Oscillating Solitons of the Parametrically Driven Damped Nonlinear Schrödinger Equation

E. V. Zemlyanaya
Joint Institute for Nuclear Research, Dubna, Russia

IX Winter School on Theoretical Physics Nonlinear Phenomena in Condensed Matter
Dubna, 2011
Equation under study:

\[i\psi_t + \psi_{xx} + 2|\psi|^2\psi - \psi = h\psi^* - i\gamma\psi. \]

\(\gamma > 0 \) is the damping coefficient,
\(h \) is the amplitude of the parametric driver.

We are looking for periodic solutions by solving the NLS equation as a **boundary-value problem** on a two-dimensional domain \((-\infty, \infty) \times (0, T) \).

Boundary conditions:

\[\psi(x, t) = 0 \quad \text{as} \quad x \to \pm \infty, \quad \psi(x, t + T) = \psi(x, t). \]
Results of direct numerical simulation

\[\psi(x) = A e^{-i\theta} \text{sech}(Ax), \]

\[A = \sqrt{1 + \sqrt{h^2 - \gamma^2}}, \]

\[\theta = \frac{\text{arcsin}(\gamma/h)}{2} \]

Numerical continuation of stationary multi-soliton complexes

The Hopf bifurcation point:
γ = 0.565;
h = 0.9435

I. Barashenkov and E. Zemlyanaya,
Phys Rev Lett 83 (1999) 2568
Method of numerical study. New variables

New variables τ and Ψ:

$$\tau t = t; \quad 0 \leq \tau \leq 1; \quad \Psi(x,\tau) = \psi(x,t).$$

Modified equation with respect of unknown Ψ and T:

$$i\Psi_{\tau} + T \cdot \Phi(\Psi(x, \tau), h, \gamma) = 0 \quad \text{where}$$

$$\Phi \equiv \Psi_{xx} + 2|\Psi|^2 \cdot \Psi - \Psi - h\Psi* + i\gamma \Psi.$$

Boundary conditions:

$$\Psi(-L,\tau) = \Psi(+L,\tau) = 0; \quad \Psi(x,0) = \Psi(x,1);$$

Additional equation (phase condition)

$$R \equiv \text{Re}[\Phi(\Psi(x*,t*), h, \gamma)] = 0; \quad x^* = t^* = 0.$$
Method of numerical study.
Newtonian scheme (1)

\[\Psi_{k+1} = \Psi_k + \xi_k v_k; \quad T_{k+1} = T_k + \xi_k \mu_k; \]

\(k \) – number of iteration;

0\(<\xi_k\leq1 \) parameter of the Newtonian scheme;

\[v_k = v^{(1)} + v^{(2)} \mu_k; \]

(1) \[i v^{(1)}(\tau) + T_k v^{(1)}_{xx} + A_k v^{(1)} + B_k v^{(1)*} = -\Phi_k \]

(2) \[i v^{(2)}(\tau) + T_k v^{(2)}_{xx} + A_k v^{(2)} + B_k v^{(2)*} = -C_k \]

BCs: \[v^{(1)}(\pm L, \tau) = -\Psi_k(\pm L, \tau); \quad v^{(2)}(\pm L, \tau) = 0; \]

\[v^{(1,2)}(x, 0) - v^{(1,2)}(x, 1) = - [\Psi^{(1,2)}(x, 0) - \Psi^{(1,2)}(x, 1)] \]

\[A_k = 4T_k \Psi_k (\Psi_k)^* - T_k - i\gamma T_k; \quad B_k = 2T_k (\Psi_k)^2 - hT_k; \]

\[C_k = \Psi_{xx} + 2\Psi_k^*(\Psi_k)^2 - \Psi_k - h(\Psi_k)^* - i\gamma \Psi_k; \]
μ_k is calculated at each iteration as follows

$$
F = [V_R^{(2)}]_{xx} + 6\Psi_R^2 V_R^{(2)} + 4\Psi_I \Phi_R V_I^{(2)} + 2\Psi_I^2 V_R^{(2)} - V_R^{(2)} - hV_R^{(2)} - \gamma V_I^{(2)}
$$

$$
G = [V_R^{(1)}]_{xx} + 6\Psi_R^2 V_R^{(1)} + 4\Psi_I \Psi_R V_I^{(1)} + 2\Psi_I^2 V_R^{(1)} - V_R^{(1)} - hV_R^{(1)} - \gamma V_I^{(1)}
$$

$$
R = [\Psi_R]_{xx} + 2\Psi_R^3 + 2\Psi_I^2 \Psi_R - \Psi_R - h\Psi_R - \gamma \Psi_I
$$

$$
\Psi_R = \text{Re} \Psi(x^*, 0); \quad \Psi_I = \text{Im} \Psi(x^*, 0)
$$

$$
V_R^{(1,2)} = \text{Re}V^{(1,2)}(x^*, 0); \quad V_I^{(1,2)} = \text{Im}V^{(1,2)}(x^*, 0)
$$

Spatial stepsize 0.05; stepsize in time 0.01; interval [-50,50]
Stability analysis
E.Zemlyanaya, I.Barashenkov, N.Alexeeva.
Springer Lecture Notes in Computer Sciences 5434 (2009) 139

Periodic solution is linearized in small perturbation $u+iv$:

$$\psi(x, t) = \psi_0(x, t) + u(x, t) + iv(x, t)$$

After expansion u and v in the Fourier series on the interval $(-L, L)$, according to the Floquet theory we obtain:

$$\psi_0 = \begin{pmatrix} R(x, t) \\ I(x, t) \end{pmatrix}$$

where

$$J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad q_n = \pi n / L, \quad w_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix}$$

The system is solved numerically with initial condition

$$u_n(0) = \delta_{n\alpha}, \quad v_n(0) = 0 \quad (n = -N, \ldots, N), \quad \alpha = -N, \ldots, N$$

The monodromy matrix is constructed. Its eigenvalues allow us to make conclusions about stability properties of periodic solitons.
Numerical continuation of stationary two-soliton solutions

(a) $\gamma=0.01$

(b) $\gamma=0.4$

Numerical continuation of stationary two-soliton solutions

Hopf bifurcations points of stationary solitons at the \((h,\gamma)\)-plane

Numerical continuation in \(h\) for the fixed \(\gamma\).

Weak damping:
- \(\gamma = 0.1\)
- \(\gamma = 0.2\)
- \(\gamma = 0.265\)

Moderate damping:
- \(\gamma = 0.3\)
- \(\gamma = 0.35\)
- \(\gamma = 0.38\)
- \(\gamma = 0.41\)

Strong damping:
- \(\gamma = 0.565\)
Numerical results (1)
Weak damping: $\gamma=0.265; 0.2; 0.1$

Numerical results (2)
Moderate damping: $\gamma = 0.3, 0.35$

For $\gamma = 0.3$:
- $h = 0.55$, $T = 4.356$
- $h = 0.876$, $T = 2.743$

For $\gamma = 0.35$:
- $h = 0.64$, $T = 2.967$
Numerical results (3)
One-periodic two-soliton solutions
Moderate damping: $\gamma=0.35, 0.38$.

- Start $h=0.801$
- Period doubling
- $h=0.741, T=15.88$
- $h=0.95, T=2.5$
- Quasiperiodic solitons have a rise
Numerical results (4)
One-periodic two-soliton solutions
Moderate damping: $\gamma=0.41$ (the case of 4 HBs)

A time-periodic two-soliton complex oscillating out of phase with each other. $\gamma = 0.41$, $h = 1.049$, $T = 1.991$
Numerical results (5)
One-periodic two-soliton solutions
Strong damping: $\gamma=0.565$

Numerical results (6)
Stability diagram of stationary and time-periodic solitons at the \((h, \gamma)\)-plane
We decompose ψ as

$$
\psi = A_+ \left[U(\bar{x}, \bar{t}) + iV(\bar{x}, \bar{t}) \right] e^{-i\theta^+},
$$

This casts the NLS in the form:

$$
\begin{align*}
-V_t - 2\Gamma V &= -U_{xx} + U - 2(U^2 + V^2)U, \\
+U_t + 2HV &= -V_{xx} + V - 2(U^2 + V^2)V.
\end{align*}
$$

We expand $\psi(x; t)$ as:

- u and v are real;
- A and B are complex

Resulting system of equations:

$$
\begin{align*}
\begin{align*}
&\quad u_{xx} - u + 2(u^2 + v^2)u + 4(3|A|^2 + |B|^2)u + 4(AB^* + A^*B)v - 2\Gamma v = 0, \\
&\quad v_{xx} - v + 2(u^2 + v^2)v + 4(|A|^2 + 3|B|^2)v + 4(AB^* + A^*B)u + 2Hv = 0, \\
&\quad A_{xx} - A + 2(3u^2 + v^2)A \\
&\quad \quad + 2(3|A|^2 + 2|B|^2)A + 2(2uv + A^*B)B - 2\Gamma B - i\Omega B = 0, \\
&\quad B_{xx} - B + 2(u^2 + 3v^2)B \\
&\quad \quad + 2(2|A|^2 + 3|B|^2)B + 2(2uv + B^*A)A + 2HB + i\Omega A = 0.
\end{align*}
\end{align*}
$$

where $\Omega = 2\pi/(A_+^2 \cdot T)$,

$$
\Gamma = \gamma/A_+^2 \quad \text{and} \quad H = \sqrt{\hbar^2 - \gamma^2/A_+^2}.
$$

3- and 5-mode approximation (2)

Full NLS

3-mode approximation

5-mode approximation

$\gamma = 0.3$

$\gamma = 0.35$
Summary

• A boundary-value problem and stability problem have been formulated for numerical investigation of temporally periodic solitons of parametrically driven damped NLS.
• Transformations of temporally periodic solitons have been numerically studied; interconnection between coexisting branches of stable and unstable solutions has been analyzed.
• New temporally periodic solitons have been found.
• Stability diagram of stationary and oscillating two-soliton complexes has been constructed at the \((h,\gamma)\)-plane.
• Shown that the bifurcation diagram can be reproduced a three- and five-mode approximation.

THANK YOU!