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To give some results (in particular Efimov’s effect)for the two
and three-particle lattice Hamiltonians in dimension d = 3 with
emphasis on new threshold phenomena that are not present in
the continuous case.
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Description of the energy operators of two and three identical

The coordinate representation

The momentum representation

The free Hamiltonian hg of a system of two identical quantum
mechanical particles on the three dimensional lattice 73

(A%)) (x5, %,) = Z [2¢(Xs, X,) = D (X5 + 8, X;) = (Xg, X, +8)],

\SI

The Hamiltonian lAvu of a system of two identical particles
(bosons) interacting via a zero-range pair potential ¥ is
associated with the following self-adjoint operator

B = Fo—

(V) (X5, %,) = 16,0, D (X3, %,), D € ED((Z2)?).
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Description of the energy operators of two and three identical
The coordinate representation

The momentum representation

The free Hamiltonian Ho of a system of three identical
particles(bosons) on the lattice Z3 is

(Hoth)(x1. X2, Xs) = % D [Bd (x4, X2, X3) — (X1 + 8, %2, Xa)

|s|=1
— lz(X1 , Xo + S, X3) — lz(X1 , X0, X3 + S)],iz S ggs)((Z3)3)

The Hamiltonian H of a system of three identical particles with
the pair zero-range interaction
V="V,=Vs, =pn 0 p,v=1,273is abounded perturbation of
Ho L

H=Hy—Vi—Vo— Vs, (1)
where V,, = V, a = 1,2,3 is multiplication operator:

(V@Z)(Xa’xﬁvxﬂ = ,“(ngxww(xmxﬁvxv)ﬂz € K(ZS)((ZS)a)'
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Description of the energy operators of two and three identical
The coordinate representation

The momentum representation

Let
Fm - L2((T%)7) = £2((Z%)™)

be Fourier trans.
The two-resp. three-particle Hamiltonians in the momentum

representation are given on L{¥((T2)2) resp. LY ((T%)3)

h=(35) "h,53, resp.H, = (35)" HSFS.
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Description of the energy operators of two and three identical
The coordinate representation

The momentum representation

The two-particle Hamiltonian h,, is of the form
h# = ho - V.
The operator hy is the multiplication operator

(hof) (ks ky) = (e(ks) + (k) (s, k), f e LE(T2)P),

where k,,a = 1,2, 3 is the quasi-momentum of the particle a.
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Description of the energy operators of two and three identical
The coordinate representation

The momentum representation

The integral operator v is of convolution type

(V) (ks, ky)

— (2“) / 5(ks + ko — Kb — K.)f(Kh, K, )dkh k!,
™

nNjw

(1)

where 4(+) is the three-dimensional Dirac delta-function.
The function (k) is given by the Fourier series

3
= (1 - cosk().
j=1
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Description of the energy operators of two and three identical
The coordinate representation

The momentum representation

The three-particle Hamiltonian H,, in the momentum
representation is given on LY ((T%)3) and is of the form

H,=Hy— Vi — Vo — Vs,

where Hy is the multiplication operator:

(Hof)(ki, ko, k3) = [Z (ki ko, K3),

a=1

and V,, is partial integral operator of convolution type
(Vf)(ka,kﬁ, y) = (Vf)(ka,kﬂ,k)

)(ks + ky — Ky — K)) f(KL, K, K. )dk.,dk}dlk!,

(7T3')3

Note that V is not compact.
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Decomposition into von Neumann direct integrals. Quasimom

The fiber operators.

Denote by k = ki + ko € T resp.K = ki + ko + k3 € T® the
two-particle resp. three-particle quasi-momentum and define
F2 resp. F3 as follows

F2 = {(ky, k — ky)e(T®)? : ky € T3, k — ky € T3}.

F} = {(ki, k) € (T®)? : ko, ko € T3, K — ki — ko € T3},
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Decomposition into von Neumann direct integrals. Quasimom

The fiber operators.

The h and H can be decomposed into the direct integrals

h= / oh(k)dk H = / OH(K)dK )

keT3 KeTs3

with respect to the decompositions

() = [ oL@k,

keT3

1P(ref) = [ oLPEaK.

KeTs3
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Decomposition into von Neumann direct integrals. Quasimom

The fiber operators.

We introduce the mapping(projector)
7B (%2 — T2, =®)((ks, k;)) = ks
resp.
7@ (T%)% — (T%)2, 7 ((kas ks, K))) = (Ka Kg)-

Denote by ©\2), k € T3 resp. =) , K & T8 the restriction of 7
resp. 73 onto F2 (%) resp. F} C (T%)3, i.e.,

71',((2) = W(2)|Fi resp. 71'5(3) = 7r(3)|F?(.

Note that F2, k € TS resp. F3, K € T is three resp.
six-dimensional manifolds isomorphic to T2 resp. (T3)2.
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Decomposition into von Neumann direct integrals. Quasimom

The fiber operators.

Lemma

The mapping w,((z) , k € T3 resp. wff) , K € T® are bijective from
F2 C (T3)? resp. F3  (T3)® onto T® resp. (T3)? with the
inverse mapping given by

(m2) 1 (ks) = (s, k — ks)

resp.
(T (Ko k5) = (Kar kg, K — Ko — K3).
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Decomposition into von Neumann direct integrals. Quasimom

The fiber operators.

Let L§(T®) c Lo(T®). The fiber operators h(k), k € T® are
unitarily equivalent to the operators h(k), k € T3, of the form

h(k) = ho(k) — V. (3)
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Decomposition into von Neumann direct integrals. Quasimom

The fiber operators.

The operators hy(k) and v acts on the Hilbert space L§(T3):

(ho(K))(P) = Ex(P)f(P), f € LE(T),

where
k k J K;
¢k(q) = 5(5 +q)+ €(§ -q)= 22[1 - COS(E)cos qjl
i=1
and

(v1)(@) = a3 / f(q)ag, fe LE(T?).
Ts
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Decomposition into von Neumann direct integrals. Quasimom

The fiber operators.

The fiber operators FI(K), K e T® from the direct integral
decomposition are unitarily equivalent to the operators H(K) :

H(K) = Ho(K) = Vi — Va2 — Va.

The operators Hy(K) and V, = V, a = 1,2,3, acts on the
Hilbert space

LE((T°)?) = Lo(T®) ® LE(T®)
and in the coordinates (k,, kg) € (T2)? have form

(Ho(K)f)(Kas kg) = E(K: K. ks)f(ka, Kg),  f € LE((T)?),
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Decomposition into von Neumann direct integrals. Quasimom

The fiber operators.

k ko

E(K: s ks) = (K — o) +2(5 — Kg) + 25+ o)

and
V=Igv,

where ®— is the tensor product.
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The two-particle operator h, (k)

Essential spectrum of the operator H(K)

Since the particles are identical we have only one channel
operator Hg(K), K €T? acting in the Hilbert space
L5((T®)?) = Lo(T®) @ L5(T®) as

Hen(K) = Ho(K) -V,
where Hy(K) resp. V is mult. resp. part. int.oper.
The decomposition of the space L5((T3)?) into the direct

integral
L)) = [ eLs(r)dk
keT?
yields for the operator H.,(K) the decomposition into the direct
integral

Hen(K) = / ©Hen(K, k)dk.
keT?
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The two-particle operator h, (k)

Essential spectrum of the operator H(K)

The fiber operator Hgy(K, k) has the form
Hen(K, k) = e(K — k)1 + h,(k),

where [ is identity op-r and h, (k) is the two-particle op-r.
Denote by
Tu(K, K) = e(K — k) + z,(k),

where z,(k) is the unique eigenvalue of h,(k)
The representation of the Hyp(K, k) implies

o(Hen(K, k) = Tu(K, k) U [Emin(K)7 Emax(K)]-
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The two-particle operator h, (k)

Essential spectrum of the operator H(K)

Lemma
The following equality holds

oess(Hu(K)) = Uktu(K, k) U [Emin(K), Emax(K)).
Theorem

The following equality holds

o (Hen(K)) = dess(Hu(K))-
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The two-particle operator h, (k)

Essential spectrum of the operator H(K)

By Weyl’s theorem the ess.spectrum coincides with o(hg(k)) of
ho(k), i.e.,
Uess(h(k)) = [gmin(k)a 8max(k)],

where

Emin(K) = min Ex(p),  Emax(k) = max Ex(p)
peTs peTS

Let ry(k, z) be resolvent of hy(k).
For any k € T3, z < emin(k) Fredholm’s determinant of h,(k)

Buk2) = 1= (@) -2 'da (@

T3
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The two-particle operator h, (k)

Essential spectrum of the operator H(K)

Lemma
Let keT3. The number z < emin(k) is an eigenvalue of the
operator h,(k) if and only if

A,(k,z)=0.

Let d > 3. We introduce the parameter 0 < n(&p) < oo as

1 ag

_ —1
7](80) - [(27'(')de So(q) )] .
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The two-particle operator h, (k)

Essential spectrum of the operator H(K)

Lemma

The following statements are equivalent:

(i) the operator h,(0) has a zero energy resonance;
(i) A,(0,0) =0;

(iii) p = n(&o).

Remark
Remark that if A,¢)(0,0) = 0, then the equation hy(0)f = 0
has a solution

const
p) = €o(p)

where L1(TY) is the Banach space of integrable functions.

€ Ly(T9) \ LE(TY).
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The two-particle operator h, (k)

Essential spectrum of the operator H(K)

Definition

The operator h,¢ . 0))(0) is said to have a virtual level (zero
energy resonance) if A, ¢ - 0))(0,0) = 0. We call that the point
z = 0 is regular point of the essential spectrum of h, ¢ . 0))(0)

f B0 (0,0) # 0.
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The two-particle operator h, (k)

Essential spectrum of the operator H(K)

Theorem

(i)Let i < n(Eo). Then the operator h,,(0) has non eigenvalue
lying below the essential spectrum and z = 0 is regular point of
the essential spectrum of h, s . 0))(0).

(i)Let = n(Eo). Then the operator h,)(0) has a zero energy
resonance z,)(0) = 0 and for all k € T3 = T%\ {0} the

hye,) (k) has a unique eigenvalue z, ¢ \(k), such that

0 < Z(e4)(K) < Emin(K).
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The two-particle operator h, (k)

Essential spectrum of the operator H(K)

(iii) For any u > n(€p) the point z = 0 is regular point of the
essential spectrum of h,¢_ . 0))(0) and for all k € T* the h, (k)
has a unique eigenvalue z,(k) lying below the essential
spectrum. Moreover z,,(k) is even, analytic in T3,

Z,(K) < Zy(e,)(K),
2,(k) = —p+ O(1), p — +o0.

Remark

In the case (i) it may exists a region G T2 and for k € G the
operator h,(k) has an eigenvalue below the bottom of the
essential spectrum.
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The three-particle operator (Efimov’s effect)

Set.
Emin(K): min E(K7p7q)7
p,qeT?
Emax(K) = max E(K,p, q).
p,qeT3

7uinf(K) = kien%a[zu(k) +e(K — K)].
Tusup(K) = sup [z, (k) + e(K — k)]
keT®
The essential spectrum of H,(K), K € T2 described by

Theorem
For the essential spectrum oess(H,(K)) of H,(K) the equality
holds

ess(Hu(K)) = Ukers7u(K, k) U [Emin(K), Emax(K)]-
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The three-particle operator (Efimov’s effect)

Remark
The ess. spec. of H,)(K) coincides with the segment

Uess(Hn(Eo( )) [ n(€o) |nf( ) EmaX(K)]-

Moreover
Emin(0) = 7(e4),inf(0) = 0

and forany0 £ K € Tg the relations

m/n(K) > Tn(&o) |nf(K) >0

are hold.

Thus the two-part. ess. spec. of H,)(0) below the bottom of
the three-part. ess. spec. is empty set and for any K # 0 the
operator H,c)(K) has nonempty two-particle negative ess.
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The three-particle operator (Efimov’s effect)

Remark
Since

z,(K) = —p+ O(1), p — +o0,
Tuinf(K) = —p 4+ O(1), p — +o0,
Tusup(K) = —p+ O(1), p = +o0.

For sufficiently large 1 > 0 the essential spectrum of the
operator H,(K) consists of two different segments

Oess,two = [7' ,inf(K)7Tu,sup(K)] = UkeT3Tu(K7 k),
Uess,three(Hu(K)) = [Emin(K)’ Emax(K)]~
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The three-particle operator (Efimov’s effect)

We denote by N, (K, z) the number of eigenvalues of H,(K)
below z < 7,(K).

Theorem
The operator H,¢)(0) has infinitely many eigenvalues lying

below the bottom 7, ¢)(0) = 0 of the ess. spec.and the func.
N, (e0)(0, Z) obeys the relation

N??(Eo)(07 2) Ao

= — 5
z—»-0 |log|z|| 2r’ ®)
where \q is the unique positive solution of the equation

8sinhw\/6

A= V3coshm)/2 (®)
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The three-particle operator (Efimov’s effect)

Theorem
For all K € U2(0) the number N,¢,(K,0) is finite and the
following asymptotics holds

. N\ (K,0) A
| n(€o) ’ — A0 ) 7
|KI\rEO |log |K]| (27r) (7)

Remark
For any 1 < n(&o) the equality holds
UeSS(Hu(K)) = [Emin(K), Emax(K)]

and the operator H,,(K) has finitely many eigenvalues outside
of ess.spec.
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The three-particle operator (Efimov’s effect)

Remark
For any 1 > n(&€o) the equality

UeSS(Hu(K)) = [Tu,inf(K);Tu,sup(K)] U [Emfn(K)7 Emax(K)]-

holds, where 7,,(K) < Epmin(K). In this case the three-particle
operator has non-empty two-particle essential. spec. and

N,(K,7(K)) < oc.

But in the gap (1,.,sup(K), Emin(K)) the operator H,(K) may
have infinitely many eigenvalues, which cannot be in the
continuous operators.
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