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1. INTRODUCTION

The development of semiconductor technology has
made it possible for the confinement of a finite number
of electrons in a localized three-dimensional space of a
few hundreds Angstroms [1, 2]. This mesoscopic sys-
tem, which was made up of artificially trapped elec-
trons between a few layers of various semiconductors
and called quantum dot (QD), opens new avenues in the
study of the interplay between quantum and classical
behavior at a low–dimensional scale. The quantum dot
is formed by removing the electrons outside the dot
region with external gates (lateral dot), or by etching
out the material outside the dot region (vertical dot)
(see, for example, [3–5]). The dot is connected to its
environment by electrostatic barriers, the so called
source and drain contacts, and gates to which one can
apply a voltage 

 

V

 

g

 

. In order to observe quantum effects,
QDs are cooled down to well below 1 K. Note that in
vertical QDs there is a strong screening of the Coulomb
interactions in contrast to lateral ones (see [4]). It
results in strong quantum effects for the confinement
potential on dynamics of confined electrons. The main
effects discussed in the present review are directly rel-
evant to vertical dots.

The smaller the quantum dot is, the larger the prev-
alence of quantum effects is upon the static and
dynamic properties of the system. Almost all parame-
ters of QDs: size, strength of a confining potential,
number of electrons, coupling between dots, dielectric

environment, the shape of tunneling barriers, as well as
external parameters, such as temperature and magnetic,
electrical and/or electro-magnetic fields,—can be var-
ied in a controlled way. It is precisely to stress this con-
trollability that the names 

 

artificial atoms

 

 and 

 

quantum
dots

 

 have been coined. Therefore, QDs can be consid-
ered as a tiny laboratory allowing the direct investiga-
tion of fundamental properties of charge and spin cor-
relations at the atomic scale [3, 4, 6, 7]. Another strong
motivation for studying the properties of QDs is due to
a rapid development in the field of quantum computing,
since the entangled states of the electrons confined in a
quantum dot may give a natural realization of a quan-
tum bit or “qubit” [5]. It is expected that QDs could lead
to novel device applications in fields such as quantum
cryptography, quantum computing, optics and opto-
electronics, information storage, biology (fluorescent
labeling of cellular targets).

The simplest approach to a description for finite
quantum systems of interacting Fermions is based on
the idea that the interactions create an effective poten-
tial in which particles are assumed to move indepen-
dently. For finite Fermi system like nuclei and metallic
clusters, the bunching of single-particle levels known
as shells [8–10] is one consequence of this description,
since the mean free path is comparable with the size of
the system. A remarkable stability is found in nuclei
and metallic clusters at magic numbers that correspond
to closed shells in the effective potential.

For small quantum dots, where the number of elec-
trons is well defined (

 

N

 

 

 

≤

 

 30), the mean free path of the
electrons at Fermi energy (

 

λ

 

F

 

 ~ 100 nm) appears to be
larger or comparable with the diameter of the dot (

 

d

 

 ~
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10–100 nm) [11]. Therefore, it seems natural to assume
that the properties of the electron states in QDs close to
the Fermi level should be determined by the effective
mean field of the “artificial atom,” produced by a non-
trivial interplay of the external confinement governed
by gate voltage and electron-electron interaction. How-
ever, the atom–quantum dot analogy should not be car-
ried too far: unlike electrons in an isolated atom, carri-
ers in semiconductor QDs interact strongly with lattice
vibrations and could be strongly influenced by defect,
surface, or interface states. In contrast to real atoms, for
which the confining Coulomb potential is well known,
the forces that keep the carriers in place in self-orga-
nized traps are difficult to estimate from first principles.
The exact shape and composition of the traps are often
not well known and depend on the growth procedure; in
addition, complications are introduced by the complex
band structure of the strained material and, in some
cases, the effect of piezoelectric forces. A good assess-
ment of an effective confining potential inside the dot
can be obtained from a combined study of the ground-
state and excitation energies. Ground-state energies are
investigated by capacitance spectroscopy or by single
electron tunnelling spectroscopy [4]. Far-infrared spec-
troscopy is used to study the excitations of N-electron
states in the dots (see below).

The electron states of few-electron quantum dots
subjected to a strong magnetic field have been studied
extensively in various experiments. The electrody-
namic response (far-infrared spectroscopy) of QDs is
expected to be dominated by the many-body effects
produced by confined and interacting electrons. Sikor-
ski and Merkt [12] found experimentally, however, the
surprising result that the resonance frequencies in the
magneto-optical spectrum are independent of the num-
ber of electrons in the QD. In these systems which are
experimentally realized the extension in the 

 

x

 

 – 

 

y

 

-plane
is much larger than in the 

 

z

 

-direction. Based on the
assumption that the extension in the 

 

z

 

-direction can be
effectively considered zero, a good description of the
far-infrared resonance frequencies has been found [12]
within a two-dimensional (2D) harmonic oscillator
model in the presence of a magnetic field [13]. This
result was interpreted as a consequence of Kohn’s the-
orem [14], which is applied for a parabolic potential
[15, 16]. According to this theorem, for the parabolic
confinement the total Hamiltonian can be divided into
two parts, the center-of-mass motion and the relative
motion, which contains the electron-electron interac-
tion. The wavelength of the external laser field far
exceeds the average dot diameter and, therefore, can be
approximated by a dipole electric term only. Since the
radiation of an external electric dipole field couples
only to the center-of-mass motion and does not affect
the relative motion, the dipole resonance frequencies
should be exactly the same as those of the non-interact-
ing system with the parabolic confinement and, there-
fore, be independent on the electron-electron interac-
tion. The more complicated resonance structure

observed in [17, 18] raised, however, the question as to
the validity of Kohn’s theorem for QDs. In order to
describe the experimental data it was assumed that
there is a deviation of the confining potential from the
parabolic form, and different phenomenological cor-
rections have been introduced [19, 20]. Considering the
external gates and the surrounding of a two-electron
QD as the image charge, it was shown in [21] that the
effective potential has, indeed, anharmonic corrections
to the parabolic potential. However, their contribution
becomes less important with the increase of the mag-
netic field strength.

Recent single-electron capacitance spectroscopy
experiments in vertical QDs [22–24] provide further
strong evidence in favor of the parabolic potential as an
effective confinement potential in small QDs. In these
experiments shell structure phenomena have been
observed clearly. In particular, the energy needed to
place the extra electron (addition energy) into a vertical
QD at zero magnetic field has characteristic maxima
that correspond to the sequence of the magic numbers
of a 2D harmonic oscillator. The energy gap between
filled shells is approximately 

 

�

 

ω

 

0

 

, where 

 

�

 

ω

 

0

 

 is the lat-
eral confinement energy of the 2D harmonic oscillator.
In fact, these atomic-like features when the confining
energy is comparable to, or larger than the interaction
energy have been predicted before in a few publications
[25–27]. Indeed, for a small dot size and small number
of electrons the confinement energy becomes prevalent
over the Coulomb energy. This has been confirmed for
two interacting electrons in an external parabolic poten-
tial [28] and by calculations of the effective single-par-
ticle levels within the density-functional theory for
electron numbers 

 

N

 

 ~ 100 [29] (see for a recent
review [30]).

These experimental and theoretical studies lead to
the conclusion that, indeed, for a few-electron small
QDs the parabolic potential is a good approximation for
the effective confinement. It is worthwhile to say that
for the typical voltage ~1 V applied to the gates, the
confining potential in small quantum dots is some eV
deep which is large compared to the few meV of the
confining frequency. Hence, the electron wave function
is localized close to the minimum of the well, which
always can be approximated by a parabolic potential.

Depending on the experimental setup the spectrum
of a quantum dot display’s shell structure or follows the
prediction of random matrix theory (see for a review
[31]). In this short survey we will discuss some results
related to a manifestation of symmetries in small QDs.
The rearrangement of the intrinsic structure of small
QDs under the perpendicular magnetic field can be
traced within a simple model introduced for the first
time in [26]. Using this model we will consider in Sec-
tion 2 the evolution of shell effects upon the perpendic-
ular magnetic field. In spite of simplicity the model
contains some basic features of the structural properties
of small QDs. For instance, the model describes the
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effect of spontaneous breaking of the symmetry of the
mean field due to the magnetic field and number of
electrons. Probably, due to the above reasons the model
has been “

 

rediscovered

 

” by other authors (see, e.g., [30]).
In Section 3 we will trace the dynamical effects of the
confinement strength, the magnetic strength, the Cou-
lomb repulsion, and their mutual interplay in the model
for a two-electron QD. We will show that at a particular
strength of the magnetic field the nonlinear dynamics of
two-electron QD becomes separable. Section 4 will be
devoted to a comparison of theoretical and experimen-
tal results for the ground state energies of two-electron
quantum dots in a perpendicular magnetic field. In Sec-
tion 5 we will discuss the concept of the effective
charge, which allows inlcusion of the effect of the dot
thickness for the analysis of the ground state transitions
in 2D approximation. The conclusions are finally
drawn in Section 6. Two Appendices provide some
details of calculations.

2. SHELL EFFECTS
IN SMALL QUANTUM DOTS

To analyze experimental data a few approximations
are commonly used. The underlying lattice of the semi-
conductor material is taken into account by using the
effective mass for the conduction electrons, and a static
dielectric constant, reducing the Coulomb repulsion. As
it was mentioned in the Introduction, an effective trap-
ping potential in small QDs with a few electrons is
approximated by a parabolic confinement quite well.
The ground state energy of the dot is calculated with the
aid of the total energy of the closed dot. This approxi-
mation is well justified, when the tunneling between
QD and the source and drain is relatively weak. Using
these approximations one can study the effect of the
magnetic field on the electron spectrum of the dot.
Hereafter, the magnetic field acts perpendicular to the
plane (

 

xy

 

) of motion of electrons.
Thus, the Hamiltonian of an isolated quantum dot

with 

 

N

 

 electrons in a perpendicular magnetic field reads

(1)

where 

 

k

 

 = 

 

e

 

2

 

/4

 

πε

 

0

 

ε

 

r

 

. Here, 

 

e

 

, 

 

m

 

*, 

 

ε

 

0

 

, and 

 

ε

 

r

 

 are the unit
charge, effective electron mass, vacuum and relative
dielectric constants of a semiconductor, respectively.
The confining potential is approximated by a three-
dimensional harmonic oscillator potential (HO) 

 

U

 

(

 

r

 

) =

 

m

 

*[  +  + ]/2, where 

 

�

 

ω

 

i

 

 (

 

i

 

 = 

 

x

 

, 

 

y

 

, 

 

z

 

) are
the energy scales of confinement in the 

 

x

 

, 

 

y

 

, 

 

z

 

 directions,
respectively. The effective spin magnetic moment is
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 and 

 

σ

 

z

 

 is the Pauli
matrix.

 

2.1. Shell Structure in Simple Models

 

To illuminate shell phenomena in QDs let us start
with a simple model [26, 32, 33]. The effect of an exter-
nal homogeneous magnetic field can be calculated
exactly for a three-dimensional (3D) harmonic oscilla-
tor potential irrespective of the direction of the field
[26, 32]. For the perpendicular magnetic field we

choose the vector potential with a gauge 

 

A

 

 = 

 

B

 

 

 

×

 

 

 

r

 

 =

 

B

 

(–

 

y

 

, 

 

x

 

, 0). In this case the electronic spectrum gener-

ated by the Hamiltonian (1) without interaction is deter-
mined by a sum 

 

H

 

0

 

 =  of a single-particle har-
monic oscillator Hamiltonians 

 

h

 

 = 

 

h

 

0

 

 + 

 

h

 

z

 

 where

. (2)

Here, for a perpendicular magnetic field we have

(3)

and 

 

ω

 

L

 

 = 

 

|

 

e

 

|

 

B

 

/(2m*c). Since the orbital momentum lz

(4)

couples lateral variables, the dynamics in z direction is
determined by one-dimensional harmonic oscillator

hz =  + .

Before we proceed a few remarks are in order. It is
true that the external field is the dominant part of the
mean field, and thus the effective confining potential
should reflect the main features of it. Yet it must also
contain the effect of the interplay between Coulomb
forces and the external fields that are governed by the
charges in the adjacent layers and gates and the mag-
netic field. Due to these considerations, we assume that
the confining potential should also take into account the
changes that affect the properties of the single-electron
states owing to a variation of the homogeneous mag-
netic field as well as the slab thickness. We assume that
the system adjusts itself under the influence of the mag-
netic field and a particle number. Minimizing Etot asso-
ciated with the Hamiltonian given by Eq. (1) (without
the interaction term), a variation of the magnetic field
strength leads to a corresponding change of the effec-
tive confining potential which is given by the oscillator
frequencies. In other words, for a given magnetic field,
we must seek the minimum of Etot under variation of the
oscillator frequencies. In this way, we accommodate
the effect of the interplay between Coulomb forces and
external fields such as the external confinement and the
magnetic field. Here, the Pauli principle is essential as
it limits the accessible quantum configuration space for
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the electrons. The variation cannot be unrestricted as
the confining potential encloses a fixed number of elec-
trons, and assuming that the electron density area does
not change, we are led to a fixed volume constraint
which translates into the subsidiary condition ωxωyωz =

 with ω0 fixed. Denoting the Lagrange multiplier by
λ we solve the variational problem

(5)

where |g〉 denotes the ground state. From Eq. (5) we
obtain, after differentiation with respect to the frequen-
cies and using Feynman’s theorem [34]

ω0
3

δ g〈 |H0 g| 〉 λωxωyωz–( ) 0,=

(6)

the useful condition

, (7)

which must be obeyed at the minimum of Etot. We
restrict ourselves to consideration of a thin slab which
extends essentially in two dimensions. This is achieved
by varying only ωx and ωy in the minimization proce-
dure while keeping ωz fixed at a value which is, say, a
few times larger than the other two frequencies. In this

case only 〈g |x2 |g〉 = 〈g |y2 |g〉 can be fulfilled.
Choosing different (fixed) values of ωz allows for the
study of the dependence of the results on the slab thick-
ness.

Since the electron interaction is crucial only for par-
tially filled electronic shells (see, for example, [4, 30])
we deal in this section mainly with closed shells. This
case corresponds to the quantum limit �ω0 > k/l0, where
k/l0 is the typical Coulomb energy and l0 = (�/m*ω0)1/2

is the effective oscillator length. In fact, for small dots,
where large gaps between closed shells occur (see
results of calculations in [25, 27, 29]), the electron
interaction plays the role of a weak perturbation, which
can be neglected. But even in the regime �ω0 < k/l0 a
distinctively larger addition energy is needed, if an
electron is added to a closed shell. We do not take into
account the effect of finite temperature; this is appropri-
ate for experiments which are performed at tempera-
tures kBT � �ω0 with �ω0 being the mean level spacing.
In the following we use meV for the energy and T
(Tesla) for the magnetic field strength. The effective
mass is chosen as m* = 0.067me for GaAs, which
yields, for N ≈ 15, the size R ≈ 320 Å and �ω0 = 3 meV
[32]. The effective mass determines the orbital mag-

netic moment  for electrons through the relation

�ωL = µBBme/m* =  and leads to  ≈ 15µB. The
magnetic orbital effect is much more enhanced in com-
parison with the magnetic spin effect (with the effective
Lande factor |gL | = 0.44), yet the tiny spin splitting does
produce signatures as we see below.

Since we consider the dot with a fixed ωz (z ~ 0),
shell effects are determined by the ratio of the eigen-
modes Ω± in the lateral plane (see for details Appendix A
and [32]). Shell structure occurs whenever the ratio of
the two eigenmodes Ω± of the Hamiltonian H0 is a ratio-
nal number with a small numerator and denominator.
Closed shells are particularly pronounced if the ratio is
equal to one (for B = 0) or two (for B ≈ 1.23) or three
(for B ≈ 2.01) and lesser pronounced if the ratio is 3/2
(for B = 0.72) or 5/2 (for B = 1.65) for a circular case
ωx = ωy (see Fig. 1a). Note that, for better illustration,
we used for the spin splitting the value 2µB instead of
the correct µ* in all Figures; the discussions and con-
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Fig. 1. Single-particle spectra as a function of the magnetic
field strength. Spectra are displayed for (a) a plain isotropic
(ωx = ωy) two-dimensional oscillator, (b) a deformed and

(c) an isotropic oscillator including an L2-term. For better
illustration the value 2µ* is used for the spin magnetic split-
ting in all figures. From [33].
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clusions are based on the correct value. The values
given here for B depend on m* and ωx, y . As a conse-
quence, a material with an even smaller effective mass
m* would show these effects for a correspondingly
smaller magnetic field. For B = 0 the magic numbers
(including spin) turn out to to be the usual sequence of
the two-dimensional isotropic oscillator, that is 2, 6, 12,
20, …. For B ≈ 1.23 we find a new shell structure as if
the confining potential would be a deformed harmonic
oscillator without a magnetic field. The magic numbers
are 2, 4, 8, 12, 18, 24, … which are just the numbers
obtained from the two-dimensional oscillator with ω> =
2ω< (ω> and ω< denote the larger and smaller value of
the two frequencies). Similarly, we get for B ≈ 2.01 the
magic numbers 2, 4, 6, 10, 14, 18, 24, … which corre-
sponds to ω> = 3ω<. If we start from the outset with a
deformed mean field ωx = (1 – β)ωy with β > 0, the
degeneracies (shell structure) lifted at B = 0 re-occur at
higher values for B. In Fig. 1b we display an example
referring to β = 0.2. The significance of this finding lies
in the restoration of the shell structures by the magnetic
field in an isolated QD that does not give rise to magic
numbers at a zero field strength due to deformation. We
mention that the choice β = 0.5 would shift the pattern
found at B ≈ 1.23 in Fig. 1a to the value B = 0. Closed
shells are obtained for values of B and β which yield
Ω+/Ω– = l = 1, 2, 3, ….

Indeed, it is the shell structure caused by the effec-
tive mean field that produces the maxima that are
observed experimentally in the addition energy

(8)

for N = 2, 6, 12 electrons (see [22]), where µ(N) is an
electrochemical potential of an N-electron dot. In order
to shed light on this phenomenon let us calculate ∆µ in
a constant-interaction (CI) model that provides an
approximate description of the electronic states of QDs
(see for details [4]). In the CI model the total ground
state energy of an N-electron dot is

, (9)

where N = N0 for gate voltage Vg = 0. The term CgVg
represents the charge (a continuous variable) induced
on the dot by gate voltage Vg, through the gate capaci-
tance, Cg. It is assumed that the Coulomb interactions
of an electron on the dot with all other electrons, in and
outside the dot, are parameterized by a constant total
capacitance C. The total capacitance between the dot
and the source, drain and gate is C = Cs + Cd + Cg. The
quantum contribution is determined by the sum over all
occupied single-particle energies εi , which depend on
the magnetic field. In the CI model it is assumed that
the single-particle spectrum is calculated for noninter-
acting electrons. The electrochemical potential of the
dot is defined as µdot = E(N) – E(N – 1). Electrons can
flow from the source (left) to the drain (right) through a

∆µ µ N( ) µ N 1–( )–=

E N( ) e N N0–( ) CgVg–[ ]2
/2C εi

i

N

∑+=

transport (bias) window eVsd when µleft > µdot(N) > µright
(with –|e |Vsd = µleft – µright). With the aid of Eq. (9) one
obtains the additional energy

(10)

where εN is the highest filled single-particle state for an
N-electron dot, e2/C is the classical electrostatic energy.
In the CI model additions of single electrons are peri-
odic in e2/C, since the difference εN – εN – 1 is usually
neglected. In reality, however, it is the fluctuations
(shell effects) of the difference that matters, at least for
small QDs. A similar effect is known in nuclear physics
and for metallic clusters. There, shell effects due to sin-
gle-particle motion create minima in the total potential
energy surface, which is dominated by the bulk energy,
which is the classical liquid drop energy [9, 10]. The
analogy goes further in that, in an isolated small QD,
the external magnetic field acts like the rotation on a
nucleus thus creating a new shell structure; in this way,
superdeformation (axis ratio 2 : 1) has been established
for rotating nuclei owing to the shell gaps in the single-
particle spectrum [9].

In [32] we have obtained various shapes of the QD
by energy minimization. In this context it is worth not-
ing that at the particular values of the magnetic field,
where a pronounced shell structure occurs, the energy
minimum would be obtained for circular dots, if the
particle number were chosen to be equal to the magic
numbers. Deviations from those magic numbers usu-
ally give rise to deformed shapes at the energy mini-
mum. To what extent these “spontaneous” deforma-
tions actually occur (which is the Jahn–Teller effect [35]),
is subject to more detailed experimental information.
The far-infrared spectroscopy in a small isolated QD
could be a useful tool to provide pertinent data [32].

The question arises as to what extent our findings
depend upon the particular choice of the mean field.
Here we confirm the qualitative argument presented
above that for sufficiently low electron numbers virtu-
ally any binding potential would produce the patterns
found for the harmonic oscillator. The Coulomb inter-
action lowers the electron levels for increasing mag-
netic quantum number |m | (see, e.g., [28]). We add to
the Hamiltonian H0 (see Eq. (1)) the term –γ�ωLL2,
where L is the dimensionless z-component of the angu-
lar momentum operator. For γ > 0 the additional term
lowers the energy levels of higher angular momenta
and mimics the Coulomb interaction effect. As a conse-
quence, it has the effect of interpolating between the
oscillator and the square well single-particle spectrum.
For ωx ≠ ωy and γ ≠ 0 the combined Hamiltonian H' =
H0 – γ�ωLL2 is nonintegrable [36] and the level cross-
ings encountered in Fig. 1 become avoided level cross-
ings. The essential effect upon the lower end of the
spectrum can be seen in the isotropic oscillator where
the magnetic quantum number m is a good quantum

number. In this case H' =  – γ�ωLm2. In Fig. 1c we

∆µ εN εN 1–– e
2
/C,+=

H0
isotr
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display a spectrum of such H'. The shell structure,
which prevails for γ = 0 throughout the spectrum at B ≈
1.23 or B ≈ 2.01, is now disturbed to an increasing
extent with an increasing shell number. However, for
the parameters chosen the structure is still clearly dis-
cernible for about seven shells, which is for particle
numbers up to about 25. The lifting of the degeneracies
at B = 0 is also clearly seen where the levels are split
according to the absolute values of |m |; it is this split-
ting which gives us guidance in choosing an appropri-
ate value for γ. For B = 0 single particle levels lie
between the corresponding degenerate levels pertaining
to the HO and the two-dimensional square well where
the splitting of these levels is very strong.

2.2. Magnetic Properties

When the magnetic field is changed continuously
for a QD of a fixed electron number, the ground state
will undergo a rearrangement at the values of B, where
level crossings occur [28]. In fact, it leads to a strong
variation in the magnetization [6] and should be
observable also in the magnetic susceptibility χ =

 as it is proportional to the second derivative
of the total energy with respect to the field strength.
While details may be modified by electron correlations,
we think that the general features discussed below
should be preserved.

In Fig. 2 we clearly discern distinct patterns depend-
ing on the electron number, in fact, the susceptibility
appears to be a fingerprint pertaining to the electron
number. All features of Fig. 2 can be understood from
the single-particle spectra displayed in Fig. 1. If there is
no level crossing, the second derivative of Etot is a

∂Etot
2

/∂B
2

–

smooth function. The crossing of two occupied levels
does not change the smoothness. In contrast, if an unoc-
cupied level crosses the last occupied level, the second
derivative of Etot must show a spike. In this way, we
understand the even-odd effect when comparing N = 8
with N = 9 in Fig. 2. The spin splitting caused by the
magnetic field at B ≈ 2.01 for N = 8 is absent for N = 9.
This becomes evident when looking at a blow up of this
particular level crossing which is illustrated in Fig. 3,
where the last occupied level is indicated as a thick line
and the points where a spike occurs are indicated by a
dot. Note that the splitting is proportional to the effec-
tive spin magnetic moment µ*.

Spikes of the susceptibility are associated with a
spin flip for even electron numbers. They are brought
about by the crossing of the top (bottom) with the bot-
tom (top) line of a double line. Hence, both lines of the
double splitting in Fig. 3 yield a spin flip (N = 8), but
neither of the single lines (N = 9). Strictly speaking, the
spikes are δ-functions with a factor, which is deter-
mined by the angle at which the two relevant lines
cross. Our figures are numerical results that do not
exactly reflect this feature. If the level crossings were
replaced by avoided crossings (Landau–Zener cross-
ings), the lines would be broadened. This would be the
case in the present model for γ > 0 and β > 0. Finite tem-
perature will also result in line broadening. We would
like to point out that the even-odd effect, discussed for
the first time in [33], has been later observed by Tarucha
and Austing [37].

We now focus on the special cases which give rise to
a pronounced shell structure, which is when the ratio
Ω+/Ω– = l = 1, 2, 3, …. To avoid elaborate expressions
we analyze in detail the circular shape (ωx = ωy = ω0,
〈z2〉 = 0) for which the eigenmodes, Eq. (A.5), become

Ω± = (Ω ± ωL) with Ω =  [13]. In this case the
total energy for the closed QD is (see Appendix A)

(11)

with Σ± = (n± + 1/2)j and shell number Nsh = n+ + n–

[32]. We find for the magnetization M = –dEtot /dB, tak-
ing into account after differentiation of the total
energy (11) that Ω+ = lΩ–,

. (12)

ω0
2 ωL

2
+

Etot Ω+Σ+ Ω–Σ– µ*B Sz〈 〉–+=

Σ j
N

M µB
eff

1
ωL

Ω
------–⎝ ⎠

⎛ ⎞ Σ– lΣ+–( ) µ* Sz〈 〉–=

321

6

4

2

χ
N = 8

321

6

4

2

N = 9

B

Fig. 2. Magnetic susceptibility χ = –∂2Etot/∂B2 in arbitrary
units as a function of the magnetic field strength for the iso-
tropic oscillator without L2-term. Etot is the sum of the sin-
gle-particle energies filled from the bottom up to the elec-
tron number N. From [33].

Fig. 3. Blow ups of the relevant level crossings explaining
the features in Fig. 2. The left and right hand refers to N = 8
and 9, respectively. From [33].
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For a completely filled shell 〈Sz〉 = 0, since, for the
magnetic field strengths considered here, the spin ori-
entations cancel each other (see Fig. 1). From the
orbital motion we obtain for the susceptibility

. (13)

It follows from Eq. (13) that, for a completely filled
shell, the magnetization owing to the orbital motion
leads to diamagnetic behavior. For a zero magnetic field
(l = 1) the system is paramagnetic and the magnetiza-
tion vanishes (Σ– = Σ+). The value l = 2 is attained at B ≈
1.23. When calculating Σ– and Σ+ we have to distin-
guish between the cases, where the shell number Nsh of
the last filled shell is even or odd. With all shells filled
from the bottom we find (i) for the last filled shell num-
ber even:

(14)

and

, (15)

which implies

(16)

and (ii) for the last filled shell number odd:

, (17)

which, in turn, implies M = 0.
Therefore, if Ω+/Ω– = 2, the orbital magnetization

vanishes for the magic numbers 4, 12, 24, … while it
leads to diamagnetism for the magic numbers 2, 8,
18, …. A similar picture is obtained for Ω+/Ω– = 3,
which happens at B ≈ 2.01: for each third filled shell
number (magic numbers 6, 18, …) the magnetization is
zero. Since the results presented are due to shell effects,
they do not depend on the assumption ωx/ωy = 1, which
was made to facilitate the discussion. The crucial point
is the relation Ω+/Ω– = l = 1, 2, 3, … which can be
obtained for a variety of combinations of the magnetic
field strength and the ratio ωx/ωy as is illustrated in Fig. 1
(see also Fig. 2 in [33]). Whenever the appropriate com-
bination of field strength and deformation is chosen to
yield, say, l = 2, our findings apply.

Concluding this section we note that consideration
of the third dimension may improve the agreement with
experimental data. In fact, magic numbers observed at
zero magnetic field [22] can be reproduced as well by
the 3D harmonic oscillator model with additional axial
octupole and hexadecopole deformations [38]. In the
superdeformed HO a certain combination of strengths
for these two terms leads to the shell structure of the 2D
harmonic oscillator model. We will consider below a

χ d
2
Etot/dB

2
–
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2
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1
12
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realistic model of two interacting electrons in a 3D
quantum dot with a parabolic confinement [39, 40].

3. HIDDEN SYMMETRIES
IN A TWO-ELECTRON QUANTUM DOT

A three-dimensional harmonic oscillator with fre-
quencies in rational ratios (RHO) and a Coulomb sys-
tem are benchmarks for the hidden symmetries, which
account for the accidental degeneracies of their quan-
tum spectra (see, e.g., [41]). Recent advances in nano-
technology create a remarkable opportunity to trace
their dynamical interplay in QDs. Indeed, competition
between a confining potential, approximated well by
the HO, and the repulsive electron-electron interaction
produces a rich variety of phenomena, for example, in
a two-electron QD under a perpendicular magnetic field
(see [4, 7] and references therein). In fact, a two-elec-
tron QD becomes a testing–ground for different quan-
tum-mechanical approaches [7] and experimental tech-
niques that could provide highly accurate data for this
system [2, 4].

If the HO and the Coulomb potential are combined,
most of the symmetries are expected to be broken. Nev-
ertheless, in particular cases, the Coulomb (Kepler)
system and the RHO may have common symmetries, as
it was already noticed a long time ago [42]. The authors
of [42] could not find, however, a physical application
for this phenomenon. These symmetries were rediscov-
ered in the analysis of laser–cooled ions in a Paul trap
[43] and of the hydrogen atom in the generalized van
der Waals potential [44]. The major aspect of this sec-
tion is to demonstrate that the hidden symmetries could
be observed in a two-electron QD with a 3D effective
parabolic confinement under a tunable perpendicular
magnetic field. Note that these symmetries have been
overlooked in plain quantum-mechanical models.
Therefore, to this aim we focus our analysis upon the
nonlinear classical dynamics of the system. At certain
conditions the motion becomes integrable and this indi-
cates the existence of the symmetries in the quantum
spectrum.

3.1. The Center-of-Mass 
and Relative Motion Hamiltonians

The Hamiltonian of a two-electron QD in a mag-
netic field is determined by Eq. (1). In this section we
consider a 3D axially symmetric HO, i.e., with confin-
ing frequencies ωz and ωx = ωy = ω0. In contrast to a 2D
description of the QD this approximation provides a
more accurate description of various experimental fea-
tures (see next section). In the present analysis we
neglect the spin interaction (the Zeeman term), since
the corresponding energy is small compared to the con-
finement and the Coulomb energies and is not impor-
tant for our discussion.
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Introducing the relative and center-of-mass (CM)

coordinates r = r1 – r2, R = (r1 + r2) the Hamiltonian (1)

can be separated into the CM and relative motion terms
[28] due to the Kohn theorem (see also Sections 1, 2)

(18)

where

(19)

(20)

Here M* = 2m* and µ = m*/2 are the total and reduced
masses, ωL is the Larmor frequency and Lz and lz are the
z-projections of the angular momenta for the CM and
relative motions, respectively. The effective confine-

ment frequency in the ρ-coordinate ωρ = (  + )1/2

depends through ωL on the magnetic field. In this way
the magnetic field can be used to control the effective
lateral confinement frequency of the QD for a fixed
value of the vertical confinement, i.e. the ratio ωz/ωρ.

The CM term is described by the axially symmetric
3D harmonic oscillator (ω0, ω0, ωz) in a magnetic field,
which eigenenergies are the sum of Fock–Darwin lev-
els and oscillator levels in z-direction

(21)

Here N = 0, 1, … is the radial quantum number, M = 0,
±2, ±3, … is the azimuthal one and Nz = 0, 1, 2, … is
the quantum number for center-of-mass excitations in
z-direction.

The Hamiltonian for relative motion, using cylindri-
cal coordinates (ρ, ϕ, z), reads

(22)

In the following we concentrate on the dynamics
of Hrel. For our analysis it is convenient to use cylindri-
cal scaled coordinates,  = ρ/l0,  = pρl0/�,  = z/l0,

 = pzl0/�, where l0 = (�/µω0)1/2 is the characteristic
length of the confinement potential with the reduced
mass µ. The strength parameter k of the Coulomb repul-
sion goes over to λ = k/(�ω0l0). Although our consider-
ation is general, for the demonstration we chose the val-
ues �ω0 ≈ 2.8 meV and ωz = 2.5ω0 which are close to
those obtained in our 3D analysis [39] of the experi-
ment [47] (see Section 4). For the effective mass m* =

1
2
---

H Hcm Hrel,+=

Hcm = P2

2M*
----------- ωLLz–

M*
2

-------- ωρ
2

X
2

Y
2

+( ) ωz
2
Z

2
+[ ],+

Hrel
p2

2µ
------ ωLlz–

µ
2
--- ωρ

2
x

2
y

2
+( ) ωz

2
z

2
+[ ] k

r
--.+ +=

ωL
2 ω0

2

Ecm �ωρ 2N M 1+ +( )=

+ �ωz Nz 1/2+( ) ωLM.–

Hrel
1

2µ
------ pρ

2 lz
2

ρ2
----- pz

2
+ +

⎝ ⎠
⎜ ⎟
⎛ ⎞ µ

2
--- ωρ

2ρ2 ωz
2
z

2
+( )+=

+
k

ρ2
z

2
+

-------------------- ωLlz.–

ρ̃ p̃ρ z̃

p̃z

0.067me and the dielectric constant ε = 12, which are
typical for GaAs, the value λ = 1.5. Hereafter, for the
sake of simplicity, we drop the tilde, i.e., for the scaled
variables we use the same symbols as before scaling.

In these variables the Hamiltonian for the relative
motion takes the form (in units of �ω0)

(23)

where r = (ρ2 + z2)1/2,  ≡ ω/ω0, m = lz/�.

3.2. The Classical Dynamics and Quantum Spectra

Due to the axial symmetry of the system the ϕ-motion
is separated from the motion in the (ρ, z)-plane and,
beside the energy (� ≡ h), the z-component of angular
momentum lz is an integral of motion. Therefore, the
magnetic quantum number m is always a good quantum
number. Since the Hamiltonian (23) is invariant under
the reflection of the origin, the parity π is a good quan-
tum number too.

The classical trajectories can be obtained by solving
(numerically) Hamilton’s equations

(24)

where  ≡ dx/dτ and τ = ω0t is the scaled time variable.
Although the motion in ϕ is separated from the motion
in the (ρ, z)-plane, the problem is in general, non-inte-
grable, since the Coulomb term couples the ρ and z coor-
dinates.

Examination of the Poincaré sections by varying the
parameter ωz/ωρ (see Fig. 4 for examples) in the inter-
val (1/10, 10) with a small step indicates that there are
five integrable cases. The trivial cases are ωz/ωρ  0
and ωz/ωρ  ∞, which correspond to 1D vertical and
2D circular QDs, respectively. The nontrivial cases are
ωz/ωρ = 1/2, 1, 2. These results hold for any strength of
the Coulomb interaction and agree with the results for
the Paul trap [43]. Below we discuss the nontrivial
cases only. The typical trajectories in cylindrical coor-
dinates are shown in Figs. 5a, 5c.

The results obtained with the aid of the Poincaré
surfaces of sections are invariant under the coordinate
transformation. On the other hand, the integrability is a
necessary condition for the existence of a coordinate
system in which the motion can be separated. In turn,
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the analogous quantum mechanical system would be
characterized by a complete set of quantum numbers.

3.2.1. The case ωρ = ωz. At the value  = (  –

)1/2 the magnetic field gives rise to the spherical
symmetry (ωz/ωρ = 1) in an axially symmetric QD
(with ωz > ω0) [39]. In this case the Hamiltonian (23) is
separable in (scaled) spherical coordinates

(25)

and the dynamics is integrable. The additional integral of
motion is the square of the total angular momentum l2.

Due to the separability of the Hamiltonian (25) in
spherical coordinates the corresponding eigenfunctions
can be written in the form

(26)

The functions φlm(r) are solutions of the radial equa-
tion

(27)

where l and m are the orbital and magnetic quantum
numbers, respectively. Equation (27) can be solved
numerically and the eigenenergies can be determined
iteratively by varying the energy � until the functions
φlm fulfill the boundary conditions: φlm ~ rl + 1, dφlm/dr =
(l + 1)φlm/r for r  0 and φlm  0 for r  ∞.
Hence, good quantum numbers for this case are (nr , l,
m), where the radial quantum number nr = 0, 1, 2, …
counts over the radial functions (r) within each
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(l, m)-manifold. Moreover, since the potential energy in
the Hamiltonian (23) is invariant under the transforma-
tion r  –r, the parity π is also a good quantum num-
ber. For the spherical case π = (–1)l.

To complete the discussion it should be mentioned
that in this case, it is straightforward to use a semiclas-
sical quantization of the Hamiltonian (25) to calculate
the spectrum. The procedure reduces to the WKB quan-
tization of r-motion due to the separability of the prob-
lem in spherical coordinates. The momentum pr deter-
mined from Eq. (25) enters the action integral

(28)

with the turning points rmin, rmax as the positive roots of
equation pr(r) = 0. The WKB quantization conditions

(29)

determine the energy levels. For noninteracting elec-
trons (λ = 0) the analytical calculation of the action
integral leads to the (quantum mechanically exact)
eigen-energies (A.11). For λ ≠ 0, one can calculate the
action integral (28) numerically with a few iterations to

Ir
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Fig. 4. Poincaré surfaces of sections z = 0, pz > 0 of the rel-
ative motion (λ = 1.5, � = 10, m = 0) with: (a) ωz/ωρ = 5/2,
(b) ωz /ωρ = 2, and (c) ωz /ωρ = 3/2. The section (b) indi-
cates that for the ratio ωz /ωρ = 2 the system is integrable.
From [40].

–4

–2

0

2

4

z

(a)

6004002000
ξ

(b)

d = 0.01

–1.0

1.0

–0.5

0

0.5

η

1.031.00 1.021.01

(c) (d)

ξ

0.97

1.00

0.98

0.99

η

d = 100

0 2 4
ρ

–2

0

2
z

Fig. 5. Typical trajectories (� = 10, m = 1) of the relative
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are shown in cylindrical and prolate spheroidal coordinates,
respectively. From [40].



80

PHYSICS OF PARTICLES AND NUCLEI      Vol. 40      No. 1      2009

NAZMITDINOV

determine the eigenvalues. The results for the spherically
symmetric case obtained by the WKB approach and for
the cases discussed below can be found in [39].

The restoration of the rotational symmetry of the
electronic states by the magnetic field for noninteract-
ing electrons was discussed in Section 2. This phenom-
enon was also recognized in the results for interacting
electrons in self-assembled QDs [27]. It was interpreted
in [27] as an approximate symmetry that had survived
from the noninteracting case due to dominance of the
confinement energy over relatively small Coulomb
interaction energy. However, as it is clear from the form
of Eq. (25), the symmetry is not approximate but exact
even for strongly interacting electrons because the
radial electron-electron repulsion does not break the
rotational symmetry.

3.2.2. The case ωz = 2ωρ and ωz = ωρ/2. The spher-
ical coordinates are a particular limit of the spheroidal
(elliptic) coordinates well suited for the analysis of the
Coulomb systems (see, e.g., [45]). Therefore, to search
the separability for the other integrable cases it is con-
venient to use the spheroidal coordinates (ξ, η, ϕ),
where ξ = (r1 + r2)/d and η = (r1 – r2)/d. In the prolate
spheroidal coordinates r1 = [ρ2 + (z + d)2]1/2, r2 = r. The
parameter d ∈ (0, ∞) is the distance between two foci
of the coordinate system (with the origin at one of
them). In the limit d  0 the motion is separated
when ωz/ωρ = 1 (Fig. 5b). In this limit ξ  ∞ such that
r = dξ/2 is finite, η = cosϑ, and we obtain the spherical
coordinate system.

Let us turn to the case ωz/ωρ = 2 which occurs at the

value of the magnetic field  = ( /4 – )1/2. In the
prolate spheroidal coordinates the motion is separated in
the limit d  ∞ (Fig. 5d). In fact, at d  ∞: ξ  1,
η  1 such that ξ1 = d(ξ – 1), ξ2 = d(1 – η) are finite,
we obtain the parabolic coordinate system (ξ1, ξ2, ϕ)
where ξ1, 2 = r ± z. In these coordinates the Hamiltonian
(23) has the form

(30)

and the equation (ξ1 + ξ2)(h – �) = 0 is separated into
two decoupled equations for ξ1 and ξ2 variables

(31)

Simple manipulations define the separation constant
(see also Appendix B)

, (32)
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which is a desired third integral of motion. Here az is
the z-component of the Runge–Lenz vector a = p × l +
λr/(r), which is a constant of motion for the pure Cou-
lomb system (i.e., when ωρ = ωz = 0) [41]. The quantum
mechanical counterpart for the integral of motion,
Eq. (32), does not commute with the parity operator and
we should expect the degeneracy of quantum levels.

Due to the separability of the motion in the para-
bolic coordinate system, the eigenfunctions of the cor-
responding Schrödinger equation can be expressed in
the form ψ(r) = f1(ξ1)f2(ξ2)eimϕ, where the functions fj

are solutions of the equations

(33)

Equation (33) can be solved numerically and the
eigenenergies and eigenvalues of c are determined iter-
atively by varying simultaneously � and c until the

functions fj fulfill the boundary conditions: fj ~ ,
ξ jdfj/dξj = |m| fj/2 for ξj  0 and fj  0 for ξj  ∞.
Let n1 and n2 be the nodal quantum numbers of the
functions f1 and f2, respectively. Note that Eq. (33) is
coupled by the constants of motion and, therefore,
both functions depend on all three quantum numbers
(n1, n2, m). The states |n1, n2, m〉 have explicit form (in
the coordinate representation)

(34)

The simple product of these functions does not have
a definite parity. Since r  –r ⇔ {ξ1  ξ2, ξ2 
ξ1, ϕ  ϕ + π}, the even/odd eigenfunctions are con-
structed as
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where N = n1 + n2 and k = |n1 – n2 |. These states are the
eigenfunctions of h, lz, |c | and the parity operator. For
|c | > 0 the eigenstates (35) appear in doublets of differ-
ent parity and, therefore, of a different total spin. For
c = 0 in Eqs. (33) f1 = f2 and, obviously, only the states
with parity π = (–1)m exist.

For the magnetic field  ≡ (4  – )1/2 we obtain
the ratio ωz/ωρ = 1/2. The Hamiltonian (23) expressed
in the oblate spheroidal coordinates (r1 = [z2 + (ρ +
d)2]1/2, r2 = r) is separated for m = 0 (at d  ∞). For
m ≠ 0 the term m2/ρ2 and, consequently, the Hamilto-
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nian (23) is not separated in these coordinates. Note, for
m = 0 the cases ωz/ωρ = 1/2 and 2 are equivalent if we
exchange the ρ and z coordinates and, hence, the addi-

tional integral of motion is |aρ – |. For m ≠ 0 we
use the procedure described in [43] and obtain the fol-
lowing integral of motion

(36)

where aρ and aϕ are the ρ and ϕ components of the
Runge–Lenz vector, respectively. Due to the existence
of three independent integrals of motion, h, m, and c,
which are in involution, the dynamics for m ≠ 0,
although non-separable, is integrable. The further anal-
ysis for m = 0 is similar to the previous one and we omit
it here.

3.3. Diagonalization in Separable Cases

Let us denote by h* the Hamiltonian (23) for a spe-
cific value of the magnetic field when the system

becomes separable, i.e., for  = , , or  (for
m = 0). Then for an arbitrary value of ωL we can write

(37)

where  =  – ,  =  –  and the

term  is the only non-diagonal part of h in the

eigenbasis of h*. The eigenenergies of the Hamilto-
nian (23) (see Fig. 6) have been calculated with the use
of the basis (35) and the spherical basis in the intervals
0 ≤  ≤ 1.5 and the 1.5 ≤  ≤ 5, respectively. The
radial parts of the spherical eigenfunctions and ,
as well as the corresponding factors in the matrix ele-
ments 〈ψi |ρ2 |ψj〉, are evaluated numerically. The com-
plete spectrum of the two-electron QD (Fig. 6a) shows
the accumulation of levels with different quantum num-
bers into well-pronounced bands in a strong magnetic
field. There is no obvious manifestation of the symme-
tries discussed above. In fact, the effects of symmetries
are shown for separated m-manifolds only (Fig. 6b).

For noninteracting electrons (λ = 0), the energy lev-
els of the QD are Fock–Darwin levels [13]

(38)

For rational ratios of ωz/ωρ the energy levels Eq. (38)
are degenerate. It is simply the spectrum of the RHO in the
external field . For instance, at ωz/ωρ = 2 we have

� = (N + |m |/2 + 1) – . The quantum number
N = nρ + nz = n1 + n2 = 0, 1, 2, … and each m-manifold
consists of the shells characterized by this quantum
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number. Since the eigenenergies of the term HCM with
the corresponding quantum numbers are determined by
Eq. (21), which is the same as Eq. (38), the shells in the
total spectrum of the QD are not affected.

4. DIMENSIONALITY EFFECTS IN GROUND-
STATE TRANSITIONS OF TWO-ELECTRON 

QUANTUM DOTS

Two-electron quantum dots have drawn a great deal
of experimental and theoretical attention in recent years
[4, 7, 30]. Experimental data including transport mea-
surements and spin oscillations in the ground state
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under a perpendicular magnetic field in two-electron
QDs may be explained as a result of the interplay
between electron correlations, a lateral confinement
and magnetic field. In particular, one observes the tran-
sitions between states that can be characterized by dif-
ferent quantum numbers m and total spin S of Fock–
Darwin states (see details in [47]). A 2D interpretation
of experiments, however, leads to inconsistencies (see
discussion in [4, 46]), providing, for example, too low
values of the magnetic field for the first singlet-triplet
(ST) transition. There is no consensus on the origin of
this disagreement, since various experiments are deal-
ing with different QDs. Evidently, it is important to
understand the basic sources of such inconsistencies
from a view point of possible technological applica-
tions, since QDs may provide a natural realization of
quantum bit. This problem is also related to the funda-
mental aspects of strongly correlated finite systems,
which are different from bulk and can be controlled
experimentally.

4.1. The First Singlet-Triplet Transition
in the Two-Electron QD

The ground state energy of a QD as a function of the
magnetic field can be probed very elegantly by single
electron capacitance spectroscopy (SECS) [47] or by
single electron tunneling spectroscopy [48]. Applying a
gate voltage to the contacts brings the electro-chemical
potential of the contacts in resonance with the energy
µ(N, B) necessary to add the Nth electron which tunnels
through the barrier into the dot. We recall that the chem-
ical potential of the dot is given by the ground state
energy of the dot with N and N – 1 electrons (see Sec-
tion 2),

(39)

Here, E(N, B) denotes the total energy of the QD with
N electrons under a magnetic field of strength B. Pres-

µ N B,( ) E N B,( ) E N 1– B,( ).–=

ently, we are concerned with µ(1, B) and µ(2, B) only,
which we calculate with the aid of the model consid-
ered in Section 3 (see also [39]). The first is simply the
harmonic oscillator energy for a single electron in the
dot, µ(1, B) = E(1, B). The latter can be split into con-
tributions from the relative and center-of-mass motion
ECM, where ECM = E(1, B). In our consideration the
addition energy (direct probe of electron correlation in
the dot) takes the form

(40)

where � is the relative energy determined by the Hamil-
tonian (23) and E(1, B) = ωρ + �ωz/2. Our aim is to
describe the first singlet-triplet transition observed in
two-electron QD under the perpendicular magnetic
field [47].

In a number of papers (e.g., [47–50]) µ(1, B) has
been used to estimate the confining frequency �ω0 in a
two-dimensional model of the QD. Indeed, with �ω0 =
5.4 meV (�ωz = 0) one obtains a very satisfactory fit to
µ(1, B) (see [47]). However, with this �ω0, neither ∆µ
(which is by almost a factor of two too large) nor the
value for B, where the first singlet-triplet transition
occurs, is reproduced correctly as is obvious from
Fig. 7a. It has been argued that for an increasing mag-
netic field µ(N, B) might not follow the behavior mod-
eled with a pure QD with a constant confining fre-
quency, see [48, 50], and Ref. 11 in [49]. Hence, we
believe it is more realistic to extract �ω0 from the dif-
ference of the chemical potentials µ(2, 0) – µ(1, 0) at
zero magnetic field. This has been done in Fig. 7a and
leads with �ω0 = 2.3 meV (λ = 1.66) to the first singlet-
triplet transition (m = 0, S = 0) ⇒ (m = 1, S = 1) at B =
1.02 T (the Zeeman term is absent). This value differs
from the experimental value of B ≈ 1.5 T only by about
30% in contrast to the difference of more than a factor
of two with �ω0 = 5.4 meV (dashed line).

The discrepancy of 30% vanishes if one proceeds to
a 3D description of the QD. In this case �ω0 = 2.6 meV
(λ = 1.56) is needed to match µ(2, 0) – µ(1, 0), only
slightly different from the 2D case, but the first singlet-
triplet transition occurs now at B = 1.59 T (see Fig. 7b).
If one includes the contribution from the Zeeman
energy

(41)

with µ* = gLµB, gL = –0.44, this value reduces to B =
1.52 T in a good agreement with the experiment. Of
course, this agreement is achieved by tuning a second
parameter, available in the 3D case, namely ωz/ω0 =
2.4, i.e., the ratio of vertical to lateral confinement. On
the other hand, a rough estimate assuming ωz/ω0 ~ d0/dz

(see, for example [32]) reveals with the experimental
value dz = 175 Å, a lateral size of d0 ≈ 420 Å which is
the correct order of magnitude, although the exact lat-
eral extension in the experiment is not known [47]. The
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theoretical ∆µ from a 2D quantum dot model with �ω0 =
5.4 meV (dashed) and �ω0 = 2.3 meV (solid). Part (b) shows
∆µ from a 3D model with �ω0 = 2.6 meV and ωz/ω0 = 2.4
(solid). From [39].
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analysis shows that in contrast to a 2D description, the
3D description provides a way to describe the energy
spectrum for small B, the value of the magnetic field for
the first singlet-triplet transition, and the ratio of the lat-
eral to vertical extension of the dot consistently. To pur-
sue discussion in favor of this view point we address the
details of the recent study of excited states in two-elec-
tron vertical QDs [23].

It was predicted that the ground state of an N-elec-
tron QD becomes the spin polarized maximum density
droplet (MDD) [51] at high magnetic fields. For a two-
electron QD it is expected that the MDD occurs after
the first ST transition (see discussion in [30]). Below
we will demonstrate that the experimental results found
in [23] related to the MDD can be explained if one takes
into account the 3D physical nature of the QD. We will
discuss the additional criterion to distinguish the 2D
and 3D nature experimentally.

4.2. The Collapse of the MDD State 
in the Two-Electron QDs

Theoretical calculations [52] assert that after the
first ST transition, the increase of the magnetic field
induces several ground state transitions to higher
orbital-angular and spin-angular momentum states.
This issue was addressed in a transport study of the cor-
related two-electron states up to 8 and 10 T in lateral
[53] and vertical [23, 24] QDs, respectively. It is quite
difficult to detect the structure of ground states after the
first ST transition in a lateral QD due to a strong sup-
pression of the tunnel coupling between the QD and
contacts. Altering the lateral confinement strengths, the
transitions beyond the first ST transition are reported in
vertical QDs [23]. In fact, the variation of the confining
frequency with the same experimental setup opens a
remarkable opportunity in the consistent study of the
effects of the magnetic field on electron correlations.

Three vertical QDs with different lateral confine-
ments have been studied in the experiment [23]. In all
samples, the clear shell structure effects for an electron
number N = 2, 6, … at B = 0 T have been observed,
implying a high rotational symmetry. Although there is
a sufficiently small deviation from this symmetry in
sample C (from now on in accordance with the list
of [23]), a complete shell filling for two and six elec-
trons was observed. Such a shell structure is generally
associated with a 2D harmonic oscillator (x – y) con-
finement [4]. However, it is noteworthy that a similar
shell structure is produced by a 3D axially symmetric
HO if the confinement in the z-direction ωz = 1.5ω0 is
only slightly larger than the lateral confinement (ωx =
ωy = ω0). In this case six electrons fill the lowest two
shells with Fock–Darwin energy levels with nz = 0. It
was also found that the lateral confinement frequency
for the axially symmetric QD decreases with the
increase of the electron number [54], since the screen-
ing in the lateral plane becomes stronger with a large

electron number. In turn, this effectively increases the
ratio ωz/ω0 making the dot more “two-dimensional,”
since the vertical confinement is fixed by the sample
thickness. Indeed, the N-dependence of the effective
lateral frequency is observed in [23]. All these facts
imply that the three-dimensional nature is a prerequi-
site of a consistent quantitative analysis of small QDs
with a few electrons.

Our analysis is carried out by means of the exact
diagonalization of the Hamiltonian (1) for two 3D
interacting electrons in a perpendicular magnetic field.
The confining potential in Eq. (1) is approximated by a

3D axially symmetric HO U(r) = m*[ (x2 + y2) +

]/2, where �ωz and �ω0 are the energy scales of
confinement in the z-direction and in the xy-plane,
respectively. The evolution of the ground-state energy
of a two-electron QD under the perpendicular magnetic
field can be traced by means of the additional energy
∆µ (see Eqs. (8), (39)).

Fitting the B-field dependence of the first and sec-
ond Coulomb oscillation peak positions to the lowest
Fock–Darwin energy levels of the 2D HO with the

potential m* /2, Nishi et al. [23] estimated ω0 for
all three samples A, B, C. Although the general trend in
the experimental data is well reproduced by the 2D cal-
culations, the experimental positions of the ST transi-
tion points are systematically higher (see Fig. 3 of [23]).
Different lateral confinements in the above experiment
are achieved by the variation of the electron density,
without changing the sample thickness. Using the
“experimental” values for the lateral confinement and
the confinement frequency ωz as a free parameter, we
found that the value �ωz = 8 meV provides the best fit
for the positions of kinks in the additional energy (40)
with the Zeeman energy EZ (41)

(42)

in all three samples. Note that the Zeeman energy EZ is
zero for the singlet states. For the sake of illustration,
we display in Fig. 8 the magnetic dependence of the
experimental spacing between the first and the second
Coulomb oscillation peaks ∆Vg = Vg(2) – Vg(1) for sam-
ples A–C, which can be transformed to the additional
energy ∆µ (see details in [23, 24]). In the ∆Vg – B plot,
ground state transitions appear as upward kinks and
shoulders [24]. It was found from the Zeeman split-
ting at high magnetic fields that |g*| = 0.3 [24] and
we calculate the additional energy with this and the
bulk values.

We nicely reproduce the experimental position of
the first ST transitions at B = 4.2, 3, 2.3 T in samples A,
B, and C, respectively (see Fig. 8). When the magnetic
field is low, a difference between the calculations with
different |g*| factors is negligible. Upon decreasing the
lateral confinement �ω0 from sample A to sample C
(the increase of the ratio ωz/ω0), the Coulomb interac-
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tion becomes dominant in the interplay between elec-
tron correlations and the confinement [39]. In turn, the
smaller the lateral confinement at a fixed thickness (the
stronger the electron correlations), the smaller the value
of the magnetic field, at which the ST transitions or, in
general, crossings between excited states and the
ground state may occur.

There is no signature for the second crossing in the
ground state for sample A at large B (up to 10 T). Here,
the ratio ωz/ω0 ≈ 1.9 and the effect of the third dimen-
sion is most visible: the confinement has a dominant
role in the electron dynamics and a very high magnetic
field is required to observe the next transition in the
ground state due to electron correlations. Thus, the
MDD phase survives until very high magnetic fields
(B ~ 10 T).

A second kink is observed at B = 7 T in sample B
[23]. Our calculations with the “experimental” lateral
confinement �ω0 = 3.7 meV produces the second kink
at B = 9.5 T, which is located higher than the experi-
mental value. The slight decrease of the lateral fre-
quency until �ω0 = 3.5 meV shifts the second kink to
B = 8.7 T, improving the agreement with the experi-
mental position of the first ST transition as well. In
addition, the use of |g*| = 0.3 (instead of the bulk value)
with the latter frequency creates a plateau, which bears
resemblance to the experimental spacing ∆Vg. How-
ever, there is no detailed information on this sample and
we lack a full understanding of this kink. It seems there
is an additional mechanism responsible for the second
kink in sample B.

The most complete experimental information is
related to sample C and we also study this sample in
detail. In sample C the first experimental ST transition
occurs at B = 2.3 T, while the signatures of the second
and the third ones are observed at B ≈ 5.8, 7.1 T, respec-
tively (see Fig. 8). The 2D calculations (with the
“experimental” values �ω0 = 2.9 meV, |g*| = 0.44) pre-
dict the first, second and third ST crossings at lower
magnetic fields: B = 1.7, 4.8, 5.8 T, respectively (see
Fig. 9). The results can be improved to some degree
with |g*| = 0.3. To reproduce the data for ∆µ Nishi et al.
[23] have increased the lateral confinement (�ω0 =
3.5 meV, |g*| = 0.44). As a result, the first, second and
third ST transitions occur at B = 2, 6.3, 7.5 T, respec-
tively. Evidently, 2D calculations overestimate the
importance of the Coulomb interaction. The increase of
the lateral confinement weakens simply the electron
correlations in such calculations. In contrast, the 3D
calculations reproduce the positions of all crossings
with the “experimental” lateral confinement �ω0 =
2.9 meV at B = 2.3, 5.8, 7.1 T (see Fig. 9) very well.

One of the questions addressed in the experiment
[23] is related to a shoulderlike structure observed in a
small range of values for the magnetic field (see our
Figs. 8 and 4 of [23]). This structure is identified as the
second singlet state (2, 0) that persists until the next
crossing with the triplet state (3, 1). According to [23],
the ground state transition from the triplet (1, 1) state to
the singlet (2, 0) is associated with the collapse of the
MDD state for N = 2. Therefore, a question arises: at
which conditions it would be possible to avoid the col-
lapse of the MDD phase (in general, to preserve the
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spin-polarized state); i.e., at which conditions the sin-
glet (2, 0) state will never show up in the ground state.
In fact, the collapse of the MDD depends crucially on
the value of the lateral confinement and the dimension
of the system. We found that in the 2D consideration the
(2, 0) state always exists for experimentally available
lateral confinement (see Fig. 10). Moreover, in this
range of ω0 the 2D approach predicts the monotonic
increase for the interval of values of the magnetic field
∆B, at which the second singlet state survives, with the
increase of the lateral confinement. In contrast, in the
3D calculations, the size of the interval is a vanishing
function of the lateral confinement for a fixed thickness
(�ωz = 8 meV). It is quite desirable, however, to mea-
sure this interval in order to draw a definite conclusion
and we hope it will be done in future.

As discussed above, the decrease of the confinement
at fixed thickness increases the dominance of the elec-
tron correlations in the electron dynamics. Further-
more, this decrease, related to the decrease of the elec-
tron density [54, 23], creates the favorable conditions
for the onset of electron localization. This localization
(crystallization) in QDs is associated with the forma-
tion of the so-called Wigner molecule [56]. In the 2D
approach the crystallization is controlled by the ratio of
Coulomb and confinement strengths λ = (k/l0)/�ω0 ≡ RW

(l0 = (�/m*ω0)1/2) (cf. [57]), which is about RW ~ 3 for
the QDs considered in experiments [23]. For a 2D two-
electron QD, it is predicted that the Wigner molecule can
be formed for RW ~ 200 at a zero magnetic field [58], or at
a very high magnetic field [59] (for �ω0 ~ 3 meV and
small RW such as in the experiments [23]). In the 3D
axially symmetric QDs the ratio between vertical and
lateral confinements (anisotropy) may, however, affect
the formation of the Wigner molecule. This problem
can be analyzed by a dint of the electron density

(43)

when one electron is at the position r if the other one is
located at a position r'. A criterion for the onset of the
crystallization in QDs can be the appearance of a local
electron density minimum at the center of the dot [60].
For 2D QDs this leads to a radial modulation in the
electron density, resulting in the formation of rings and
roto-vibrational spectra [61].

Our analysis of the conditions realized in the exper-
iments [23] predicts very high magnetic fields (B > 12 T)
for the formation of the Wigner molecule. However,
with a slight decrease of the lateral confinement, at
�ω0 = 2 meV we obtain the desired result. The 3D anal-
ysis of electron density (see Fig. 11) gives an unequiv-
ocal answer that at B > 7.25 T the triplet state (5, 1) can
be associated with a formation of the Wigner molecule.
There is an evident difference between the 2D and 3D
approaches: the 2D calculations predict the crystalliza-
tion at a lower magnetic field (∆B ~ 1 T). The further
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increase of the magnetic field leads to the formation of
a ring and a torus of maximal density in 2D- and 3D-
densities, respectively. Note that if geometrical differ-
ences are disregarded, 3D evolution of the ground state
can be approximately reproduced in the 2D approach
with the effective charge concept [39] (see also [53]).
This problem will be discussed in the Section 5.

5. EFFECTIVE CHARGE

It is self-evidently true that in QDs the Coulomb
interaction couples lateral and vertical coordinates and
the problem is non-separable, in general. By virtue of
the exact diagonalization of the 3D effective Hamilto-
nian one can study the effect of the vertical confinement
on the energy spectrum (cf. [54]). This can be done,
however, only for QDs with a small number of elec-
trons. Even in this case there are difficulties related to
the evaluation of 3D interaction matrix elements. The
problem simplifies significantly if it is possible to sep-
arate the center of mass motion from the relative
motion like in the fully parabolic potential. It is the pur-
pose of the present section to introduce a consistent
approach which enables us to reduce a 3D Coulomb
problem to the 2D one without losing major effects
related to the QD’s thickness for an arbitrary vertical
confinement.

In real samples the confining potential in the z-direc-
tion is much stronger than in the xy-plane. It results in
different time scales (see below) and this allows one to
use the adiabatic approach [62]. To account for the
effect of localization of the dot in the layer of thickness
a, let us consider a 3D model for two electrons
described by the Hamiltonian (1) with a potential

U(r) = m*[ (x2 + y2) + ]/2, where �ωz and �ω0

are the energy scales of confinement in the z-direction
and in the xy-plane, respectively. The thickness of QDs
is much smaller in comparison with the lateral exten-
sion. Therefore, the vertical confinement �ωz is much
stronger then the lateral confinement �ω0 and this fact
is, usually, used to justify a 2D approach for the study
of QDs. However, there is a nonzero contribution from
the vertical dynamics, since the energy level available
for each of the noninteracting electrons in z-direction is
ε = �ωz(nz + 1/2). For the lowest state nz = 0 ⇒ ε1 =

ω0
2 ωz

2
z

2

�ωz. By dint of the condition Vz(±zm) ≡ m* /2 =

ε1 one defines the turning points: zm = . We
assume that the distance between turning points should
not exceed the layer thickness, i.e., 2zm ≤ a (see Fig. 12).
In virtue of this inequality it follows that the lowest
limit for the vertical confinement in the layer of thick-
ness a is

(44)

For typical GaAs samples with the thickness a
between 10 and 20 nm this estimation gives the mini-
mal value for �ωz between 45 and 11 meV, respectively.
These estimations provide a genuine reason for the use
of the adiabatic approach in case of QDs, since
Tz(=2π/ωz) � T0(=2π/ω0).

5.1. Adiabatic Approximation

To the lowest order the adiabatic approach consists
of averaging the full 3D Hamiltonian (1) over the angle-
variables  =  (fast variables) of the unperturbed
motion (k = 0) of two electrons after rewriting the
(zi, ) variables in terms of the action-angle variables

( , ). As a result, the dynamics effectively decou-
ples into an unperturbed motion in the vertical direction
governed by the potential ( , ) and into the
lateral motion governed by the effective potential

(45)

where v is defined below in Eq. (48) and

(46)

is the effective electron-electron interaction that con-
tains the memory on z dynamics through integrals of
motion . The effective electron-electron interaction
affects, therefore, only the dynamics in the lateral
plane, where the confining potential is the parabolic
one. Hence, the effective Hamiltonian for two-electron
QD reads

(47)

where Ez =  and εi is the electron energy of the
unperturbed motion in the vertical direction. The term
H0 =  consists of the contributions related only
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to the lateral dynamics (xy-plane) of noninteracting
electrons

(48)

We recall that the effective lateral confinement fre-

quency ωρ = (  + )1/2.

Our approach is based on the transparent physical
idea that the third dimension reduces the Coulomb
interaction in comparison with the 2D case. Therefore,
our proposal consists in the consideration of the Cou-
lomb term determined by the effective value keff
(“effective charge”) with due regard of the vertical (z)
dynamics, i.e.,

(49)

where ρ = [(x1 – x2)2 + (y1 – y2)2]. In order to evaluate
the effective charge, let us present the effective Cou-

lomb term (46) in the following form  = kf(ρ)/ρ.
Then one can define the effective charge as the mean
value of the function kf(ρ). As we will see below this
approach provides a remarkable agreement with the 3D
theory.

Thus, the procedure for evaluating the effective
charge consists of two steps: (i) the averaging of the
Coulomb term VC(ρ, z) over the angle variables in the
z-direction, which gives the effective 2D potential

(ρ) = kf(ρ)/ρ; (ii) the calculation of the mean value
of the factor f(ρ) upon the nonperturbed lateral wave
functions, i.e.,

(50)

For a parabolic (lateral) confinement, the nonper-
turbed wave functions are Fock–Darwin states (cf. [3]).
Due to the Kohn theorem [14] (see Sections 1, 3 and
below), the mean value in Eq. (50) can be evaluated
using the Fock–Darwin states for the relative motion.
For the lowest states (with different values of the quan-
tum number m related to the z-component of orbital
momentum but with the radial quantum number nρ = 0)
one obtains for the effective charge

(51)

where µ = m*/2 is the reduced mass.

5.2. Parabolic Potential

As it was discussed in Section 3, in the 3D model
with a vertical confinement approximated by a para-
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bolic potential the CM and the relative motions are sep-
arated. Since the CM dynamics does not affect the elec-
tron interaction, we consider only the 3D Hamiltonian
for the relative motion

(52)

The term hrel is defined by Eq. (48) in which the
effective electron mass is replaced by the reduced mass
µ; r = r1 – r2 (ρ, pρ) are the relative coordinates and lz is
the z-projection of the angular momentum for relative
motion [39].

After rewriting the (z, pz) variables in terms of the
action-angle variables (Jz, θz)

(53)

for the unperturbed (k = 0) motion (see details in
Appendix A in [39]), one has to integrate out of the fast
variable, i.e., average the Hamiltonian (52) over the
angle θz. As a result, the effective electron-electron
interaction is (see Appendix B in [39])

(54)

where K(x) is the complete elliptic integral of the first
kind. The effective Hamiltonian for the relative motion is

(55)

(56)

Taking into account the definitions of Eqs. (50), (56)
and the result Eq. (54), one obtains for the effective
charge

(57)

where |nρ, m〉 are the Fock–Darwin states (see Eq. (A.9)
in Appendix A; for the relative motion nρ = nr , ωρ = Ω,
m* ⇒ µ).

For the lowest states (nρ = nz = 0) one reduces
Eq. (57) to the form of integral (51). As a result, the
effective charge can be expressed in terms of the Meijer
G-function [63]

(58)

Guided by the adiabatic approach, it is instructive to
compute the effective charge by a dint of the quantum-
mechanical mean value of the Coulomb term in the 3D
oscillator state |nρ, m〉|nz〉

. (59)
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In this case the adiabatic approach is determined by
the ratio (z/ρ)2.

This ratio is a naturally small parameter of theory,
since the lateral extension exceeds the thickness of the
QDs by several times. For nρ = nz = 0 one obtains

(60)

where K0 is the modified Bessel function of the second
kind. One observes that in both definitions of the effec-
tive charge in Eqs. (57), (60) there is a contribution of
the electron dynamics along the coordinate z.

5.3. Comparison of Different Approaches

To illuminate the key advantage of the effective
charge concept it is noteworthy to analyze the available
experimental data [23] within various approaches. To
this aim we will compare the results of the calculations
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of the additional energy in 2D approximation (with the
effective Coulomb interaction) and in the 3D approach
with a full Coulomb interaction.

As it was shown above, using the “experimental”
values for the lateral confinement [23] and the confine-
ment frequency ωz as a free parameter, we successfully
reproduced with the value �ωz = 8 meV and |g*| = 0.3
the positions of kinks in the additional energy in all
three samples [55]. In other words, we were able to
reproduce all experimental singlet-triplet transitions in
the ground states of the two-electron vertical QDs,
induced by the magnetic field [23]. We recall that in the
2D approach used by Nishi et al. [23] one encounters
the problem of the correct interpretation of the experi-
mental data (see, for example, Fig. 13a, a plain lateral
confinement �ω0 = 2.9 meV). In the effective charge
approximation the vertical confinement is taken into
account with the aid of keff in the 2D effective Hamilto-
nian. The remarkable accord between the predictions
based on our results and the observation confirms the
validity of the suggested concept (see Fig. 13).

Note that the results based upon the adiabatic
approximation are in a better agreement with the full
3D calculations in contrast to those obtained with the
aid of the plain quantum-mechanical averaging proce-
dure for keff = 〈〈ρVC(ρ, z)〉〉. As discussed above, the adi-
abatic approach is based on the effective separation of
fast (vertical) and slow (lateral) dynamics with a subse-
quent averaging procedure. In contrast, the plain quan-
tum-mechanical averaging represents a type of pertur-
bation theory based upon the first order contribution
with respect to the ratio z/ρ only. The higher order term
may improve the agreement at a small magnetic field,
since the vertical dynamics is non negligible and affects
the lateral dynamics. The increase of the quantum num-
ber m, caused by the increase of the magnetic field
strength, reduces the orbital motion of electrons in the
vertical direction. The larger the m the stronger the cen-
trifugal forces, which induce the electron localization
in a plane, and, therefore, the lesser the importance of
the vertical electron dynamics. In the limit of a strong
magnetic field (large m) the dot becomes more of a
“two-dimensional” system. This explains the improve-
ment of the accuracy of the plain quantum-mechanical
averaging procedures at large m, i.e., for the ground
states at high magnetic fields.

Finally, a remark is in order. For the sake of illustra-
tion we have used only keff for the lowest basis states
(nρ =  = 0) with different m. However, even for the
ground state calculations with the aid of the exact diag-

onalization, the interaction matrix elements keff〈 ,

m |ρ–1| , m〉 with nρ,  ≥ 0 have been taken into
account. Namely, the diagonalization is performed
using the interaction matrix elements up to nρ,  = 10.
Obviously, the accuracy of the method would improve
if one calculates the “effective charge matrix elements”
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Fig. 13. (a) The additional energy ∆µ as a function of the
magnetic field in the parabolic model. The results of calcu-
lations with a lateral confinement only (the 2D approach,
�ω0 = 2.9 meV, |g*| = 0.3) and full 3D approach [55] (�ωz =
8 meV) are connected by solid ( ) and ( ) lines,
respectively. The vertical grey lines indicate the position of
the experimental crossings between different ground states
in a sample C [23]. Ground states are labeled by (m, S),
where m and S are the quantum numbers of the operators lz
and the total spin, respectively. The results based upon the
adiabatic approximation, Eq. (58), and the plain quantum-
mechanical averaging procedure, Eq. (60), are connected by
dashed ( ) and dot-dashed ( ) lines, respectively.
(b) The ratio keff/k as functions of the magnetic field based
on Eq. (58) and the plain quantum-mechanical averaging,
Eq. (60) are connected by dashed ( ) and dot-dashed
( ) lines, respectively.
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 = 〈 , m | | , m〉 for each interaction
matrix element. However, in this case the procedure
would lose the simplicity and becomes impractical.
Fortunately, from the comparison of the present results
with exact 3D calculations we found that for the analy-
sis of the ground state properties it is sufficient to use

only the elements  ≡ , even for the interaction

matrix elements with nρ,  ≥ 0.

CONCLUSION

The consequences of shell structure effects for the
addition energy of a small isolated quantum dot for
noninteracting electrons have been analyzed in a simple
model with a parabolic confinement [26, 32]. At certain
values of the magnetic field strength shell structures
appear in a spectrum of a quantum dot, also in cases
where deformation does not give rise to magic numbers
at a zero field strength. Measurements of the magnetic
susceptibility are expected to reflect the properties of
the single-particle spectrum and should display charac-
teristic patterns depending on the particle number [33].

We have shown that quantum spectra obtained in the
model of the axially symmetric 3D quantum dot with
two interacting electrons exhibit hidden symmetries at
certain values of the magnetic field. The Coulomb
interaction destroys the general symmetry of the 3D
HO. However, the magnetic field can recover symme-
tries, which are common for the RHO and Coulomb
systems. At a relatively low value of the magnetic field

 (for our parameters B ≈ 2.4 T) we reveal the first
manifestation of the hidden symmetries in two-electron
QD. This symmetry is determined by the integral of
motion, Eq. (32). It results in the appearance of shells
at each m-manifold (Fig. 6b). There are exact crossings
and repulsions between levels of different and of the
same parity, respectively, in each shell. The near-degen-
eracy of the quantum spectrum is reminiscent of a strik-
ing degeneracy observed for the RHO or pure Coulomb

systems. At higher values of the magnetic field  (B ≈
7.5 T), the dynamic spherical symmetry appears, since
l2 becomes an additional integral of motion. This sym-
metry manifests itself as the attraction between levels
with different orbital quantum numbers and the same
parity (Fig. 6b). In contrast to spectra of pure Coulomb
systems or of the RHO, there are no crossings between
eigenstates of the subset characterized by a given quan-
tum number m, since the accidental degeneracy is
removed. Although the symmetry is recovered at a very

strong magnetic field  (B ≈ 15.9 T) due to the
appearance of the integral of motion Eq. (36), the
dynamics is non-separable for m ≠ 0. Note that shells
are similar to the spherical case.

The symmetries may be detected by studying the
conductance of two-electron QDs at low temperatures.

knρ nρ',
m( )

nρ' ρVC
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nρ'

k0 0,
m( )

keff
m( )

nρ'

ωL''

ωL'

ωL'''

In particular, at  in the excited states there is the
onset of a singlet-triplet degeneracy related to the cross-
ings of the eigenstates (35) with |c | > 0 (see Fig. 6b).
The total spin S alternates between 1 and 0 and the addi-
tion of a second electron with a spin-up or spin-down
orientation to the QD will cost the same energy.

We demonstrated that the confinement in the z
direction is an important ingredient for the quantitative
analysis of the experimental data for two-electron axi-
ally symmetric vertical QDs. In contrast to the 2D
description, the 3D approximation provides a consis-
tent description for various experimental features: the
energy spectrum for a small magnetic field, the value of
the magnetic field for the first and the second singlet-
triplet transitions. We propose a criterion for the addi-
tional spectra, which evidently demonstrates the effect
of the third dimension. According to this criterion the
singlet state (2, 0) is a vanishing function of the lateral
confinement (see Fig. 10) in the vertical magnetic field
in the two-electron axially symmetric vertical QD. We
found that the decrease of the lateral confinement in the
experiment [23] until �ω0 = 2 meV would lead to the
formation of the Wigner molecule at B ~ 8 T.

We developed the effective charge approach taking
full account of the thickness of two-electron quantum
dots. Our approach is based on the adiabatic approxi-
mation where the full 3D dynamics of two interacting
electrons is separated by means of action-angle vari-
ables on the independent vertical motion and the lateral
dynamics described by the effective 2D Hamiltonian.
The separations are reached due to a different time
scale in the vertical (fast) and lateral (slow) dynamics
and it is well justified in all types of QDs (vertical and
lateral). As a result, one has to only solve the
Schrödinger equation for 2D effective Hamiltonian
where the full charge k is replaced by keff (screened
Coulomb interaction) (see Eqs. (50), (51)). The eigen-
value problem was solved by a dint of the exact diago-
nalization of the effective 2D Hamiltonian in the Fock–
Darwin basis. The screening due to the sample thick-
ness is especially strong for quantum states with small
values of the quantum number m. We recall that these
states determine the structure of ground state transi-
tions at small and intermediate values for the magnetic
field. Therefore, the screening provides a consistent
way to deal with the effect of the thickness upon the
position of the singlet-triplet transitions. In particular,
the screening should be taken into account for the anal-
ysis of evolution for the energy difference between sin-
glet and triplet states in the magnetic field. This energy
is considered to be important for analysis of the entan-
glement and concurrence in QDs (cf. [64]). The com-
parison of the results with the available experimental
data [23] demonstrates a remarkable agreement and
confirms the vitality of the approach. Being important
for the states with a small quantum number m, the
screening of the Coulomb interaction becomes small
for the states with large m, which dominate in low-lying

ωL''
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spectrum at large magnetic fields. On the other hand,
these states cause strong centrifugal forces, which
induce the electron localization in a plane. In turn, the
stronger the magnetic field the less important the verti-
cal confinement. It follows that a plain Coulomb inter-
action becomes reliable in 2D approaches for the anal-
ysis of the ground state evolution of QDs only at very
large magnetic fields. Finally, we would like to stress
that, while this approach facilitates calculations, the
effects related to the hidden symmetries can be under-
stood only in the 3D approximation.

APPENDICES

APPENDIX A

TWO-DIMENSIONAL HARMONIC OSCILLATOR 
IN A PERPENDICULAR MAGNETIC FIELD

The electronic spectrum generated by the Hamilto-
nian (1) without interaction is determined by a sum

 of a single-particle harmonic oscillator Hamil-
tonians h = h0 + hz (see Section 2). The properties of the
Hamiltonian hz are well known [41]. The eigenvalue
problem for the Hamiltonian h0 can be solved using the
transformation

(A.1)

Here, (ai) is a creation (annihilation) operator of a
new mode i = ± with the following commutation rela-
tions

. (A.2)

One can solve equation of motion

(A.3)

and express the Hamiltonian h0 through new normal
modes

, (A.4)

where
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The eigenstates of the Hamiltonian h0 are
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The operator lz is diagonal in this basis

. (A.7)

In case of circular symmetry, i.e., ωx = ωy = ω0, the
eigenstate Eq. (A.6) reduces to the form of the Fock–
Darwin state (see [3]). Quite often it is useful to use the
representation of the Fock–Darwin state in cylindrical
coordinates (ρ, θ), which has the form

. (A.8)

This state is eigenfunction of the operator lz with
eigenvalue m and the radius-dependent function has the
form

(A.9)

Here  = �/(2m*Ω), Ω =  and � denotes
the Laguerre polynomials [41].

The pair of quantum numbers (n, m) and (n+, n–) are
related by

(A.10)

and n = 2nr + |m |. The single-particle energy in the
Fock–Darwin state is

(A.11)

The quantum number n is associated with a shell
number Nsh for an N-electron quantum dot in 2D
approach.

APPENDIX B

THE RUNGE–LENZ VECTOR

The components of the Runge–Lenz vector a = p ×
l + λr/r in (scaled) cylindrical coordinates are

(B.12)

The additional integrals of motion for the cases
ωz/ωρ = 1/2 (m = 0) and ωz/ωρ = 2, Eq. (32), can be
treated as the ρ and z-components of a generalized
Runge–Lenz vector
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(B.13)

respectively. Here b is assumed to be dependent on the
positions only, whereas the Runge–Lenz vector con-
tains the momenta. This is the essence of the ansatz. In
our case the components of vector b are

(B.14)

Now we construct the additional integral of motion
for the case ωz/ωρ = 1/2 with an arbitrary m from the
length of the vector (B.13) in the xy-plane

(B.15)

Since aϕ consists of the kinetic term only, we expect
the same form for cϕ, i.e., we put bϕ = 0. The last term δ is
also assumed to be a function of the positions only and, if
Eq. (B.15) is an appropriate form for C2, this term can be
determined from the condition dC2/dτ = 0, i.e.,

(B.16)

Using Eqs. (B.12) and (24) one can show that

(B.17)

This immediately gives

(B.18)
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