# Gravitational lensing: Models 

February 2, 2010

- Typeset by FoilTEX -


## Basic notations

Gravitational lens equation in a dimensionless form
Remind GL equation

$$
\begin{equation*}
\vec{\eta}=\frac{D_{s}}{D_{d}} \vec{\xi}-D_{d s} \hat{\vec{\alpha}}(\vec{\xi}), \tag{1}
\end{equation*}
$$

where $\vec{\eta}$ is a position of source, $\vec{\xi}$ is a position of image in the lens plane, $D_{d}$ is a distance between an observer and lens, $D_{s}$ is a distance between an observer and a source, $D_{d s}$ is a distance between a source and lens.

If distances are much greater than lens sizes we use flat GL approximation, projecting bulk mass density onto the lens plane and as
a result we have a surface mass density $\Sigma(\vec{\xi})$. Therefore we have the following relation for deflection angle

$$
\begin{equation*}
\hat{\vec{\alpha}}=\int_{R^{2}} \frac{4 G \Sigma\left(\overrightarrow{\xi^{\prime}}\right)}{c^{2}} \frac{\vec{\xi}-\vec{\xi}^{\prime}}{\left|\vec{\xi}-\overrightarrow{\xi^{\prime}}\right|^{2}} d^{2} \xi^{\prime} \tag{2}
\end{equation*}
$$

where we integrate in the lens plane. Therefore, deflection angle is a superposition of deflection angle for mass elements $d m=\Sigma\left(\vec{\xi}^{\prime}\right) d^{2} \xi^{\prime}$.

Rewrite Eqs.(1), (2) in dimensionless form. Denote characteristic distance in the lens plane $\xi_{0}$ and corresponding length in the source plane $\eta_{0}=\xi_{0} D_{s} / D_{d}$. Let us introduce dimensionless vectors $\vec{x}=\vec{\xi} / \xi_{0}, \vec{\xi}=$ $\vec{\eta} / \eta_{0}$, and a dimensionless mass density

$$
\begin{equation*}
k(\vec{x})=\frac{\Sigma\left(\xi_{0} \vec{x}\right)}{\Sigma_{c r}}, \tag{3}
\end{equation*}
$$

where the critical mass density is

$$
\begin{equation*}
\Sigma_{c r}=\frac{c^{2} D_{s}}{4 \pi G D_{d} D_{d s}} \tag{4}
\end{equation*}
$$

Taking into account the notations we can rewrite gravitational lens equation in the form

$$
\begin{equation*}
\vec{y}=\vec{x}-\vec{\alpha}(\vec{x}) \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\vec{\alpha}(\vec{x})=\frac{1}{\pi} \int_{R^{2}} k\left(\vec{x}^{\prime}\right) \frac{\vec{x}-\vec{x}^{\prime}}{\left|\vec{x}-\vec{x}^{\prime}\right|^{2}}=\frac{D_{d} D_{d s}}{\xi_{0} D_{s}} \hat{\vec{\alpha}}\left(\xi_{0} \vec{x}\right) \tag{6}
\end{equation*}
$$

## Potential functions

It is easy to see that deflection angle may be represented as a gradient of a new function in respect to $\vec{x}$

$$
\begin{equation*}
\vec{\alpha}=\nabla \psi \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi(\vec{x})=\frac{1}{\pi} \int_{R^{2}} \frac{4 G \Sigma\left(\overrightarrow{\xi^{\prime}}\right)}{c^{2}} \frac{\vec{\xi}-\vec{\xi}}{\left|\vec{\xi}-\overrightarrow{\xi^{\prime}}\right|^{2}} \tag{8}
\end{equation*}
$$

is a logarithm potential associated with a surface mass density $k(\vec{x})$.

So the mapping $\vec{x} \mapsto \vec{y}$ is gradient one

$$
\begin{equation*}
\vec{y}=\nabla\left(\frac{1}{2} \vec{x}^{2}-\psi(\vec{x})\right) \tag{9}
\end{equation*}
$$

(singularities of these mappings were completely classified by Arnold $(1972,1974)$ )
or if we introduce scalar function

$$
\begin{equation*}
\phi(\vec{x}, \vec{y})=\frac{1}{2}(\vec{x}-\vec{y})^{2}-\psi(\vec{x}), \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\nabla \phi(\vec{x}, \vec{y})=0, \tag{11}
\end{equation*}
$$

where a gradient is taking in respect to variable $\vec{x}$. One can see that there is Laplace equation connecting functions $\psi$ and $k$,

$$
\begin{equation*}
\Delta \psi=2 k, \tag{12}
\end{equation*}
$$

where Laplace operator is taking in respect to $\vec{x}$.

## Magnification, convergence and shear

Jacobian matrix

$$
\begin{equation*}
A(\vec{x})=\frac{\partial \vec{y}}{\partial \vec{x}}, \quad A_{i j}=\frac{\partial y_{i}}{\partial x_{j}}, \tag{13}
\end{equation*}
$$

Magnification

$$
\begin{equation*}
\mu(\vec{x})=1 / \operatorname{det} A(\vec{x}) . \tag{14}
\end{equation*}
$$

So, an image of a distant point like source at a position $\vec{x}$ will be amplified (or demagnified) in $|\mu(\vec{x})|$ times. Magnification may be positive or negative and in this case corresponding images have positive or negative parity.

For some values $\vec{x}$ the determinant det $A(\vec{x})$ may be vanishing (therefore $\mu(\vec{x})$ is infinity), and we call these points as critical points. An image of the critical set with a gravitational lens mapping is called as caustics. Clearly, that a point like approximation is not acceptable for these cases.

From Eqs. (13) and (10) we have

$$
\begin{equation*}
A_{i j}=\phi_{i j}=\delta_{i j}-\psi_{i j} \tag{15}
\end{equation*}
$$

where a partial derivative in respect to variable $x_{i}$ is denoted with index
i. From Eq. (15) we have that the matrix $A$ is symmetrical one.

Using Eq. (12), we obtain that the Jacobian matrix may be written in the following form

$$
A=\left(\begin{array}{cc}
1-k-\gamma_{1} & -\gamma_{2}  \tag{16}\\
-\gamma_{2} & 1-k+\gamma_{1}
\end{array}\right)
$$

where

$$
\begin{equation*}
\gamma_{1}=\left(\psi_{11}-\psi_{22}\right) / 2, \gamma_{2}=\psi_{12}=\psi_{21} . \tag{17}
\end{equation*}
$$

Therefore, we have the following expressions for a determinant and trace

$$
\begin{gather*}
\operatorname{det} A=(1-k)^{2}-\gamma^{2},  \tag{18}\\
\quad \operatorname{tr} A=2(1-k) \tag{19}
\end{gather*}
$$

For eigenvalues of matrix $A$ we have

$$
\begin{equation*}
a_{1,2}=1-k \pm \gamma \tag{20}
\end{equation*}
$$

In the last relation (20) $\gamma$ means

$$
\begin{equation*}
\gamma=\sqrt{\gamma_{1}^{2}+\gamma_{2}^{2}} \tag{21}
\end{equation*}
$$

$1-k$ is called a convergence or Ricci-focusing, $\gamma$ is a shear.

## General properties of symmetric lenses

## Deflection angle

Let us consider a family of circular symmetric mass density distributions $\Sigma(\vec{\xi})=\Sigma(|\vec{\xi}|)$.

Therefore, we have for a deflection angle

$$
\begin{equation*}
\vec{\alpha}(\vec{x})=\frac{1}{\pi} \int_{R^{2}} d^{2} x^{\prime} k(\vec{x}) \frac{\vec{x}-\vec{x}^{\prime}}{\left|\vec{x}-\vec{x}^{\prime}\right|^{2}}, \tag{22}
\end{equation*}
$$

where $k(\vec{x})=\sigma\left(\xi_{0} \vec{x}\right) / \Sigma_{c r}, \Sigma_{c r}=c^{2} D_{s} /\left(4 \pi G D_{d} D_{d s}\right)$.

Since we have a circular symmetrical case we can select a positive direction for axis $x_{1}$, and $\vec{x}=(x, 0), x \geq 0$.

Introducing polar coordinates we have $\vec{x}^{\prime}=x^{\prime}(\sin \varphi, \cos \varphi)$, and therefore $k\left(x^{\prime}\right):=k\left(\vec{x}^{\prime}\right)$. Using an evident relation for the Jacobian for the transformation $d^{2} x^{\prime}=x^{\prime} d x^{\prime} d \varphi$,
we obtain

$$
\begin{align*}
& \alpha_{1}(x)=\frac{1}{\pi} \int_{0}^{\infty} x^{\prime} d x^{\prime} k\left(x^{\prime}\right) \int_{0}^{2 \pi} d \varphi \frac{x-x^{\prime} \cos \varphi}{x^{2}+x^{\prime 2}-2 x x^{\prime} \cos \varphi}  \tag{23}\\
& \alpha_{2}(x)=\frac{1}{\pi} \int_{0}^{\infty} x^{\prime} d x^{\prime} k\left(x^{\prime}\right) \int_{0}^{2 \pi} d \varphi \frac{-x^{\prime} \sin \varphi}{x^{2}+x^{\prime 2}-2 x x^{\prime} \cos \varphi} \tag{24}
\end{align*}
$$

One can see

$$
\begin{equation*}
\int_{0}^{2 \pi} d \varphi \frac{-x^{\prime} \sin \varphi}{x^{2}+x^{\prime 2}-2 x x^{\prime} \cos \varphi}=0 \tag{25}
\end{equation*}
$$

Therefore $\vec{\alpha}$ is parallel to $\vec{x}$. Therefore vector $\vec{y}$, which determines a source position is also parallel to vector $\vec{x}$. The integral may be evaluated with a complex analysis technique (residues)

$$
\begin{equation*}
I=\int_{0}^{2 \pi} R(\cos \varphi, \sin \varphi) d \varphi \tag{26}
\end{equation*}
$$

for instance, (for $|a|<1$ )

$$
\begin{equation*}
\int_{0}^{2 \pi} \frac{d \varphi}{1+a \cos \varphi}=\frac{2 \pi}{\sqrt{1-a^{2}}} \tag{27}
\end{equation*}
$$

Therefore, one can see

$$
\int_{0}^{2 \pi} d \varphi \frac{x-x^{\prime} \cos \varphi}{x^{2}+x^{\prime 2}-2 x x^{\prime} \cos \varphi}=\left\{\begin{array}{cl}
0, & \text { for } x^{\prime}>x  \tag{28}\\
2 \pi / x, & \text { for }
\end{array} x^{\prime}<x .\right.
$$

Therefore from Eq. (23) we obtain

$$
\begin{equation*}
\alpha(x):=\alpha_{1}(x)=\frac{2}{x} \int_{0}^{x} x^{\prime} d x^{\prime} k\left(x^{\prime}\right)=\frac{m(x)}{x} \tag{29}
\end{equation*}
$$

where we introduce a definition

$$
m(x):=2 \int_{0}^{x} x^{\prime} d x^{\prime} k\left(x^{\prime}\right)
$$

it means dimensionless mass inside a circle with a radius $x$.
Remind that we have the following relation between normalized and non-normalized vectors $\vec{\alpha}$ and $\hat{\vec{\alpha}}$

$$
\begin{equation*}
\hat{\vec{\alpha}}(\vec{\xi})=\frac{\xi_{0} D_{s}}{D_{d} D_{d s}} \vec{\alpha}\left(\frac{\vec{\xi}}{\xi_{0}}\right) . \tag{30}
\end{equation*}
$$

Therefore using relation (29), we have

$$
\begin{equation*}
\hat{\alpha}(\xi)=\frac{1}{\xi} \frac{4 G}{c^{2}} 2 \pi \int_{0}^{\xi} \xi^{\prime} d \xi^{\prime} \Sigma\left(\xi^{\prime}\right)=\frac{4 G M(\xi)}{c^{2} \xi} \tag{31}
\end{equation*}
$$

where we introduce the following definition for mass inside circle with a radius $\xi$ :

$$
M(\xi):=2 \pi \int_{0}^{\xi} \xi^{\prime} d \xi^{\prime} \Sigma\left(\xi^{\prime}\right)
$$

From Eq. (31) we can see that the deflection angle coincides with the Einstein angle for mass $M(\xi)$ inside a circle with a radius $\xi$.

Therefore, we obtain a scalar gravitational lens equation for circular symmetrical case

$$
\begin{equation*}
y=x-\alpha(x)=x-m(x) / x \tag{32}
\end{equation*}
$$

where $x \in R, m(x):=m(|x|)$.

Taking into account the symmetry we can restrict our consideration with a region $y \geq 0$. Since $m(x) \geq 0$, from Eq. (32) we obtain $x \geq y$ for any positive solution $x$, but for any negative solution $x$ one has to have inequality $-m(x) / x>y$.

## Deflection potential $\psi$ and Fermat's potential

For a defection potential we have assuming that $x \geq 0$

$$
\begin{equation*}
\psi(x)=\frac{1}{\pi} \int_{0}^{\infty} x^{\prime} d x^{\prime} k\left(x^{\prime}\right) \int_{0}^{2 \pi} d \varphi \ln \sqrt{x^{2}+x^{\prime 2}-2 x x^{\prime} \cos \varphi} \tag{33}
\end{equation*}
$$

We can obtain

$$
\begin{equation*}
\psi(x)=2 \int_{0}^{x} x^{\prime} d x^{\prime} k\left(x^{\prime}\right) \ln \left(\frac{x}{x^{\prime}}\right) \tag{34}
\end{equation*}
$$

Differentiating (34) in respect to $x$ we obtain $\alpha(x)=d \psi(x) / d x$
For Fermat's potential $\phi(x, y)$ we have

$$
\begin{equation*}
\phi(x, y)=\frac{1}{2}(x-y)^{2}-\psi(x), \tag{35}
\end{equation*}
$$

therefore GL equation is equivalent to the following equation

$$
\begin{equation*}
\partial \phi / \partial x=0 . \tag{36}
\end{equation*}
$$

## Schwarzschild lens (reminding)

A point like mass $M$ is located in the origin $\vec{\xi}=0$. Therefore, surface mass density

$$
\Sigma(\vec{\xi})=M \delta^{2}(\vec{\xi}) .
$$

A natural length scale is EC radius
$\xi_{0}=\sqrt{2 R_{S} \frac{D_{s} D_{d s}}{D_{d}}}$.
Therefore $m(x)=1$, and GL equation has the following form

$$
y=x-1 / x
$$

which has two solutions:

$$
\begin{equation*}
x_{1,2}=\left(y \pm \sqrt{y^{2}+4}\right) / 2 \tag{37}
\end{equation*}
$$

so, there two images from both sides of the lens.
Magnification for an image at point $x$,

$$
\mu=\left(1-1 / x^{4}\right)^{-1}
$$

Substituting the solutions of GL Eq. we obtain

$$
\begin{equation*}
\mu_{1,2}= \pm \frac{1}{4}\left(\frac{y}{\sqrt{y^{2}+4}}+\frac{\sqrt{y^{2}+4}}{y} \pm 2\right) . \tag{38}
\end{equation*}
$$

A total magnification is

$$
\begin{equation*}
\mu_{p}=\mu_{1}-\mu_{2}=\frac{y^{2}+4}{y \sqrt{y^{2}+4}} . \tag{39}
\end{equation*}
$$

From Eq.(33) we have

$$
\begin{equation*}
\psi=\ln x \tag{40}
\end{equation*}
$$

Therefore a time delay for these images

$$
\begin{equation*}
\Delta t=\frac{4 G M}{c^{2}}\left(1+z_{d}\right) \tau(y) \tag{41}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau(y)=\frac{1}{2} y \sqrt{y^{2}+4}+\ln \frac{\sqrt{y^{2}+4}+y}{\sqrt{y^{2}+4}-y} \tag{42}
\end{equation*}
$$

Since two images have comparable brightness only if $y \leq 1$, , so $\tau(1) \approx 2.08$, so the time delay (41) is about a time to intersect EC ring.

For a source with an uniform surface density with a radius $R$ we have that a maximal amplification factor is

$$
\begin{equation*}
\mu_{\max }=\sqrt{4+R^{2}} / R \tag{43}
\end{equation*}
$$

## Singular Isothermal Sphere (SIS)

For mass distribution in galaxies and galactic clusters people use Singular Isothermal Sphere (SIS). (The model fits flat rotation curves).

$$
\begin{equation*}
\rho(r)=\frac{\sigma_{v}^{2}}{2 \pi G r^{2}} \tag{44}
\end{equation*}
$$

where $\sigma_{v}^{2}$ is velocity dispersion. Therefore, a surface mass density is

$$
\begin{equation*}
\Sigma(\xi)=2 \int_{0}^{+\infty} \rho\left(\sqrt{\xi^{2}+h^{2}}\right) d h=\frac{\sigma_{v}^{2}}{2 G \xi} \tag{45}
\end{equation*}
$$

and a deflection angle is

$$
\begin{equation*}
\hat{\alpha}=4 \pi \sigma_{v}^{2} / c^{2} \tag{46}
\end{equation*}
$$

The model has two features which have to be taken into account. First, the infinite density at $\xi=0$, but a mass is finite in any finite volume.

Second, a total mass is infinity, but if we consider images with impact parameters $|\xi|<R$, then axial symmetrical distribution of mass with $|\xi|>R$ may be ignored.

Choosing the length scale factor

$$
\begin{equation*}
\xi_{0}=4 \pi \frac{\sigma_{v}^{2}}{c^{2}} \frac{D_{d s}}{D_{s}} \tag{47}
\end{equation*}
$$

we have

$$
\begin{equation*}
k(x)=1 / 2 x, \quad \alpha(x)=x /|x| . \tag{48}
\end{equation*}
$$

In this case GL Eq. has the following form

$$
\begin{equation*}
y=x-x /|x| . \tag{49}
\end{equation*}
$$

We can take $y>0$ (without losing the generality) because we are free to choose a suitable coordinate system: for $y<1$ we have two solution $x=y+1 \quad x=y-1$, therefore these solutions are located from an opposite sides of GL, for $y>1$ we have only one solution $x=y+1$.

The magnification at a point $x$ is determined by

$$
\begin{equation*}
\mu=|x| /(|x|-1) \tag{50}
\end{equation*}
$$

The circumference $|x|=1$ is a tangent critical curve. From the relation a shear we have $\gamma(x)=k(x)=1 /(2 x)$, therefore a relative stretching in a tangent direction is $|\mu|$, meanwhile it is no stretching (or squeezing in radial direction).

A total amplification is

$$
\mu_{p}=\left\{\begin{array}{cc}
2 / y & y \leq 1  \tag{51}\\
(1+y) / y & y \geq 1
\end{array}\right.
$$

For $y \rightarrow 1$ the second image started to be fainter.

For a deflection potential we have $\psi(x)=|x|$, and time delay is

$$
\begin{equation*}
c \Delta t=\left[4 \pi\left(\frac{\sigma_{v}}{c}\right)^{2}\right] \frac{D_{d} D_{d s}}{D_{s}}\left(1+z_{d}\right) 2 y \tag{52}
\end{equation*}
$$



Figure 1: Image of a circular source for the transparent lens. Radius of source $r=0.1$, impact parameter $y=0.11$. It is clear that radius of source is the same as widths of images in radial direction.


Figure 2: Image of a circular source for the transparent lens. Radius of source $r=0.1$, impact parameter $y=0.3$. It is also clear that radius of source is the same as widths of images in radial direction.

## Softened isothermal sphere or isothermal sphere with a core (ISC).

For this model we have no infinite density at the origin since we have a core with a radius $r_{c}$, and this model is more realistic one.

$$
\begin{equation*}
\rho(r)=\frac{\sigma_{v}^{2}}{2 \pi G\left(r^{2}+r_{c}^{2}\right)} \tag{53}
\end{equation*}
$$

so the model (53) coincides with SIS (44) for $r_{c}=0$ or $r \gg r_{c}$. Therefore, a surface mass density and a total mass are determined by

$$
\begin{equation*}
\Sigma(\xi)=\frac{\sigma_{v}^{2}}{2 \pi G \sqrt{\xi^{2}+r_{c}^{2}}} \tag{54}
\end{equation*}
$$

$$
\begin{equation*}
m(\xi)=\frac{\sigma_{v}^{2}}{G}\left(\sqrt{\xi^{2}+r_{c}^{2}}-r_{c}\right) \tag{55}
\end{equation*}
$$

Introducing variables $x=\xi / r_{c}, y=\left(\eta / r_{c}\right)\left(D_{d} / D_{s}\right)$, we have GL equation

$$
\begin{equation*}
y=x-D(\sqrt{1+x}-1) / x \tag{56}
\end{equation*}
$$

A parameter $D:=\left(4 \pi \sigma_{v}^{2} / c^{2}\right)\left(D_{d} D_{d s} / r_{c} D_{s}\right)$, defines a number of solutions.
So for $D \leq 2$ we have only one solution, for $D>2$ we have three solutions if $y$ is relatively small.

Solutions may be found as intersections of line $y=$ const with a cure $y=x-D\left(\sqrt{1+x^{2}}-1\right) / x$.

For a magnification

$$
\begin{equation*}
\mu=\left|\left(1-D \frac{\sqrt{1+x^{2}}-1}{x^{2}}\right)\left(1+D \frac{\sqrt{1+x^{2}}-1}{x^{2}}-D \frac{1}{\sqrt{1+x^{2}}}\right)\right|^{-1} \tag{57}
\end{equation*}
$$

## A qualitative analysis of the gravitational lens equation

We will show that gravitational lens equation has only one solution if $D<2$ and have three solutions if $D>2$ and $y>y_{c r}$ (we consider gravitational lens equation for $y>0$ ), where $y_{c r}$ is a local maximal value of right hand of Eq. (56). It is possible to show that we determine the value $x_{c r}$ which corresponds to $y_{c r}$ using the following expression

$$
\begin{equation*}
x_{c r}^{2}=\frac{2 D-1-\sqrt{4 D+1}}{2} \tag{58}
\end{equation*}
$$

It is easy to see that according to (58) $x_{c r}^{2}>0$ if and only if $D>2$.

$$
\begin{equation*}
y_{c r}=x_{c r}-D \frac{\sqrt{1+x_{c r}^{2}}-1}{x_{c r}} \tag{59}
\end{equation*}
$$

If we choose $x_{c r}<0$ then $y_{c r}>0$. So, if $D \leq 2$ then gravitational lens equation has only one solution for $(y>0)$, if $D>2$ then gravitational lens equation has one solution (if $y>y_{c r}$ ), three distinct solutions (if $y<y_{c r}$ ), one single solution and one double solution (if $y=y_{c r}$ ).

It is possible to show that gravitational lens equation is equivalent to the following equation

$$
\begin{equation*}
x^{3}-2 y x^{2}-\left(D^{2}-y^{2}-2 D\right) x-2 y D=0 \tag{60}
\end{equation*}
$$

jointly with the inequality

$$
\begin{equation*}
x^{2}-y x+D>0 \tag{61}
\end{equation*}
$$

Thus it is possible to obtain the analytical solutions of gravitational lens equation by the well-known way. We perform $z=x-\frac{2 y}{3}$ and obtain
incomplete equation of third degree

$$
\begin{equation*}
z^{3}+p z+q=0 \tag{62}
\end{equation*}
$$

where $p=2 D-D^{2}-\frac{y^{2}}{3}$ and $q=\frac{2 y}{3}\left(\frac{y^{2}}{9}-D(D+1)\right)$, so we have the following expression for the discriminant

$$
\begin{equation*}
Q=\left(\frac{p}{3}\right)^{3}+\left(\frac{q}{2}\right)^{2}=\frac{D^{2}}{27}\left[-y^{4}+y^{2}\left(2 D^{2}+10 D-1\right)+D(2-D)^{3}\right] \tag{63}
\end{equation*}
$$

If $Q \geq 0$ then Eq. (62) has unique real solution (therefore the gravitational lens equation (56) has unique real solution). We use Cardan expression for the solution

$$
\begin{equation*}
x=\sqrt[3]{-\frac{q}{2}+\sqrt{Q}}+\sqrt[3]{-\frac{q}{2}-\sqrt{Q}}+\frac{2 y}{3} \tag{64}
\end{equation*}
$$

We suppose the case $D>2$. If $y>y_{c r}$ then the gravitational lens equation has unique solution. If $Q \geq 0$ then we use the expression (64) for the solution. If $Q<0$ then we have the following expression

$$
\begin{equation*}
x=2 \sqrt{-\frac{p}{3}} \cos \frac{\alpha+2 k \pi}{3}+\frac{2 y}{3}, \quad(k=0,1,2) \tag{65}
\end{equation*}
$$

where

$$
\begin{equation*}
\cos \alpha=-\frac{q}{2 \sqrt{-\left(\frac{p}{3}\right)^{3}}}, \tag{66}
\end{equation*}
$$

and we select only one solution which corresponds to the inequality (61) which corresponds to $k=0$ in (65) because if the gravitational lens equation has only one solution then we have a positive solution $x$ for a positive value of impact parameter $y$ therefore there is the inequality $x>y$ which is easy
to see from (59). It is possible to check that maximal solution of (60) corresponds to $k=0$ therefore the solution is the solution of (59).

If $y<y_{c r}$ then the gravitational lens equation has three distinct solutions and we use the Eqs. (65-66) to obtain the solutions.

We consider now the case $D<2$. We know that the gravitational lens equation has unique solution for the case. If $Q \geq 0$ then we use the expression (64) for the solution. If $Q<0$ then we have the following expressions (65-66) and we select only one solution which corresponds to the inequality (61) which also corresponds to $k=0$ as in the previous case.

It is known that magnification for gravitational lens solution $x_{k}$ is defined by the following expression

$$
\begin{equation*}
\mu_{k}=\left|\left(1-\frac{D\left(\sqrt{1+x^{2}}-1\right)}{x}\right)\left(1+D \frac{\sqrt{1 x^{2}}-1}{x^{2}}-D \frac{1}{\sqrt{1+x^{2}}}\right)\right| \tag{67}
\end{equation*}
$$

so the total magnification is equal

$$
\begin{equation*}
\mu_{\mathrm{tot}}(y)=\sum \mu_{k} \tag{68}
\end{equation*}
$$

where the summation is taken over all solutions of gravitational lens equation for a fixed value $y$.


Figure 3: The right hand side of the gravitational lens equation for different values of the parameters $D=1.8,2,2.2$.

## Singularities



Figure 4: Singularities. Fold (left) and Cusp (right) . V. I. Arnold's drawing.


Figure 5: Zeeman's sociological model (the catastrophe machine).


Figure 6: Cusp type singularity. Rene Thom (1923- ) drawing.

