Slgilo nd(S7Q+) - 9 (0§m§ + agmg)

DTV BENYUHBI, KaK BUAUM, CUMMETPUYHbI MO OTHOLUEHUIO K 3aMeHe UHAEKCOB b <— /.
Moporosble 3HaueHNs ng(s, Q%) obpalatoTcs B Hyb NpU CNeLMbUHECKIX COOTHOLLEHUSIX
MeXJy napaMeTpamu o, 1 maccamu. B aTux sk30Tnyeckux ciyyasix HyXKHO yHecTb
cnegytowne (~ 1/s) nonpasku,

B yacTtHOM cniyyae, Korga 4acTuua-mMuLeHb a €CTb HYKJIOH, U3 AUHAMUYECKUX COObparkeH i
C/IelyeT, YTO MpPM BbICOKOV SHEPrUN HEMTPUHO CPELHUIA Yron paccesiHnsi B C.u.M., (0.), paBeH
Mo NOPSAKY BENMYUHbI ObpaTHOMY nopeHueBckomy dakTopy nentona I, = E; /my. MNoatomy
(Q?%) ~mj v (0) ~ my/\/5, roe O ecTb yron paccesHus nenToHa B n.c. (coBnagaroLueii ¢
C.C.0. Hyk/IoHa). Mo)XHO NMokasaTb, YTO COOTBETCTBYHOLME ACUMMITOTUKN PYHKLUUA §q 1 Ny



NMET BUA,

—1
5 m; of (mi2 mi\ (ma  mi  mf m;
SC‘l(sﬂnﬁ) ~ 7 |1+ —= > T2 z T2 T <2—,
s—oo 0, o3 \ 02 o; o2 o7 o3 o;
2 2
d ’ V4 ~ .
s—oo 2[(0fm2 + o2m?) (02 4+ 02 4+ 207) + 0202m7| ~ 2maq

[NockonbKy Npu BbICOKNX SHEPrMsiX CYLLECTBEHHbIV BKMag B CKOPOCTb CYETA KBasuynpyrux
cobbITuii faeT nuwb y3kas obnacte yrios, 6inskux k 6 = (f), MOXHO 3aKNHOYUTL, YTO
3dpdheKTUBHOE aCMMMTOTNYECKOE 3HAYEHUNE g SABNSAETCA MPAKTUYECKN KOHCTAHTOI, KOTopas
ONpefenseTcst B OCHOBHOM BEJIVYNHON ANCNEPCUN UMMYbLCA JIENTOHHOrO BOJIHOBOMO NaKeTa,
o¢. [1pn 3TOM NponsBosibHBLIES Baprauuy NapamMeTpoB 0y U 0p MOFYT U3MEHUTbL aCUMNTOTUKY

NNWb B npegenax cgpakrtopa 2.

AcumnToTudeckoe nosegeHmne §q(s, Q%) pesko nameHseTcs, ecnu oauH (n TonbKO 0ANH) 13
napameTpoB o, obpawaetcs B Hynb. [1pn aTom, B cnyyae o, = 0 nnn o, = 0 acumnToTUKA He

3aBNCUT OT S.

( 2 2
m

2Q 5 + 26, npn o, = 0,
2 gy + 0 Oy
Sd(S7Q ) 2 2
§— 00 Q my

npn op = 0,

B B) 2
( Oa + 0} Oy

“He Hapywatowume, pasymeetcs, ycaosus npumeHumoctun mogenu CPITI.



a npu oy, = 0 KBagpaTU4HO pacTeT C S:

2 2 2
( Q +m2a_|_m2b)82

o2 +o07 o2 o7

Fa(s, Q) npu o¢ = 0.

Y
2 )
s=oo (Q2+m2 +m3)” —4m2m?

HekoTopslie coiicTBa doyHKUUMN §4 CTAHOBATCSA bonee npo3padyHbiMY €CAN 3aNnNcaTh €€ B
TepMuHax nepemeHHbix I, n 0,.. PaccmoTpum acumnToTnyeckoe pasnoxxeHue §q npu

E, — 0o n dukcuposaHHoM 3HadeHun yrna 0.. [ns He CAUWIKOM Masnbix 3Ha4YeHui sin 6, oHa
MOXXeT ObITb 3anmcaHa Kak

2 2 2 2 2 2
m m m ai103 m m
Sa(Bu,0:) = — + — + — = 3 —5 + —5 | cosb. +
Oa o, o 2mqF,, sin” 0, o} o,
2 2 2 2 2 2 2 2
n myo; — mjyop 2mp, n mj n y, n
m2c2 4+ m202 o2 o2 o2
9% b9y a b ¢

2 2
A mpmmye m% m? m? mg m% 1 m?
NV ) |\ 2T = >t ot )T, O )
OaO0bOy o} oF, o2 o} o sin”® 0, E?

Mpwn sinf. = 0 nonyvaem:

2 r 2 2 2 7]

my mg — mj my
B,,0)= 2% | M= | o Da)]
Sal ) o2 | mo B, (E,%)
2 r 2 2 2 7]

my my — My my
Byom)= 2%y a7 | o (e )
Sa(Ev, 7) o2 | R (Eg)




Kak oTmedanock Bbiwe, npu BbiCoKnx aHeprusx (0.) ~ I, = E; /my. MoxHo nokasaTb, 4TO
COOTBETCTBYIOLLLEE aCMMNTOTUYECKOE Pa3J/IOKEHNE NMEET BUA

2 2 2
N mg b103 ma
By, 0. = 1/I7) = 2% |bo - O\E)]
B /)= 5 [ o S 0 ()
roe
2 2 92 2 2
o) \'myo, + m,o
b0:1—|— D) E(b b)227

2 2 2 2 5
o3 (mgo2 +mio;) +mjo2o;

2 2 2 2 2\3 2 2 2 1 9 2 2 2 2 4 9 2
b1 = 8oy (mbaa —I—maab) {mb (ma — mp + g?ﬂg) o, +Mmg (ma — my + g?ﬂg) ab} +
2 2 2 2 2 2 4 2 2 2y 2 2 2 4
+ 207, (mbaa —I—maab) [mbaa + (ma -+ my —|—mg) 0,0 —I—maab] X
2 2 2 2y 2 2 2 2 2\ 2
X [mb (ma — myp —mg) o, +mg (ma — my —|—mg) ab] .

Otctoga BnaHo, 4To adbpekTBHOE acmmnToTHHeckoe 3HadeHne §q(FEy, 05 ) npakTnyecku
MOCTOSIHHO 1, y4uTbiBast 4To 1 < by < 2, ero Benm4ynHa onpenensieTcsi B OCHOBHOM
avicniepcueli NMMNysnbca NENTOHHOrO NakeTa.

Cnyuaii cunbHoOW nepapxuum.

DyHkunsa Fq(s, Q2) 3HAYMTENIbHO YNPOLLAETCA B CJly4ae CUbHOW NEPapXum Me xagy
BE/IMYMHAMWN NapaMeTpoB 04, 0p U 0¢. Bbluncnsas cooTeeTcTBytOWME NOCNEA0OBATENbHbIE



npenenbl, HAXo4NM:

( (Q2+m§)2 . 9
( Q2 m2)2 Am2m2 \ o , PN 0y > 0q > Oy,

s - Mhy) allty a

2 2

Q2 + m? m
_ 2(_ 2 QEE 2 9 O_b , MpN oyp > Op > 04,

(s —mj —mj)” —4dmim; b

(s — m3)2

(@2 +m2 +m3)* — dm2m2 npu ga > 0y > 0y,

Fa(s, Q%) ~ ¢

(s —m2)? me

(s — Q% — m2)? — 4m2m?

, MPN Oq > 09 > Obp,
Oy

mye

, MpN Oy > 09 > Oa,
Oy

(3_Q2—m3—m3)2 My 2

(@2 +m2 + mg)2 —4m2m? \ Oa

SIE
N

, PN 0p > 0q > Oy.

OTcropa BUAHO, B YaCTHOCTU, YTO HN HAUDONBLUMIA, HN HAUMEHBLLUUIA N3 TPEX NAPaMETPOB O,
HE BAUSIET Ha popMy U BennynHy pyHKkunm §q(s, Qz). DTO HeTpMBMaNbHOE CBOCTBO MOXXHO
0000 TL Ha C/lyYali NPOLLECCOB C NMPOU3BOJIbHLIM YUCAOM YacTuL, B KOHEYHOM COCTOSIHUMN.
[lpn aTOM, B Cniy4ae CUAbHOW nepapxun gUCNepcuin o,,, e4UHCTBEHHBIM CYLLECTBEHHbIM
napaMeTpoM SIB/SIETCSl BTOpas Mo BeNYMHE Aucrnepcusi nocse Hanbosnbliel N3 HUX. ITOT
hbakT oYeHb nose3seH Mpu aHaIN3e MHOrOYaCTUYHBIX MPOLECCOB (C YNCIOM BHELLUHUX MAKETOB



> 2), NOCKOJIbKY MO3BOJISIET PaCCMaTPMBaTb MakeTbl C 04eHb MaJibiMu (MO CPaBHEHUIO C
OCTaJibHbIMU) O, KaK NJOCKMe BOsHbl. B yacTHoCcTh, 3HaumTenbHO ynpolaeTcs pacyer
pPaAnaLNOHHBIX MOMPABOK C MJIOCKOBOJIHOBLIMU POTOHAMU BO BHELUHUX JIMHUSX
deliHMaHOBCKUX AnarpaMm, MOCKOJIbKY OH MOXET MPOBOANTLCS C UCMNOSb30BaHNEM
ctaHpapTHbix metogoe KTI. HanoMmHum, 4TO yyeT neTneBbix 3/1eKTPOCNabbix NONPaBOK He
NPUBOAUT K AOMNOJIHUTENbHBIM BblYUCANTESIbHBIM YCAOXHEHNSAM, CBA3aHHBbIM C MaKETHbIM
dbopManin3Mom, NOCKONLKY BCE OHU POPMaNbHO BKJKOYEHBI B COOTBETCTBYHOLINE MATPUYHbIE
3JIEMEHTbI U HNKaK He CBSA3aHbl C XapaKTEPUCTUKAMWN BHELLIHUX in- u out-cocTosHuii. o
corflaleHnto KaanbpoBoYHble DO30HbLI TaK K& HE MOryT (PUrypUpPOBaTb B Ka4eCTBE BHELUHMX
JIMHUIA guarpamMmm.



/ / /
Koadduuunentor Ay, B, v C,.

OTnuunble oT Hyna koadbduumenTsl Ay n By, (0 < k,1 < 2), durypupytowyme B BbiparkeHUAX
ana dbyHkunii [Rs| v Fs(s,Q?) ans 3-yacTuyHOro pacnaga vMmeroT BuA

Ao = o [o2mi (o2 + 07) (m2 —m3)" + oim? (of + o) (mi — m?)”| +
+ aiagmf {0? [m? (mi + mg + m?) — 7m3m%] + (02 + 02) (mzl — 4m3m%)} ,
Ay = — oo {02 [0? (mg + m?) (mi + 2m§) + 2mzl (02 + 0—2)] +

+207m; (m? + mi) (03 + Ug)} ;

/ 2 2/ 2 2 2 2
Ape = 030, (mee +Uemb) ;

Ay = —op {02 [0? (m? + mi) (2m§ + m%) + 2mj (02 + 0—2)] +
+205m2 (0?, + 0?) (mg% + m%)} ;
Al = ogoy [of (ma +mp +mi) + 205my]
Ao = — 525252
12 — 0q0p0y,

/ 2 2/ 2 2 2 2
Ayy = 030 (Uame ‘|'U£ma) ;

A/21 = - 0205(7?;

Boo = mami {of (mz +my) [oa (ma +mi) + o (mi +mZ) + o7 (ma +mz)] +
—I—m? (oimi + agmg + aiofmg)} :

By = —mg {oa [osmi (mi + mi) + oimi (2ma +mi +mg)] +

—|—2m§ [agmﬁ + 021 (mi + mg)] + 050? (m% + m?) (mi + Qm%)} :



Cnyyain cunbHoOW nepapxum.

MNogobHo cny4vato paccesins 2 — 2, pyHkums Fs(S1, S2) CTaHOBATCS OCOBEHHO MPOCTOI Mpu
CUNIbHOWM Mepapxumn Mexay napameTpamu oq, Op WU 0¢:

( (81 + 59 — M2 —m%)2 ma \ >
2 , ApU o¢ > 04 > Oy,
(s2 —m2 —m3?)° —4m2m3; \ Oa
(s1+ 82 —m? —m§)2 2
2 212 5 92 , PN 0¢ > 0p > Oq,
(81 — my _mg) —4mbm£ Op
2
; Npn o Ob O¢,
(s1+ s2 — 771%)2 —4m2Zm3 \ Ob @
8:5<51752) R o\ 2 ,
, Apn o Oy Ob,
(s2 —m2 —m2)? —4m2m2 \ o¢ @
2 212 5 92 , PN 0y > 0¢ > Oq,
(81 —my — mg) —4miymj \ 0¢
2
212 5 , Ipn op > 0q > 0Oy.
( (51 +82—m2)" —4m2Zm? \ 0a

N3 sTux dpopmyn BUAHO, 4TO HU HAUBOABLIWNIA, HN HAWMEHbLUWI U3 NapaMeTPOB He BJMSAIOT Ha
BeNINYUHY 1 cbopmy pyHKumm Fs(s1,52).



23 Complex error function and related formulas.

The error and complementary error functions of complex argument were studied in a number
of works. Here we reproduce the well-known series expansions and asymptotic expansion:

n 2n+1 S 2n 2n+1

\/_Z (2n—|— 1)n! \/_ Z(Zn—l—l)”’

c_ (=1)"(2n = DI z — 00, |argz ST
N an oor ] ( — 00, |argz| < 4). (159)

Using these formulas, one obtains the expansions

erf(z) = (158)

erfc(z) ~

lerf(2) = —— |1+ 22 —z—4+z—6—z—8+0( ) (160a)
NG 6 30 168 ’
e~ o 4z*  82%  162° 10
= 142 160b
ﬁ{+z+3+15+105+0(z)], (160b)

which are useful for, respectively, small and intermediate |z|.* To obtain the asymptotics of
erfc(z) [and thus of lerf(2)] at large |z| and |arg z| > 37 /4, one has to apply Eq. (159) to
erfc(—z) and then use the rule erfc(z) = 2 — erfc(—=z). As a result, we find:

_ .2

lerf(z) ~ 2 4 - [1— S —105+O(Zi8)} (2 — 00), (161)

2\/_z2 222 4zt 826
2In practice, Egs. (160a) and (160b) are fruitful for |z| <1 and 1 < |z| < 4.5, respectively.




where the upper (lower) sign must be taken for |arg z| < 37 /4 (|arg z| > 37 /4).

The subsequent formulas can be used for numerical evaluation of the error function with high
accuracy. They are based on the following integral representation of erfc(z):

o) —t2 o) —t2
erfe(z) = 2_z/ dt e _ E/ dt e
0

T 2422 w ) 12422

From this equation one obtains

Re [erfc(a + ib)] = % exp [—7“2 cos(2w)] [r2 cos(2ab + w) A (a, b)

+ cos(2ab — w) H(a, b)], (162a)
Im [erfc(a + ib)] = — % exp [—7“2 cos(2w)] [r2 sin(2ab + w)#(a, b)
+ sin(2ab — w) #(a, b)], (162b)
where
Sulah) /°° dtt"e " _ /°° dtt"e " |  (163)
C oo (B2 4+ a% — %)% + 4a?D? oo [t2 + 12 cos(2w)]? + 72 sin(2w)

r=+va*+b% cosw=a/r, sinw=>b/r;

all the quantities now being real. Note that the integrands in Eqgs. (163) are positive and
nonsingular (except for the trivial case » = 0), and quickly decay for large value of [¢|.

These properties allow accurate numerical integration based on standard quadrature rules.



24 Spatial integration.

The integration over x and y in the event rate integral is performed over
the explored volume of the source and over the detector fiducial volume,
respectively. Here we restrict ourselves to the simplest (while not very
realistic) example of homogeneous source and detector. It implies that
the density functions f_(pa, Sa; %) do not depend of x within the source
and detector volumes (and vanish outside these volumes). Thus our
concern is only with the L-dependent factor e?i /L. Below we will also
assume that the detector dimensions are negligibly small in comparison
with these of the source, which are in turn small in comparison with the
mean distance between the source and detector.

We place the origin of the coordinate system at an internal point of the
detector (point Oy in Figure) and direct the z-axis along the unit vector
—1 that is to the interior of the source. Then x = L1, L = O;04, and
the source volume integral we are interested in can be written as

LF
jijz/ d—xe%@):/ a [ et @,
V Qg

2
. L Ly

Here Vs is the explored volume of the source, €25 is the solid angle
under which this volume is seen from the origin Oy, Lg and LS are,
respectively, the distances from O, to the near and far boundaries of the
source for the given direction 2 = (sin ¢sin 6, cos ¢ sin 6, cos ).
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We may define the conventional distance between the source and detector as

I = 2;2/9 dﬂ(L£+Lg).

By way of avoiding misapprehension, we remark that, depending on the angular resolution of
the detector, the solid angle €25 can be either smaller than or equal to the overall solid angle of
the whole source machine; for instance, only a segment of the sun or atmosphere could be
considered as the neutrino source. [Figure schematically illustrates the first possibility while the
above equation for 7;; is valid in both cases.] Next, the smallness of €2, does not yet ensure the
smallness of the source itself; a collimated accelerator beam provides a good counter-example.

The elementary integration over L yields

7= Bl [ g {erf (%DLQ B zE,,) Cof (27TDLQ @E,,)}

47D Jgo. E,L;; 2D E,Li; 2D
2F2 + (AE;;)? .
< exp [— e (i # ), (164a)
jjj:/ %:/ Y (Lg_Lg). (164b)
Vs Qg

These formulas may be of some utility in processing the data from “short baseline” neutrino
experiments, in which the distance from the source (e.g., the pion decay channel of a neutrino
factory) to detector is comparable in magnitude with the longitudinal dimension of the source.



In case of an “ideal” experiment, for which we accept that

rN = max (Z— Lg) <L and rp = max (Lg —f) < L, (165)
Qe Qe
we can try to apply the following expansion of the probability integral:
erf(z + 0) ~ erf(z) + e P 1 — 20+ 2(22% — 1)6% +.. . (166)
VT 3

The O(6%) and O(z?§?) terms of this expansion can be neglected by assuming that |§| < 1
and |zd| < 1. In our case, the first condition reads

27TD7“N,F
EVLZ']'

while the second one is found to be unnecessary owing to an approximate cancellation of the
second-order terms. Indeed, by applying Eq. (166) we obtain

— — 2
(T 29 L 2 DL
| dn (LF—LN) 2@ 4] A - ,
Jij /QS Q Qe Q T Bl
L£+L£) _Lg—-L L-Lg
2L L L
Evidently |Aq| < 1. Then by assuming that

<1, (167)

An=2(1-




we arrive at the result (already valid for any i and j)

_ ®,; (L)
Jij = eéij(L)/ dQ (Lg — Lg) ~ VS — (169)
Qs L
suspected from the mean-value theorem however supplemented with the nontrivial sufficient
conditions for its validity (165), (167), and (168). The volume V; in Eq. (169) has been
estimated (with the same accuracy) to be

3 3 _
VS:/ dx:lf dn[(Lf;) - (&) } zL2/ a2 (L — L)
Vs 3 Qg Qs
Now, supposing that the fiducial volume of the detector V4 is small enough in comparison with

Vs (that is usually the case) and the geometry of the detector is not too bizarre, the
integration over y trivially yields

/ . / ; ePij (L) eLij (L) ( )
y 'e ~ V;Vg — , 170
Vy s L? L2

where L still has a meaning of the conventional distance between the source and detector.
To illustrate significance of the conditions (165), (167), and (168), let us consider the simple
case of a spheroidal source of radius 7, those angular dimension 65 is no larger than the
angular resolution of the detector. Simple geometric consideration suggests that

Aq = 2(1 — cos ) and, of course, ry = rp = r. Hence

—\ 2
max Ag =Aq, =2(1—cosbs) ~ 0> ~ (r/L)". (171)



To simplify further, we suppose that 2L > |L;;| (which is always true for the solar and
astrophysical neutrinos detected at earth) and 27 L < |L;j|E. /D (which may be doubtful for
the distant astrophysical neutrino sources but acceptable for sun). Then the condition (167) is
automatically fulfilled while (168) is transformed to

RYIY
L|Lj|

< 1. (172)

The latter is certainly not satisfied for sun with the currently accepted value of Am?,. Indeed,
the regions of effective neutrino production in the solar interior are the relatively narrow
concentric spherical layers with typical radius from about 0.1R., for B, "Be, and CNO
neutrinos to about 0.3R for pp, pep, and hep neutrinos (here R is the solar radius). So the
left part of the inequality (172) can roughly be estimated as

2772 %26( T )2 ( |Am3,| ) (1 I\/IeV)
L|L12| 0.2Rq 8 x 10—5 eV? b, '

Consequently (that is not a novelty) the approximation (170) is fully inapplicable to the solar
neutrino oscillation studies.

To summarize: although our consideration is highly simplified in several respects,® it
demonstrates that the integration over the source volume must be under careful control even
in the long baseline neutrino oscillation experiments.

2A more sophisticated analysis must take into account the spatial distribution of colliding and/or
decaying particles in the source and, what is very important for astrophysical applications (in particular,
for the solar neutrino experiments), the background matter effects caused by the virtual neutrino forward
scattering in the source.



25 Pion decay.

Assume that v = v; (i = 1,2,3). Then in the pion rest frame (p;, + p, = 0)

2 2 2 2 2 2
E*_mﬁ—mu—kmi and E*_mﬁ—kmu—mi
= S =
H 2m?2 2m?2

— The final states are different for the pion decay modes with different v-species.
— The full pion decay width is

D= ST = gt ) o< 3 il

In the Standard Model (somehow extended by a Dirac or Majorana neutrino mass term)
(w, vilm) = Vi M,

where M; = const in the pion rest frame. Since m; << my, ~, it can be approximated (with

veeery good precision) as
M; ~ </’L)VO|7T>7

where v is a fictitious massless neutrino. So, due to unitarity of V,

S Z| il (s volm)[* = s, volm) %,
U
Iy~ (7= p+ o).

This result is almost model-independent and practically exact.



