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Basic notations

Gravitational lens equation in a dimensionless form

Remind GL equation

~η =
Ds

Dd

~ξ −Dds~̂α(~ξ), (1)

where ~η is a position of source, ~ξ is a position of image in the lens plane,
Dd is a distance between an observer and lens, Ds is a distance between an
observer and a source, Dds is a distance between a source and lens.

If distances are much greater than lens sizes we use flat GL
approximation, projecting bulk mass density onto the lens plane and as
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a result we have a surface mass density Σ(~ξ). Therefore we have the
following relation for deflection angle

~̂α =
∫

R2

4GΣ(~ξ′)
c2

~ξ − ~ξ′

|~ξ − ~ξ′|2
d2ξ′, (2)

where we integrate in the lens plane. Therefore, deflection angle is a
superposition of deflection angle for mass elements dm = Σ(~ξ′)d2ξ′.

Rewrite Eqs.(1), (2) in dimensionless form. Denote characteristic
distance in the lens plane ξ0 and corresponding length in the source
plane η0 = ξ0Ds/Dd. Let us introduce dimensionless vectors ~x = ~ξ/ξ0, ~ξ =
~η/η0, and a dimensionless mass density

k(~x) =
Σ(ξ0~x)

Σcr
, (3)
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where the critical mass density is

Σcr =
c2Ds

4πGDdDds
. (4)

Taking into account the notations we can rewrite gravitational lens
equation in the form

~y = ~x− ~α(~x), (5)

where

~α(~x) =
1
π

∫

R2
k(~x′)

~x− ~x′

|~x− ~x′|2 =
DdDds

ξ0Ds
~̂α(ξ0~x). (6)
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Potential functions

It is easy to see that deflection angle may be represented as a gradient
of a new function in respect to ~x

~α = ∇ψ, (7)

where

ψ(~x) =
1
π

∫

R2

4GΣ(~ξ′)
c2

~ξ − ~ξ

|~ξ − ~ξ′|2
(8)

is a logarithm potential associated with a surface mass density k(~x).
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So the mapping ~x 7→ ~y is gradient one

~y = ∇
(

1
2
~x2 − ψ(~x)

)
(9)

(singularities of these mappings were completely classified by Arnold
(1972,1974))

or if we introduce scalar function

φ(~x, ~y) =
1
2
(~x− ~y)2 − ψ(~x), (10)
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∇φ(~x, ~y) = 0, (11)

where a gradient is taking in respect to variable ~x. One can see that
there is Laplace equation connecting functions ψ and k,

∆ψ = 2k, (12)

where Laplace operator is taking in respect to ~x.
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Magnification, convergence and shear

Jacobian matrix

A(~x) =
∂~y

∂~x
, Aij =

∂yi

∂xj
, (13)

Magnification

µ(~x) = 1/det A(~x). (14)
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So, an image of a distant point like source at a position ~x will be
amplified (or demagnified) in |µ(~x)| times. Magnification may be positive
or negative and in this case corresponding images have positive or negative
parity.

For some values ~x the determinant detA(~x) may be vanishing (therefore
µ(~x) is infinity), and we call these points as critical points. An image of the
critical set with a gravitational lens mapping is called as caustics. Clearly,
that a point like approximation is not acceptable for these cases.

From Eqs. (13) and (10) we have

Aij = φij = δij − ψij, (15)

where a partial derivative in respect to variable xi is denoted with index
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i. From Eq. (15) we have that the matrix A is symmetrical one.

Using Eq. (12), we obtain that the Jacobian matrix may be written in
the following form

A =
(

1− k − γ1 −γ2

−γ2 1− k + γ1

)
, (16)

where

γ1 = (ψ11 − ψ22)/2, γ2 = ψ12 = ψ21. (17)

Therefore, we have the following expressions for a determinant and trace
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A:

detA = (1− k)2 − γ2, (18)

tr A = 2(1− k). (19)

For eigenvalues of matrix A we have

a1,2 = 1− k ± γ. (20)

In the last relation (20) γ means
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γ =
√

γ2
1 + γ2

2. (21)

1− k is called a convergence or Ricci-focusing, γ is a shear.
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General properties of symmetric lenses

Deflection angle

Let us consider a family of circular symmetric mass density distributions

Σ(~ξ) = Σ(|~ξ|).
Therefore, we have for a deflection angle

~α(~x) =
1
π

∫

R2
d2x′k(~x)

~x− ~x′

|~x− ~x′|2, (22)

where k(~x) = σ(ξ0~x)/Σcr, Σcr = c2Ds/(4πGDdDds).
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Since we have a circular symmetrical case we can select a positive
direction for axis x1, and ~x = (x, 0), x ≥ 0.

Introducing polar coordinates we have ~x′ = x′(sinϕ, cos ϕ), and
therefore k(x′) := k(~x′). Using an evident relation for the Jacobian
for the transformation d2x′ = x′dx′dϕ,

we obtain

α1(x) =
1
π

∫ ∞

0

x′dx′k(x′)
∫ 2π

0

dϕ
x− x′ cos ϕ

x2 + x′2 − 2xx′ cos ϕ
, (23)

α2(x) =
1
π

∫ ∞

0

x′dx′k(x′)
∫ 2π

0

dϕ
−x′ sinϕ

x2 + x′2 − 2xx′ cos ϕ
. (24)
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One can see

∫ 2π

0

dϕ
−x′ sinϕ

x2 + x′2 − 2xx′ cos ϕ
= 0. (25)

Therefore ~α is parallel to ~x. Therefore vector ~y, which determines a
source position is also parallel to vector ~x. The integral may be evaluated
with a complex analysis technique (residues)

I =
∫ 2π

0

R(cosϕ, sin ϕ)dϕ, (26)
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for instance, (for |a| < 1)

∫ 2π

0

dϕ

1 + a cos ϕ
=

2π√
1− a2

(27)

Therefore, one can see

∫ 2π

0

dϕ
x− x′ cos ϕ

x2 + x′2 − 2xx′ cos ϕ
=

{
0, for x′ > x,

2π/x, for x′ < x.
(28)

Therefore from Eq. (23) we obtain
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α(x) := α1(x) =
2
x

∫ x

0

x′dx′k(x′) =
m(x)

x
, (29)

where we introduce a definition

m(x) := 2
∫ x

0

x′dx′k(x′),

it means dimensionless mass inside a circle with a radius x.

Remind that we have the following relation between normalized and
non-normalized vectors ~α and ~̂α
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~̂α(~ξ) =
ξ0Ds

DdDds
~α

(
~ξ

ξ0

)
. (30)

Therefore using relation (29), we have

α̂(ξ) =
1
ξ

4G

c2
2π

∫ ξ

0

ξ′dξ′Σ(ξ′) =
4GM(ξ)

c2ξ
, (31)

where we introduce the following definition for mass inside circle with a
radius ξ:
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M(ξ) := 2π

∫ ξ

0

ξ′dξ′Σ(ξ′).

From Eq. (31) we can see that the deflection angle coincides with the
Einstein angle for mass M(ξ) inside a circle with a radius ξ.

Therefore, we obtain a scalar gravitational lens equation for circular
symmetrical case

y = x− α(x) = x−m(x)/x, (32)

where x ∈ R, m(x) := m(|x|).
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Taking into account the symmetry we can restrict our consideration with
a region y ≥ 0. Since m(x) ≥ 0, from Eq. (32) we obtain x ≥ y for
any positive solution x, but for any negative solution x one has to have
inequality −m(x)/x > y.
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Deflection potential ψ and Fermat’s potential

For a defection potential we have assuming that x ≥ 0

ψ(x) =
1
π

∫ ∞

0

x′dx′k(x′)
∫ 2π

0

dϕ ln
√

x2 + x′2 − 2xx′ cos ϕ. (33)

We can obtain

ψ(x) = 2
∫ x

0

x′dx′k(x′) ln
( x

x′

)
. (34)
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Differentiating (34) in respect to x we obtain α(x) = dψ(x)/dx

For Fermat’s potential φ(x, y) we have

φ(x, y) =
1
2
(x− y)2 − ψ(x), (35)

therefore GL equation is equivalent to the following equation

∂φ/∂x = 0. (36)
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Schwarzschild lens (reminding)

A point like mass M is located in the origin ~ξ = 0. Therefore, surface
mass density

Σ(~ξ) = Mδ2(~ξ).

A natural length scale is EC radius

ξ0 =
√

2RS
DsDds

Dd
.

Therefore m(x) = 1, and GL equation has the following form
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y = x− 1/x,

which has two solutions:

x1,2 =
(
y ±

√
y2 + 4

)
/2, (37)

so, there two images from both sides of the lens.

Magnification for an image at point x,

µ =
(
1− 1/x4

)−1
.
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Substituting the solutions of GL Eq. we obtain

µ1,2 = ±1
4

(
y√

y2 + 4
+

√
y2 + 4
y

± 2

)
. (38)

A total magnification is

µp = µ1 − µ2 =
y2 + 4

y
√

y2 + 4
. (39)

From Eq.(33) we have
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ψ = ln x, (40)

Therefore a time delay for these images

∆t =
4GM

c2
(1 + zd)τ(y), (41)

where

τ(y) =
1
2
y
√

y2 + 4 + ln

√
y2 + 4 + y√
y2 + 4− y

. (42)
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Since two images have comparable brightness only if y ≤ 1, , so
τ(1) ≈ 2.08, so the time delay (41) is about a time to intersect EC ring.

For a source with an uniform surface density with a radius R we have
that a maximal amplification factor is

µmax =
√

4 + R2/R. (43)
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Singular Isothermal Sphere (SIS)

For mass distribution in galaxies and galactic clusters people use Singular
Isothermal Sphere (SIS). (The model fits flat rotation curves).

ρ(r) =
σ2

v

2πGr2
, (44)

where σ2
v is velocity dispersion. Therefore, a surface mass density is

Σ(ξ) = 2
∫ +∞

0

ρ(
√

ξ2 + h2)dh =
σ2

v

2Gξ
, (45)

and a deflection angle is
α̂ = 4πσ2

v/c2. (46)
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The model has two features which have to be taken into account. First,
the infinite density at ξ = 0, but a mass is finite in any finite volume.

Second, a total mass is infinity, but if we consider images with impact
parameters |ξ| < R, then axial symmetrical distribution of mass with |ξ| > R
may be ignored.

Choosing the length scale factor

ξ0 = 4π
σ2

v

c2

Dds

Ds
, (47)

we have
k(x) = 1/2x, α(x) = x/|x|. (48)

In this case GL Eq. has the following form
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y = x− x/|x|. (49)

We can take y > 0 (without losing the generality) because we are free
to choose a suitable coordinate system: for y < 1 we have two solution
x = y +1 x = y−1, therefore these solutions are located from an opposite
sides of GL, for y > 1 we have only one solution x = y + 1.

The magnification at a point x is determined by

µ = |x|/(|x| − 1). (50)

The circumference |x| = 1 is a tangent critical curve. From the relation
a shear we have γ(x) = k(x) = 1/(2x), therefore a relative stretching in a
tangent direction is |µ|, meanwhile it is no stretching (or squeezing in radial
direction).
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A total amplification is

µp =
{

2/y y ≤ 1
(1 + y)/y y ≥ 1 . (51)

For y → 1 the second image started to be fainter.

For a deflection potential we have ψ(x) = |x|, and time delay is

c∆t =
[
4π

(σv

c

)2
]

DdDds

Ds
(1 + zd)2y. (52)
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Figure 1: Image of a circular source for the transparent lens. Radius of
source r = 0.1, impact parameter y = 0.11. It is clear that radius of source
is the same as widths of images in radial direction.
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Figure 2: Image of a circular source for the transparent lens. Radius of
source r = 0.1, impact parameter y = 0.3. It is also clear that radius of
source is the same as widths of images in radial direction.
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Softened isothermal sphere or isothermal sphere with a
core (ISC).

For this model we have no infinite density at the origin since we have a
core with a radius rc, and this model is more realistic one.

ρ(r) =
σ2

v

2πG(r2 + r2
c)

, (53)

so the model (53) coincides with SIS (44) for rc = 0 or r À rc. Therefore,
a surface mass density and a total mass are determined by

Σ(ξ) =
σ2

v

2πG
√

ξ2 + r2
c

, (54)
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m(ξ) =
σ2

v

G
(
√

ξ2 + r2
c − rc). (55)

Introducing variables x = ξ/rc, y = (η/rc)(Dd/Ds), we have GL
equation

y = x−D(
√

1 + x− 1)/x. (56)

A parameter D := (4πσ2
v/c2)(DdDds/rcDs), defines a number of solutions.

So for D ≤ 2 we have only one solution, for D > 2 we have three
solutions if y is relatively small.

Solutions may be found as intersections of line y =const with a cure
y = x−D(

√
1 + x2 − 1)/x.

For a magnification
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µ =

∣∣∣∣∣

(
1−D

√
1 + x2 − 1

x2

)(
1 + D

√
1 + x2 − 1

x2
−D

1√
1 + x2

)∣∣∣∣∣

−1

.

(57)
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A qualitative analysis of the gravitational lens equation

We will show that gravitational lens equation has only one solution
if D < 2 and have three solutions if D > 2 and y > ycr (we consider
gravitational lens equation for y > 0), where ycr is a local maximal value of
right hand of Eq. (56). It is possible to show that we determine the value
xcr which corresponds to ycr using the following expression

x2
cr =

2D − 1−√4D + 1
2

, (58)

It is easy to see that according to (58) x2
cr > 0 if and only if D > 2.

ycr = xcr −D

√
1 + x2

cr − 1
xcr

, (59)
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If we choose xcr < 0 then ycr > 0. So, if D ≤ 2 then gravitational lens
equation has only one solution for (y > 0), if D > 2 then gravitational lens
equation has one solution (if y > ycr), three distinct solutions (if y < ycr),
one single solution and one double solution (if y = ycr).

It is possible to show that gravitational lens equation is equivalent to
the following equation

x3 − 2yx2 − (D2 − y2 − 2D)x− 2yD = 0, (60)

jointly with the inequality

x2 − yx + D > 0. (61)

Thus it is possible to obtain the analytical solutions of gravitational lens

equation by the well-known way. We perform z = x − 2y

3
and obtain
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incomplete equation of third degree

z3 + pz + q = 0, (62)

where p = 2D −D2 − y2

3
and q =

2y

3

(
y2

9
−D(D + 1)

)
, so we have the

following expression for the discriminant

Q =
(p

3

)3

+
(q

2

)2

=
D2

27
[−y4 + y2(2D2 + 10D − 1) + D(2−D)3

]
. (63)

If Q ≥ 0 then Eq. (62) has unique real solution (therefore the gravitational
lens equation (56) has unique real solution). We use Cardan expression for
the solution

x = 3

√
−q

2
+

√
Q + 3

√
−q

2
−

√
Q +

2y

3
. (64)
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We suppose the case D > 2. If y > ycr then the gravitational lens
equation has unique solution. If Q ≥ 0 then we use the expression (64) for
the solution. If Q < 0 then we have the following expression

x = 2
√
−p

3
cos

α + 2kπ

3
+

2y

3
, (k = 0, 1, 2) (65)

where

cos α = − q

2
√
− (

p
3

)3
, (66)

and we select only one solution which corresponds to the inequality (61)
which corresponds to k = 0 in (65) because if the gravitational lens equation
has only one solution then we have a positive solution x for a positive value
of impact parameter y therefore there is the inequality x > y which is easy
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to see from (59). It is possible to check that maximal solution of (60)
corresponds to k = 0 therefore the solution is the solution of (59).

If y < ycr then the gravitational lens equation has three distinct solutions
and we use the Eqs. (65-66) to obtain the solutions.

We consider now the case D < 2. We know that the gravitational
lens equation has unique solution for the case. If Q ≥ 0 then we use
the expression (64) for the solution. If Q < 0 then we have the following
expressions (65-66) and we select only one solution which corresponds to
the inequality (61) which also corresponds to k = 0 as in the previous case.

It is known that magnification for gravitational lens solution xk is defined
by the following expression

µk =

∣∣∣∣∣

(
1− D(

√
1 + x2 − 1)

x

)(
1 + D

√
1x2 − 1

x2
−D

1√
1 + x2

)∣∣∣∣∣ , (67)
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so the total magnification is equal

µtot(y) =
∑

µk, (68)

where the summation is taken over all solutions of gravitational lens equation
for a fixed value y.
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Figure 3: The right hand side of the gravitational lens equation for different
values of the parameters D = 1.8, 2, 2.2.

– Typeset by FoilTEX – 42



Singularities

Figure 4: Singularities. Fold (left) and Cusp (right) . V. I. Arnold’s drawing.
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Figure 5: Zeeman’s sociological model (the catastrophe machine).
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Figure 6: Cusp type singularity. Rene Thom (1923- ) drawing.
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