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Because of the analogy between the propagation of rays of light and the
motion of bodies, I thought it not amiss to add the following Propositions
for optical uses; not considering the nature of the rays of light, or inquiring
whether they are bodies or not, but only determining the trajectories of
bodies, which are extremely similar to the trajectories of rays. (Isaac
Newton, Principia, 1687)

It is well-known that a propagation of light is describing by general
relativity equations, however light deflection was discussed by Newton in
1704 in the ”Optics”. Newton wrote ”Do not Bodies act upon Light at a
distance, and by their action bend its Rays; and is not this action strongest
at the least distance?”

Θ =
2GM

c2R
, (1)

or more precisely, Θ ∼ R−1, since at Newton’s time dimensional quantities
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were not written (it was no generally accepted system of units like SI or
SGS). Moreover, in Principia, Newton proved that if

~a = ~̈r ∼
~R

R3
, (2)

in this case a motion may be only conical sections such as parabola, ellipse
or hyperbola. Since Newton calculated semi-axis of hyperbola, he knew the
angle between its asymptotes.

Therefore, clearly that Newton knew Eq. (2), moreover dimensional
constants were known as well, since Giovanni Domenico Cassini, fr. Jean-
Dominique Cassini (8 June 1625 14 September 1712, born in Perinaldo,
near San-Remo, at that time in the Republic of Genoa) sent his colleague
Jean Richer to Cayenne, French Guiana to measure simultaneously the Mars
position (the parallax technique), thus Cassini evaluated a distance between
Sun and the Earth (AU). The Cassini estimate was a = AU = 146∗106 km,
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but the modern quantity is a = AU = 149, 6 ∗ 106km, so he improved a
precision in about 10 times.

Problem. Evaluate parallax angle for these measurements.

Roemer estimated that light would take about 22 minutes to travel
a distance equal to the diameter of Earth’s orbit around the Sun: this
is equivalent to about 220,000 kilometers per second in modern units,
about 26% lower than the true value. While the exact details of Roemer’s
calculations have been lost, the error is probably due to to an error in the
orbital elements of Jupiter, leading Roemer to believe that Jupiter was closer
to the Sun than is actually the case. Roemer’s theory was controversial
at the time he announced it, and he never convinced the director of the
Royal Observatory, Giovanni Domenico Cassini, to fully accept it. However,
it quickly gained support among other natural philosophers of the period,
such as Christian Huygens and Isaac Newton.
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Figure 1: Giovanni Domenico Cassini
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Figure 2:

5



Figure 3: Ole Roemer (16441710), depicted here some time after his
discovery of the speed of light (1676), at a time when he was already a
statesman in his native Denmark. The engraving is probably posthumous.
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Figure 4: A redrawn version of the illustration from the 1676 news report.
Roemer compared the apparent duration of Io’s orbits as Earth moved
towards Jupiter (F to G) and as Earth moved away from Jupiter (L to K).
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Figure 5: Roemer’s notes, written at some point after January 1678 and
rediscovered in 1913. The timings of eclipses of Io appear on the right hand
side of this image, which would have been ”page one” of the folded sheet.
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Since the orbital period for the Earth was know with a high precision
even in times of Tycho Brahe (born Tyge Ottesen Brahe (de Knudstrup)
(14 December 1546 24 October 1601)), and if we know a distance between
the the Sun and the Earth (AU), one can evaluate GM¯, since from the
third Kepler law we have T 2/a3 = 4π2/(GM¯).

Roemer’s results were published in 1676 and 1677 (English translation),
there in 1687 constants in Eq. (2) were known and it was an opportunity
to evaluate the deflection angle for solar radius and mass. If we assume
R = R¯ and M = M¯ then Θ = 0.′′87 (the correct GR estimate is
Θ = 1.′′75).

But if we use values of these numbers in Newton’s times (c = 2.2 ∗ 1010

cm/sec) surprisingly we have the deflection angle Θ = 1.′′61 (it is very close
to predictions of GR).

The first derivation of Eq. (1) was obtained by Cavendish (Will, 1988).
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These studies were triggered by a correspondence with his friend J. Michell.

The first published derivation of Eq. (1) was obtained by Johann von
Soldner in 1804 (submitted in 1801).

Figure 6: One of the photographs taken by Eddington at Principe. No stars
are visible here, but the image does capture a spectacular solar prominence.
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Figure 7: The headline in the Times reporting the meeting at which
Eddington and Dyson presented the results of the expedition. Copyright
Times, 6 November 1919.
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Figure 8: The Illustrated London News presentation of the expedition and
its results.

In the beginning of XX century people had possibilities to measure a
deflection of light. In 1838 Bessel announced that 61 Cygni had a parallax of
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0.314 arcseconds; which, given the diameter of the Earth’s orbit, indicated
that the star was about 3 parsecs (9.8 light years) away.

Einstein obtained the same relation in the framework of SR in 1911
and suggested to measure it in 1914 during the next solar eclipse. His
assistant Freundlich came to Russia to measure the deflection but World
War I started and German astronomers were interned and (fortunately for
Einstein the measurements were not performed (Brecher)).

In 1919 Eddington and Dyson decided to check the prediction of GR
during solar eclipse in the Southern Hemisphere. Observations were made
simultaneously in the cities of Sobral (Brazil) and in island Principe on the
west coast of Africa.

In the framework of GR in 1915 (and 1916) Einstein obtained the
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following expression of light deflection

Θ =
4GM

c2R
. (3)

In 1919 Eddington and Dyson decided to check the prediction of GR
during solar eclipse in the Southern Hemisphere. Observations were made
simultaneously in the cities of Sobral (Brazil) and in island Principe on the
west coast of Africa.

They have to select one from three options:

1) there is no light deflection by a solar gravitational field;

2) a prediction of Newtonian theory is correct 0.′′87;

3) GR prediction is correct 1.′′75.
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Sobral’s results gave 1.′′98± 0.′′12,

Principe’s 1.′′61± 0.′′30.

However, Sobrale’ results 0.′′93 were rejected.

In his 1979 paper Harvey compares the 1919 results with those he
recovered using modern techniques. Harvey comments (p. 198)

For the 4-inch plates there is no great difference between the value
obtained by Dyson et al. and that from the new measurements, but the
error has been considerably reduced. For the Astrographic plates, however,
a significant improvement has been achieved by the new measurements.
Where the previous reduction yielded a value of 0.′′93 with an unspecified,
large error, the new determination is 1.′′55 ± 0.′′34. This is still a weak
result, but does provide support for that from the 4-inch plates. Combining
the two fresh determinations, weighted according to their standard errors,
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gives 1.′′87± 0.′′13, a result which is just within one standard error of the
predicted value.

Table 1: Gravitational displacement at the Suns limb in seconds of arc.

Determination Displacement
Predicted from Einsteins Theory 1.′′75

4-inch plates reduced by Dyson et al. 1.′′98± 0.′′18
4-inch plates measured on the Zeiss 1.′′90± 0.′′11

Astrographic plates reduced by Dyson et al. 0.′′93
Astrographic plates measured on the Zeiss 1.′′55± 0.′′34
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Soldner calculations

We assume that a light was emitted from point A in a direction which is
perpendicular to vector ~CA. After an instant t a light will be in point M . We
introduce the following notations CM = r, CP = x,MP = y, MCP = φ.
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Figure 9: Reproduction of Soldner picture for his derivation of light
deflection. A circle with a center at illustrate a spherically symmetric
gravitating body. A light emitted from point A, is moving in a tangent
direction AD. A current position of light is M and an angle φ. AMQ is a
light trajectory (a piece of hyperbola).
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The gravitational force acting on light creates an acceleration in a radial
direction GM/r2. Thus,

d2x

dt2
= −GM

r2
cos φ, (4)

d2y

dt2
= −GM

r2
sinφ, (5)

If we multiply Eq. (4) with − sin φ, Eq. (5) with cos φ and adding them,
we obtain

−d2x

dt2
sin φ +

d2y

dt2
cos φ = 0, (6)

If we multiply Eq. (4) with cos φ , Eq. (5) with sinφ and adding them, we
obtain

19



d2x

dt2
cos φ +

d2y

dt2
sinφ = −GM

r2
, (7)

if we introduce polar coordinates

x = r cos φ, (8)

y = r sinφ, (9)

then
ẋ = ṙ cos φ− r sinφφ̇, (10)

ẏ = ṙ sinφ + r cos φφ̇, (11)
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and
ẍ = r̈ cos φ− 2ṙφ̇ sinφ− rφ2 cos φ− rφ̈ sin φ,

ÿ = r̈ sin φ + 2ṙφ̇ cos φ− rφ2 sinφ + rφ̈ cos φ, (12)

So, we obtain

−ẍ sin φ + ÿ cos φ = 2ṙφ̇ + rφ̈ = 0. (13)

Similarly,
ẍ cos φ + ÿ sin φ = r̈ − rφ̇2 = 0. (14)
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It is easy to see that r2φ̇ is the integral of motion.

Really,

d(r2φ̇)
dt

= 2rṙφ̇ + r2φ̈ = 0. (15)

So, we obtain a well-known fact, if a force depends only on distance
gravitating body and a moving particle, we have an integral of motion we
call it integral of areas, since, relation r2φ determines a double area of
triangle covering by moving particle (it is a moving photon in our case).
Clearly that the area is determined by

C = AC · v. (16)

If we select units that the radius of gravitating body is 1 (or we measure
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distances in units of the radius), we have C = v. Therefore,

φ̇ =
v

r2
. (17)

Substituting φ, we obtain

r̈ − v2

r3
= −GM

r2
. (18)

It is easy to see that the last equation has the first integral (the energy
integral)

ṙ2 +
v2

r2
− 2GM

r
= D. (19)

Therefore

dt =
dr√

D + 2GM/r − v2/r2
. (20)
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Changing variable t with φ, we obtain

dφ =
vdr√

[D + 2GM/r]− v2/r2
. (21)

To integrate the last equation we introduce a new variable

z =
v

r
− GM

r
. (22)

so,

dz = −vdr

r2
. (23)

and

dφ = − dz√
[D + (GM)2/v2]− z2

. (24)
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Therefore,

φ = arccos
z√

D + (GM)2/v2
+ α. (25)

or

cos(φ− α) =
z√

D + (GM)2/v2
. (26)

Coming back to radial variable r, we obtain

cos(φ− α) =
v2 − (GM)r

r
√

v2D + (GM)2
. (27)

Assuming that the origin for angle φ is selected as φ = 0, r = AC = 1 (or
α = 0)

cos(φ) =
v2 − (GM)r

r
√

v2D + (GM)2
. (28)
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We have from a choice of an origin of φ, we obtain D

cos(φ) =
v2 − (GM)r
r(v2 −GM)

. (29)

Moreover, we assume v2 > GM . Introducing Cartesian coordinates again

x = 1− r cos φ, y = r sin φ (30)

We have

y2 =
v2(v2 − 2GM)

(GM)2
(1−x)2− 2v2

(GM)2
(v2−GM)(1−x) +

v4

(GM)2
. (31)
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On the other hand,

y2 =
2v2

GM
x +

v2(v2 − 2GM)
(GM)2

x2. (32)

Clearly, the last equation is determined a conci section, moreover, if

v2 > 2GM, (33)

a trajectory is hyperbola, if

v2 = 2GM, (34)

a trajectory is parabola, if
v2 < 2GM, (35)
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a trajectory is ellipse, if
v2 = GM, (36)

a trajectory is circumference.

Soldner knew Laplace paper about ”dark stars” where the inequality
(33) is violated but Soldner consider only the case when the relation (33) is
correct (33), so

y2 =
2b2

a
x +

b2

a2
x2, (37)

where a is the major semi-axis, b is the minor semi-axis

tanω =
AB

AD
=

a

b
, (38)

or

tanω =
GM

v
√

v2 − 2GM
. (39)
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Since v2 À 2GM , the deflection angle is very small

ω =
GM

v2
. (40)

A total deflection angle is Θ = 2ω, since ω is an angle between the
hyperbola asymptote and y-axis and reminding that a radius of gravitating
body is 1, we obtain (2).

Substituting solar parameters R¯ = 6.96 · 1010cm,M¯ = 1.989 ·
1033g,G = 6.673 · 10−8c3/(g · sec2), c = 2.997 · 1010cm/sec, we obtain
Θ = 0.′′875. Θ = 0.′′84 (due to uncertainties in constants).

In Soldner’s times it was very hard to measure the deflection angle in
observations.

Problem. If a force is radial, we have a planar motion. Prove it
for both cases: Newtonian theory and General Relativity.
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A shorter derivation of a light deflection in Newtonian
gravity

First we consider a photon motion in the framework of Newtonian
gravitational theory. We suppose that a photon is a particle having a mass

m =
hν

c2
.

Let us consider a photon motion near a star having a mass M∗. If a
photon is emitted by a source S then we denote an impact distance of the
photon motion by p . If we use Cartesian coordinate frame Oxy then the
equation of motion of a light ray has the following form:

m
d2~r

dt2
= −GmM∗

|~r|3 · ~r. (41)
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As follows from Eqn (41), a photon mass is shortened, so there is a light
bending effect even in the framework of Newtonian theory.

It is well-known from the analysis of the Newtonian equations of motion
that a test particle trajectory may be a hyperbola, a parabola or an ellipse.

The quantitative criteria of different types of a particle trajectory
consist of a comparison of a potential energy of particle in the gravitational

field (U = GM∗hν
c2p

for the case) and a kinetic energy (E = hν for the

case). Since the test particle is a photon for our case, so the criterion is
the fraction of a gravitational potential of a body and a square of speed

of light GM∗
c2p

. The fraction is much less unity for considered astronomical

models, so the trajectory is a hyperbola and kinetic energy of a photon is
much greater than its potential energy.
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Below we will analyse a light ray displacement along the axis Oy, which
is perpendicular to an original velocity of a photon. Since a light ray moves

practically along the axis Ox, in zeroth order in the parameter GM∗
c2p

we

have the following equation of motion x = ct. If we express t via x and
substitute it in Eqn (41), then we obtain the equation in the parametric
form y(x)

d2y

dx2
= − GM∗y

c2(x2 + y2)3/2
. (42)

We suppose that the displacement is a very small one, thus we assume
y ≈ p in the right hand side of the Eqn (42). So it is possible to calculate an
integral of the right hand side of the Eqn (42). Really, using the substitution
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x = ptgφ, we obtain

−p

∫ x

−∞

dx

(x2 + p2)3/2
= −p−1(sinφ + 1). (43)

We note that
dy

dx
is a tangent line for the photon trajectory, the difference

of the values dy
dx

for +∞ and −∞ is equal to the bending angle of a photon
in the gravitational field of a star M∗:

∆ϕ =
dy

dx

∣∣∣∣
x=−∞

− dy

dx

∣∣∣∣
x=+∞

=
dy

dx

∣∣∣∣
φ=−π/2

− dy

dx

∣∣∣∣
φ=+π/2

= −2GM∗
c2p

. (44)

We obtain the bending angle which is equal to a half of a correct
value of bending angle. The difference is connected with an usage of
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non-relativistic approximation, but a photon is a relativistic particle moving
with the limiting speed (the speed of light).
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A derivation of Einstein relation for deflection of light

It is one of the classical tests of GR.

We will follow the derivation from the book (C. Moller, The Theory of
Relativity (Clarendon, Oxford, 1969)).

Assume that an impact parameter is ∆. Therefore, a dependence of a
radial coordinate r as a function of angle φ is (Landau & Lifschitz, Theory
of classical fields)

(
dr

dφ

)2

= r4

(
1

∆2
− 1

r2

(
1− rg

r

))2

, (45)

where rg = 2GM/c2. Changing variable u = 1/r, therefore, ignoring small
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quantity rgu, we obtain

φ =
∫

0

u

∆du[1− (∆u)2]−1/2 = arcsin(∆u). (46)

Thus, u = sin φ/∆ or r = ∆/ sin φ. So, an approximate solution of Eq.
(46) is a straight line at a distance from the origin ∆, moreover, the minimal
approach of a photon is for φ = π/2 and a photon is going to infinity for
φ → π. Eq. (46) may be written the following form

(
du

dφ

)
=

[
1

∆2
− u2(1− rgu)

]1/2

, (47)

If we introduce new variable

σ = ∆u(1− rgu)1/2 = ∆u
(
1− rgu

2

)
. (48)
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Therefore,
du

dφ
=

1
∆

(1− σ2)1/2, (49)

Since rgu is a small quantity, we have

∆u = σ(1− rgu)−1/2 ≈ σ
(
1 +

rgu

2

)
≈ σ

(
1 +

rgσ

2∆

)
, (50)

Therefore,

∆du = dσ
(
1 +

rgσ

∆

)
, (51)

From Eq. (49) we obtain that

φ =
∫

0

u

∆du(1−σ2)−1/2 =
∫

0

σ(1 + rgσ/∆)dσ√
1− σ2

= arcsin(σ)−rg

∆
(1−σ2)1/2+

rg

∆
.

According to Eq. (49) the maximal um (minimal rm) (pericenter)
corresponds to σ = 1. The angle corresponding to the pericenter is
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determined from the integral

φm =
π

2
+

rg

∆
(52)

Therefore, a light deflection is Θ = 2(φm − π/2), or Θ = 2rg/∆.
Substituting σ = 1 in Eq. (48), we obtain um, corresponding to the
pericenter

um =
1
∆

(1 +
rg

2∆
) (53)

Ignoring the small term in the last relation we obtain Einstein expression for
a light deflection in framework of GR

Θ ≈ 2rgum =
4GM

c2rm
(54)

Keep in mind that we obtained the last relation assuming rg ¿ ∆.

38



Problem. Explain quantitatively factor 2 in Newtonian and GR
results.
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