Bound states of the two-particle Hamiltonians on lattices

Saidakhmat N. Lakaev, Samarkand University

February 3, 2010

Goal

The main goal of this report is to give new threshold phenomena that are not present in the continuous case for the two-particle discrete Schrödinger operators $h(k), k \in \mathbb{T}^{d}$, associated to the Hamiltonian h of a system of two identical particles on the d-dimensional lattice \mathbb{Z}^{d} interacting via short-range pair potentials.

Dispersion relations

The free Hamiltonian \hat{h}^{0} of a quantum particle on the d-dimensional lattice ${ }^{d}, d \geq 1$, is associated with the following self-adjoint (bounded) multidimensional Toeplitz-type operator on the Hilbert space $\ell^{2}\left({ }^{d}\right)$:

$$
\left(\hat{h}^{0} \hat{\psi}\right)(x)=\sum_{s \in \mathbb{Z}^{d}} \hat{\varepsilon}(s) \hat{\psi}(x+s), \quad \hat{\psi} \in \ell^{2}\left(\mathbb{Z}^{d}\right)
$$

Here the series $\sum_{s \in \mathbb{Z}^{d}} \hat{\varepsilon}(s)$ is assumed to be absolutely convergent,i.e.,

$$
\{\hat{\varepsilon}(s)\}_{s \in \mathbb{Z}^{d}} \in \ell^{1}\left(\mathbb{Z}^{d}\right)
$$

We also assume that the "self-adjointness" property is fulfilled

$$
\hat{\varepsilon}(s)=\overline{\hat{\varepsilon}(-s)}, \quad s \in \mathbb{Z}^{d}
$$

Dispersion relations

In the physical literature, the symbol of the Toeplitz operator \hat{h}^{0} given by the Fourier series

$$
\begin{equation*}
\varepsilon(p)=\sum_{s \in \mathbb{Z}^{d}} \hat{\varepsilon}(s) e^{\mathrm{i}(p, s)}, \quad p \in \mathbb{T}^{d}, \tag{1}
\end{equation*}
$$

being a real valued-function on \mathbb{T}^{d}, is called the dispersion relations of normal modes associated with the free particle in question.

Dispersion relations

The one-particle free Hamiltonian is required to be of the form

$$
\hat{h}^{0}=\varepsilon(-\mathrm{i} \nabla),
$$

where ∇ is the generator of the infinitesimal translations. Under the mild assumption that

$$
\hat{v} \in \ell^{\infty}\left(\mathbb{Z}^{d}\right)
$$

where $\hat{v}=\{\hat{v}(s)\}_{s \in \mathbb{Z}^{d}}$ is a sequence of reals, the one-particle Hamiltonian \hat{h},

$$
\hat{h}=\hat{h}^{0}+\hat{v},
$$

describing the quantum particle moving in the potential field \hat{v}, is a bounded self-adjoint operator on the Hilbert space $\ell^{2}\left(\mathbb{Z}^{d}\right)$.

Dispersion relations

The one-particle Hamiltonian h in the momentum representation is introduced as

$$
h=\mathcal{F}^{-1} \hat{h} \mathcal{F},
$$

where \mathcal{F} stands for the Fourier transform

$$
\mathcal{F}: L^{2}\left(\mathbb{T}^{d}\right) \longrightarrow \ell^{2}\left(\mathbb{Z}^{d}\right)
$$

and \mathbb{T}^{d} denotes the three-dimensional torus, the cube $(-\pi, \pi]^{d}$ with appropriately identified sides.
Throughout the paper the torus \mathbb{T}^{d} will be considered as an abelian group with respect to the addition and multiplication by real numbers regarded as operations on \mathbb{R}^{d} modulo $(2 \pi \mathbb{Z})^{d}$.

The following important subclass of the one-particle systems is of certain interest. It is introduced by the additional requirement that the dispersion relation $\varepsilon(p)$ is a real-valued continuous conditionally negative definite function and hence
(i) ε is an even function,
(ii) $\varepsilon(p)$ has a minimum at $p=0$.

Recall that a complex-valued bounded function $\varepsilon: \mathbb{T}^{d} \longrightarrow \mathbb{C}$ is called conditionally negative definite if $\varepsilon(p)=\overline{\varepsilon(-p)}$ and

$$
\begin{equation*}
\sum_{i, j=1}^{n} \varepsilon\left(p_{i}-p_{j}\right) z_{i} \bar{z}_{j} \leq 0 \tag{2}
\end{equation*}
$$

for $n \in \mathbb{N}, p_{1}, p_{2}, . ., p_{n} \in \mathbb{T}^{d}, \mathbf{z}=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ satisfying $\sum_{i=1}^{n} z_{i}=0$.

It is known that in this case the dispersion relation $\varepsilon(p)$ admits the (Lévy-Khinchin) representation

$$
\varepsilon(p)=\varepsilon(0)+\sum_{s \in \mathbb{Z}^{d} \backslash\{0\}}\left(e^{\mathrm{i}(p, s)}-1\right) \hat{\varepsilon}(s), \quad p \in \mathbb{T}^{d}
$$

which is equivalent to the requirement that the Fourier coefficients $\hat{\varepsilon}(s)$ with $s \neq 0$ are non-positive, that is,

$$
\hat{\varepsilon}(s) \leq 0, \quad s \neq 0
$$

and the series $\sum_{s \in \mathbb{Z}^{d} \backslash\{0\}} \hat{\varepsilon}(s)$ converges absolutely. In turn, this is also equivalent to the requirement that the lattice Hamiltonian $\hat{h}=\hat{h}^{0}+\hat{v}$ generates the positivity preserving semi-group $e^{-t \hat{h}}$, $t>0$, on $\ell^{2}\left(\mathbb{Z}^{d}\right)$.

Example

For the one-particle free Hamiltonian $\ell^{2}\left(\mathbb{Z}^{d}\right)$

$$
\left(\hat{h}^{0} \hat{\psi}\right)(x)=(-\Delta \hat{\psi})(x)=\sum_{|s|=1}[\hat{\psi}(x)-\hat{\psi}(x+s)], \quad x \in \mathbb{Z}^{d}
$$

the (Fourier) coefficients $\hat{\varepsilon}(s), s \in \mathbb{Z}^{d}$, from (1) are necessarily of the form

$$
\hat{\varepsilon}(s)= \begin{cases}2 d, & s=0 \\ -1, & |s|=1 \\ 0, & \text { otherwise }\end{cases}
$$

Hence, the corresponding dispersion relation

$$
\varepsilon(p)=2 \sum^{d}\left(1-\cos p_{i}\right), p=\left(p_{1}, p_{2}, \ldots, p_{d}\right) \in \mathbb{T}^{d}
$$

Recall that the two-particle operators $h(k), k \in \mathbb{T}^{d}$, are unitary equivalent to the following operator

$$
h(k)=h_{0}(k)-v, k \in \mathbb{T}^{d} .
$$

Here the operators $h_{0}(k)$ and v are defined on the Hilbert space $L_{e}^{2}\left(\mathbb{T}^{d}\right)$ by

$$
\left(h_{0}(k) f\right)(q)=\varepsilon_{k}(q) f(q), \quad f \in L_{e}^{2}\left(\mathbb{T}^{d}\right)
$$

where

$$
\varepsilon_{k}(q)=\varepsilon\left(\frac{k}{2}+q\right)+\varepsilon\left(\frac{k}{2}-q\right)=2 \sum_{j=1}^{d}\left[1-\cos \left(\frac{k_{j}}{2}\right) \cos q_{j}\right]
$$

and

$$
(v f)(p)=(2 \pi)^{-\frac{d}{2}} \int_{\mathbb{T}^{d}} v(p-q) f(q) d q, \quad f \in L_{e}^{2}\left(\mathbb{T}^{d}\right)
$$

Two-particle Schrödinger operators

Example

$$
(v f)(p)=(2 \pi)^{-\frac{d}{2}} \int_{\mathbb{T}^{d}} f(q) d q, \quad f \in L_{e}^{2}\left(\mathbb{T}^{d}\right)
$$

Hypothesis

Assume, that $v(\cdot)$ is a continuous function on \mathbb{T}^{d} with real even nonnegative Fourier coefficients $\hat{v}(s), s \in \mathbb{Z}^{d}$.

Two-particle Schrödinger operators

Since the perturbation operator v is compact according to Weyl's theorem the essential spectrum $\sigma_{\text {ess }}(h(k))$ of the operator $h(k), k \in \mathbb{T}^{d}$ coincides with the spectrum $\sigma\left(h_{0}(k)\right)$ of the non-perturbed operator $h_{0}(k)$. More specifically,

$$
\sigma_{\mathrm{ess}}(h(k))=\left[\varepsilon_{\min }(k), \varepsilon_{\max }(k)\right]
$$

where

$$
\begin{aligned}
& \varepsilon_{\min }(k) \equiv \min _{p \in \mathbb{T}^{d}} \varepsilon_{k}(p)=2 \sum\left[1-\cos \left(\frac{k_{j}}{2}\right)\right] \\
& \varepsilon_{\max }(k) \equiv \max _{p \in \mathbb{T}^{d}} \varepsilon_{k}(p)=2 \sum\left[1+\cos \left(\frac{k_{j}}{2}\right)\right] .
\end{aligned}
$$

Let $d \geq 1$ and $z<\varepsilon_{\min }(k)$. Define by

$$
G(k, z)=v^{\frac{1}{2}} r_{0}(k, z) v^{\frac{1}{2}}, k \in \mathbb{T}^{d}
$$

the Birman-Schwinger integral operator with the kernel

$$
G(k, z ; p, q)=(2 \pi)^{-d} \int_{\mathbb{T}^{d}} v^{\frac{1}{2}}(p-t)\left(\varepsilon_{k}(t)-z\right)^{-1} v^{\frac{1}{2}}(t-q) d t
$$

where $r_{0}(k, z)$ is the resolvent of the operator $h_{0}(k)$ and

$$
V^{\frac{1}{2}}(p)=(2 \pi)^{-\frac{d}{2}} \sum_{s \in \mathbb{Z}^{d}} \hat{V}^{\frac{1}{2}}(s) e^{\mathrm{i}(p, s)} .
$$

The following lemma is the Birman-Schwinger principle for the two-particle Schrödinger operators on the lattice \mathbb{Z}^{d}.
Lemma
(i)A number $z<\varepsilon_{\min }(k), k \in \mathbb{T}^{d}$ is an eigenvalue for $h(k)$, if and only if the number "1" is eigenvalue for $G(k, z)$.
(ii)For any $z<\varepsilon_{\min }(k), k \in \mathbb{T}^{d}$ the following equality holds

$$
N(z, h(k))=n(1, G(k, z)), k \in \mathbb{T}^{d}
$$

Remark

Let $d \geq 3$. Then for any $z \leq \varepsilon_{\min }(k), k \in \mathbb{T}^{d}$ the function

$$
G_{\mu}(k, z ; p, q)=(2 \pi)^{-d} \int_{\mathbb{T}^{d}} v^{\frac{1}{2}}(p-t)\left(\varepsilon_{k}(t)-z\right)^{-1} v^{\frac{1}{2}}(t-q) d t
$$

defines a Hilbert-Schmidt operator on $L_{e}^{2}\left(\mathbb{T}^{d}\right)$.

$$
\left(h_{0}(k)-z\right) f=v f, f=\left(h_{0}(k)-z\right)^{-1} v f
$$

or

$$
v^{1 / 2} f=v^{1 / 2}\left(h_{0}(k)-z\right)^{-1} v^{1 / 2} v^{1 / 2} f
$$

Thus $\psi(p)=\left(v^{1 / 2} f\right)(p)$ is associated eigenfunction of

$$
G(k, z), z \leq \varepsilon_{\min }(k), k \in \mathbb{T}^{d}
$$

If $d=3$ or 4 , then the function

$$
f(p)=\frac{\left(v^{1 / 2} \psi\right)(p)}{\mathcal{E}_{k}(p)-\mathcal{E}_{\min }(k)}
$$

belongs to $L_{e}^{1}\left(\mathbb{T}^{d}\right) \backslash L_{e}^{2}\left(\mathbb{T}^{d}\right)$, where $L_{e}^{1}\left(\mathbb{T}^{d}\right)$ is the Banach space of integrable functions. If $d \geq 5$, then the function

$$
f(p)=\frac{\left(v^{1 / 2} \psi\right)(p)}{\varepsilon_{k}(p)-\mathcal{E}_{\min }(k)}
$$

belongs to $L_{e}^{2}\left(\mathbb{T}^{d}\right)$.

Definition

Let $d \geq 3$. The $h(k)$ is said to have a singular point of multiplicity m (resp.regular point) at the bottom $z=\varepsilon_{\text {min }}(k)$ if the number 1 is an eigenvalue of multiplicity m (resp.no eigenvalue) for the Birman-Schwinger operator $\mathcal{G}\left(k, \varepsilon_{\min }(k)\right)$.

Definition

Let $d=3$ or 4 . The singular point is called a virtual level of the operator $h(k)$ if the number 1 is a simple eigenvalue for the operator

$$
G\left(k, \varepsilon_{\min }(k)\right)=v^{\frac{1}{2}} r_{0}\left(k, \varepsilon_{\min }(k)\right) v^{\frac{1}{2}} .
$$

and the associated eigenfunction ψ satisfies the condition $\left(v^{1 / 2} \psi\right)\left(\varepsilon_{\min }(k)\right) \neq 0$. Without loss of generality we can always normalise $\left(v^{1 / 2} \psi\right)(\cdot)$ so that $\left(v^{1 / 2} \psi\right)\left(\varepsilon_{\min }(k)\right)=1$.

For a bounded self-adjoint operator A, we define $n(\lambda, A)$ as

$$
\begin{equation*}
n(\lambda, A)=\sup \{\operatorname{dim} F:(A u, u)>\lambda, u \in F,\|u\|=1\} \tag{3}
\end{equation*}
$$

If $n(\lambda, A)$ is finite, the number $n(\lambda, A)$ is equal to the number of the eigenvalues of A bigger than λ.
Let $\hat{v}(s), s \in \mathbb{Z}^{d}$ is real even non-negative function and
$\hat{v}(s) \rightarrow 0, s \rightarrow \infty$.

Theorem

Let either $d=1$ or 2 . For any $v>0$ for any $k \in \mathbb{T}^{d}$ the operator $h(k)$ has an eigenvalue $z(k)<\mathcal{E}_{\text {min }}(k)$ below the bottom of the essential spectrum $\sigma_{\text {ess }}(h(k))$.

Remark

The eigenfunction of $h(k)$ associated to the eigenvalue $z(k)<\varepsilon_{\text {min }}(k)$ is of the form

$$
f(p)=\left(\varepsilon_{k}(p)-z(k)\right)^{-1}\left(v^{1 / 2} \psi\right)(p)
$$

where ψ is a solution (up to a constant factor) of the equation $\boldsymbol{G}\left(k, \varepsilon_{\min }(k)\right) \psi=\psi$.

To formulate our results in case that $d \geq 3$, we introduce a parameter $\eta\left(\mathcal{E}_{0}\right) \geq 0$ by

$$
\left.\eta\left(\varepsilon_{0}\right)=\left[\frac{1}{(2 \pi)^{d}} \int_{\mathbb{T}^{d}} \frac{d q}{\varepsilon_{0}(q)}\right)\right]^{-1}<\left(\varepsilon_{\max }(0)=4 d\right)^{-1} .
$$

Note that $\eta\left(\mathcal{E}_{0}\right)<\infty$ is finite because all critical points of \mathcal{E}_{0} are non-degenerate.
Theorem
Let $d \geq 3$. If $\max \hat{v}(s)>\eta\left(\varepsilon_{0}\right)$ holds, then for any $k \in \mathbb{T}^{d}$ the operator $h(k)$ has an eigenvalue $z(k)$ lying below the bottom $z=\varepsilon_{\text {min }}(k)$ of the essential spectrum $\sigma_{\text {ess }}(h(k))$.

The following Theorem states the existence of bound states of $h(k)$ for all $k \in \mathbb{T}_{0}^{d}=\mathbb{T}^{d} \backslash\{0\}$.

Theorem

(See. [1]) Assume Hypothesis 3. Let the operator $h(0)$ is positive and the bottom $z=0$ is singular point of the essential spectrum of $h(0)$. Then, for all $k \in \mathbb{T}_{0}^{d}=\mathbb{T}^{d} \backslash\{0\}$ the discrete spectrum of the fiber Hamiltonian $h(k)$ below the bottom $\varepsilon_{\min }(k)$ of its essential spectrum is a non-empty set.

Theorem

Assume that the assumptions of Theorem 11 are fulfilled. Then there exists a unique even continuous positive function $z(\cdot)$ on \mathbb{T}^{d} and for any $k \in \mathbb{T}_{0}^{d}$ the number $z(k)>0$ is an eigenvalue of $h(k)$ lying below the bottom $\varepsilon_{\min }(k)$.

Remark

We remark that it may exists a region $G \subset \mathbb{T}_{0}^{d}, G \neq \mathbb{T}_{0}^{d}$ and several continuous positive functions $z_{1}(\cdot), \ldots, z_{n}(\cdot)$ defined on it and for any $k \in G$ the numbers $0<z_{1}(k) \leq \ldots \leq z_{n}(k)$ are eigenvalues of $h(k)$ lying below the bottom $\varepsilon_{\min }(k)$.

Theorem

Let $d \geq 3$. Assume Hypothesis 3 . Let the bottom $z=0$ is singular point of multiplicity m for the essential spectrum of the operator $h(0)$. Then for any $k \in \mathbb{T}_{0}^{d}$ the op- $r h(k)$ has at least m eigenvalues lying below the bottom $\varepsilon_{\min }(k)$ of the essential spectrum of $h(k)$.

Theorem

Let $d \geq 3$. Assume Hypothesis 3 . Let the operator $h(0)$ has n negative eigenvalues (counting multiplicities). Then for any $k \in \mathbb{T}_{0}^{d}$ the $h(k)$ has at least n eigenvalues lying below the bottom $\varepsilon_{\text {min }}(k)$.

Theorem

Let $d \geq 3$. Assume Hypothesis 3 .Let $z_{2}(0)<z_{1}(0)<0$ are two negative eigenvalues(counting multiplicities) of the operator $h(0)$. Then for any $k \in \mathbb{T}_{0}^{d}$ the inequality $z_{2}(k)<z_{1}(k)$ holds.

Remark

We underline that these results are in contrast to the similar one for the continuous two-particle Schrödinger operators, where the number of eigenvalues does not depend on the two-particle total momentum $k \in \mathbb{R}^{d}$.
The proofs of above stated Theorems 12, 14, 15, 16 are based on the following inequality.

Remark

Assume that the dispersion relation $\varepsilon(\cdot)$ is a real-valued even conditionally negative definite function on \mathbb{T}^{d} with the unique minimum $\varepsilon(0)$. Then for all $q \in \mathbb{T}^{d} \backslash\{0\}$ the inequality

$$
\varepsilon(p)+\varepsilon(q)>\frac{\varepsilon(p+q)+\varepsilon(p-q)}{2}+\varepsilon(0), \quad \text { a.e. } \quad p \in \mathbb{T}^{3},
$$

olds.

Lemma

For any $s \in \mathbb{Z}^{d}$ the number $\lambda=\hat{v}(s)$ is an eigenvalue of the operator \hat{v} with the multiplicity N_{λ}, where
$N_{\lambda}=\left|\left\{x \in \mathbb{Z}^{d}: \hat{v}(x)=\lambda\right\}\right|$ is number of points of the set $\left\{x \in \mathbb{Z}^{d}: \hat{v}(x)=\lambda\right\}$.
Note that the number $\lambda=\hat{v}(s)$ is eigenvalue and the function

$$
\psi_{s}(p)=(2 \pi)^{-1 / 2} e^{i s p}, s \in \mathbb{Z}^{d},
$$

is an associated eigenfunction for the operator

$$
v=\mathcal{F}^{-1} \hat{v} \mathcal{F},
$$

in momentum space.

For any [$z<0$,if $d=1$ or 2 (resp. $z \leq 0$, if $d \geq 3$)] and

$$
\psi_{s}(p)=(2 \pi)^{-1 / 2} e^{i s p}, s \in \mathbb{Z}^{d}
$$

we conclude that

$$
\begin{aligned}
& \left(G(0, z) \psi_{s}, \psi_{s}\right)=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{T}^{d}} \frac{\left|\left(V^{\frac{1}{2}} \psi\right)(p)\right|^{2} d p}{\varepsilon_{0}(q)-z} \\
& =\frac{1}{(2 \pi)^{d}} \int_{\mathbb{T}^{d}} \frac{\left|V^{\frac{1}{2}}(s) \psi_{s}(p)\right|^{2} d q}{\varepsilon_{0}(q)-z}=\frac{\hat{v}(s)}{(2 \pi)^{d}} \int_{\mathbb{T}^{d}} \frac{d q}{\varepsilon_{0}(q)-z} \\
& \psi_{s} \in L^{2}\left(\mathbb{T}^{d}\right)
\end{aligned}
$$

Let $d=1$ or 2 . Then for any $v(x) \geq 0$ there exists $E(0)<0$ such that the inequality

$$
\begin{equation*}
\frac{\hat{v}(x)}{(2 \pi)^{d}} \int_{\mathbb{T}^{d}} \frac{d q}{\varepsilon_{0}(q)-E(0)}>1 \tag{4}
\end{equation*}
$$

holds. Let $d \geq 3$. Let for some $x \in \mathbb{Z}^{d}$ the inequality holds

$$
\left.\max \hat{v}(x)\left[\frac{1}{(2 \pi)^{d}} \int_{\mathbb{T}^{d}} \frac{d q}{\varepsilon_{0}(q)}\right)\right]>1
$$

Thus there exist $\psi \in L^{2}\left(\mathbb{T}^{d}\right)$ and $E(0)<0$ (resp. $\left.E(0)=0\right)$ such that $(G(0, E(0)) \psi, \psi)>1$, i.e.,the self-adjoint bounded operator $G(0, E(0))$ has an eigenvalue in $(1,+\infty)$. By the Birman-Schwinger principle the operator $h(0)$ has an eigenvalue in $(-\infty, 0)$.

- S. Albeverio, S. N. Lakaev,K. A. Makarov, Z. I. Muminov: The Threshold Effects for the Two-particle Hamiltonians on Lattices, Comm.Math.Phys. 262(2006), 91-115.
- S. Albeverio, S. N. Lakaev and Z. I. Muminov: Schrödinger operators on lattices. The Efimov effect and discrete spectrum asymptotics. Ann. Henri Poincaré. 5, (2004),743-772.
- P. A. Faria da Veiga, L. Ioriatti and M. O'Carroll: Energy-momentum spectrum of some two-particle lattice Schrödinger Hamiltonians, Phys. Rev. E (3) 66, (2002), 9 pp.
- S. N. Lakaev: Bound states and resonances for the N-particle discrete Schrödinger operator, Theor. Math. Phys. 91 (1992), No.1, 362-372.
- S. N. Lakaev: The Efimov's Effect of a system of Three Identical Quantum lattice Particles,Funk.an.and appl. 27 (1993), No.3, pp.15-28.
- Albeverio,Sergio; Lakaev, Saidakhmat N.; Muminov, Zahriddin I.: On the structure of the essential spectrum for the three-particle Schroedinger operators on lattices. Math. Nachr. 280 (2007), no.7, 699-716.
- S. N. Lakaev and I.Bozorov: The number of bound states of a one particle Hamiltonian on a three-demensional lattice,Theoretical and Mathematical Physics, 158(3),(2009),360-376.
- Albeverio,Sergio; Lakaev, Saidakhmat N.; Muminov, Zahriddin I.: On the number of eigenvalues of a model operator associated to a system of three-particles on lattices. Russ. J. Math. Phys. 14 (2007), no. 4, 377-387.
- Albeverio, Sergio; Lakaev, Saidakhmat N.; Rasulov, Tulkin H. On the spectrum of an Hamiltonian in Fock space. Discrete spectrum asymptotics. J. Stat. Phys. 127 (2007), no. 2, 191-220.

