Углеродные нанокластеры как элементы наноустройств

Лекция 2.

Наноустройства на базе многослойных фуллеренов.

Наногироскоп – свободновращающийся фуллерен/тубулен в поле удерживающего потенциала внешней оболочки (фуллерена или нанотрубки).

Нанотермодатчик на основе двухслойного фуллерена с нецентральным эффектом.

Центрированные фуллерены

Энергетическая поверхность

Карта изолиний

Фуллерен С₂₀ является шаровым волчком с моментом инерции J =8,332 \cdot 10⁻³⁸ г \cdot сM² и частотой ω =4,07 \cdot 10⁹ рад/с (6,48 \cdot 10⁸ с⁻¹). Для сравнения при T=300 К у молекулы дезоксирибонуклеиновой кислоты с радиусом витка 6,7 Å, частота ω =3,8 \cdot 10⁸ рад/с.

Экспериментальные исследования наногироскопа

Структура $C_2Sc_2@C_{84}$.

Оранжевые сферы – атомы скандия, в центре – молекула C₂ (вид электронного облака, рассчитанного методом методом функционала плотности).

M. Krause, M. Hulman, H. Kuzmany, O. Dubay, G. Kresse, K.Vietze, G. Seifert, C.Wang, and H. Shinohara **Fullerene Quantum Gyroscope** // Phys.Rev. Lett., V. 93, N. 13.

Экспериментальное исследование вращение фуллеренов в поле удерживающего потенциала нанотрубки

Вращение цепочки из фуллеренов С₆₀, сплавленных электронным пуч-ком.

Полученная структура C₃₀₀ свободно вращается в полости трубки.

Jamie H. Warner et al. Rotating Fullerene Chains in Carbon Nanopeapods // Nano Lett., **2008**, 8 (8), pp 2328–2335

Энтальпия образования наночастиц равна -86 Ккал/моль и -68 Ккал/моль

Фуллерен C_{28} является шаровым Собственные значения J_{ζ} обозначим букволчком (атомный остов не претерпевает вой k: k=-J, ..., +J, где J (целое число) – изомеризации). Однако, в поле удерживеличина момента волчка. Тогда в совающего потенциала C_{28} является симметричным волчком. к энергия равна:

Три главных момента инерции совпадают $I_A = I_B = I_C = 2,23 \cdot 10^{-37} \, \Gamma \cdot cm^2$ (A, B, C отвечают осям X, Y, Z). Вращение фуллерена C_{28} около оси Z.

Стационарные вращательные состояния характеризуются тремя квантовыми числами: моментом вращения J, его проекцией J_{ζ} на ось волчка и его проекцией J_{z} на фиксированную в пространстве ось z. В нашем случае J_{ζ} и J_{z} совпадают.

$$E_{k}^{J} = \frac{\hbar^{2}}{2I_{A}}J(J+1) + \frac{\hbar^{2}}{2}(\frac{1}{I_{C}} - \frac{1}{I_{A}})k^{2}.$$

Свободное вращение фуллерена в поле нанотрубки

Наночастица C₂₈@C₄₅₀: а) конфигурация, соответствующая основному состоянию, б) изменение энергии взаимодействия фуллерена с нанотрубкой при повороте около оси Z

Наночастица C₃₆@C₄₅₀:

а) конфигурация, соответствующая основному состоянию,
б) поверхность энергии взаимодействия фуллерена с нанотрубкой при поворотах около осей Z и X

Наночастица C_{60} $O C_{450}$:

а) конфигурация, соответствующая основному состоянию,

б) изменение энергии взаимодействия нанокластера с нанотрубкой при повороте около оси Z

Фуллерены с нецентральным эффектом

 $C_{20} @ C_{240}$

энергии взаимодействия слоев наночастицы – E₂ = -1,114 эВ

энергии взаимодействия слоев наночастицы – E₁ = -1,126 эВ

Позиционирование С₂₀ в поле удерживающего потенциала фуллерена С₂₄₀, соответствующее энергии E₃ = -1,113 эВ взаимодействия слоев наночастицы

Калибровочная характеристика фуллеренового нанотермодатчика

Зависимость частоты перескока фуллерена С₂₀ из одной потенциальной ямы в другую в поле удерживающего потенциала С₂₄₀ от температуры. Точками отмечены результаты численного эксперимента, сплошной линией – результат интерполяции формулой Аррениуса Соотношение Аррениуса, определяющее температурную релаксацию:

$$\mathbf{v} = \mathbf{A} \cdot \mathbf{e}^{-\mathbf{B}/\mathbf{k}\mathbf{T}}, \qquad (9.4)$$

где v – частота перескока C₂₀ между потенциальными ямами для температуре Т; численные значения эффективного потенциального барьера B=1096К и коэффициента A = 3,47 ТГц найдены методом Хука-Дживса.

Калибровочная характеристика фуллеренового нанотермодатчика $C_{20}@C_{240}$ Калибровочная характеристика нанотермодатчика есть зависимость температуры от полуширины спектральной линии ЯМР фуллерена (в контексте статьи – С₂₀). Известно, что относительная полуширина резонансной линии (по уровню 0,5 максимума поглощаемой атомом фуллерена мощности) для температуры Т, может быть вычислена по формуле:

$$(\Delta \omega)_{\rm T} = (\Delta \omega)_1^2 \frac{1}{\nu} , \qquad (9.5)$$

где $(\Delta \omega)_1$ – полуширина линии покоящегося фуллерена C_{20} .

Рассчитывалась нормированная по $(\Delta \omega)_{300K} = 0,7013 (\Delta \omega)_{1}^{2}$

полуширина спектральной линии – $(\Delta \widetilde{\omega})_T$.

Результаты численного расчета калибровочной характеристики нанотермодатчика – на рисунке. Кривая представляет результат расчета по формуле

$$T = 4298,755 \cdot \exp\left(-\frac{(\Delta \widetilde{\omega})_{T}}{0,4144}\right), \qquad (9.6)$$

отражающей интерполяцию данных численного эксперимента.

