Углеродные нанокластеры как элементы наноустройств

Лекиия 1.

Применение нанотрубок в качестве наноэмиттеров в электронных приборах. Углеродные нанотрубки и устройства на их основе. Эмиссионные свойства: бездефектных и с дефектами атомного каркаса (с дефектами вида изомеризации 5-7-7-5, элиминирования атомов, допирования атомами углерода).

Лекиия 2.

Наноустройства на базе многослойных фуллеренов. свободновращающийся Наногироскоп _ фуллерен/тубулен в поле удерживающего потенциала внешней оболочки (фуллерена или нанотрубки). Нанотермодатчик на основе двухслойного фуллерена с нецентральным эффектом.

Лекиия 3.

Углеродные нанокластеры сложных форм (бамбукоусложнения формы на физические свойства кластеров. Применение углеродных нанокластеров сложных форм в качестве нанореакторов, наноэлементов памяти, эластичных и прочных наностержней и др.

Практическое занятие

Моделирование финитных нанотрубок, фуллеренов, подобные, наностручки, гибридные кластеры). Влияние гибридных структур (нанотрубок с инкапсулированным фуллереном/тубуленом); моделирование столкновений фуллеренов в полости нанотрубки; моделирование диффузии внутреннего фуллерена в поле внешней оболочки

Вольтамперные характеристики углеродной нанотрубной пленки

Снимок углеродной нанотрубной пленки, сделанный с помощью туннельного микроскопа в СФ ИРЭ РАН

Вольтамперные характеристики углеродной нанотрубной пленки при различных значениях температуры среды

Напряжение на аноде, В

Схема распределения потенциальной энергии электронов по характерным областям

Двумерная (плоская) топологическая модель нанотрубной пленки Плотность эмиссионного тока определяется формулой Ричардсона-Шоттки:

$$j = AT^{2} \frac{\pi \gamma}{\sin(\pi \gamma)} \exp\left\{-\frac{\varphi - \sqrt{e^{3}F}}{kT}\right\}, \quad (*) \qquad \qquad \gamma = \left(\frac{E\hbar^{4}}{m^{2}e^{5}}\right)^{1/4} \frac{\sqrt{e^{3}F}}{\pi kT}$$

где A – постоянная величина; T – температура (K), φ – работа выхода, е – элементарный заряд, k – постоянная Больцмана, F – напряженность, B/Å; параметр γ вычисляется по формуле

Условие применимости формулы Ричардсона-Шоттки определяется неравенствами

$$\ln \frac{1-\gamma}{\gamma} - \frac{1}{\gamma(1-\gamma)} > -\pi \sqrt{\frac{me}{\hbar^2}} (eF)^{-3/4} \left[\varphi - \sqrt{e^3 F} \right], \qquad \ln \frac{1-\gamma}{\gamma} - \frac{1}{1-\gamma} > -\pi \sqrt[4]{\frac{me^3}{\hbar^2}} (eF)^{-1/8}.$$

При $\pi\gamma \ll 1$ выражение (*) обращается в формулу Шоттки для плотности тока термоэлектронной эмиссии с учетом влияния внешнего поля:

$$j = AT^2 \exp\left\{-\frac{\phi - \sqrt{e^3 F}}{kT}\right\}.$$

Зависимость эффективной работы выхода углеродной нанотрубной пленки (двумерная топологическая модель) от температуры

Напряженность электрического поля вычисляется по формуле известной для плоского конденсатора:

$$F = \frac{U_a - U_k}{d}$$

где U_a — напряжение на аноде, U_k — напряжение на катоде, d — расстояние между катодом и анодом. Температура на поверхности пленки принимается равной температуре среды.

При напряжениях $U_a = 600$ В и $U_k = 0$ В напряженность на поверхности пленки равна $4 \cdot 10^5$ В/см. Температуру, при которой наблюдается эмиссия, будем считать равной температуре окружающей среды.

Тубулярная (трехмерная) модель нанотрубной пленки

Топологическая модель позиционирования тубулярных нанокластеров-эмиттеров в нанотрубной пленке

Расчетная область для вычисления напряженности на поверхности тубулярного нанокластера

Потенциал на катоде равен 0 В, на аноде – 600 В. Расстояние катод-анод L=15 мкм, высота H=100 Å, диаметр d=5 Å; 2R = 250 Å.

Эффективная работа выхода наноэмиттера равна ~4,2 эВ

Эмиссионный ток, вызванный большей частью электронами области 2, наблюдается при относительно сильных полях (10⁷-10⁸ В/см) и невысоких температурах. Этот ток следует определять как автоэлектронный. Вычисление плотности этого тока проводится по формуле, предложенной Мэрфи и Гудом:

$$j = \frac{F^2}{16\pi^2 t^2(y)\phi} \left[\frac{\pi ckT}{\sin(\pi ckT)} \right] exp \left[-\frac{4\sqrt{2}\phi^{3/2}}{3F} \theta(y) \right],$$

$$c = \frac{2\sqrt{2\phi}t(y)}{F},$$

t и θ – табулированные функции аргумента \sqrt{E} / ϕ , k – постоянная Больцмана, ϕ – работа выхода, F – напряженность (B/см), T – температура (K).

Эмиссионный ток, вызванный большей Обязательным условием применения для частью электронами области 2, наблюдается при относительно сильных полях (10⁷-10⁸) ся выполнение неравенства:

Область применения формулы для плотности тока определяется следующими неравенствами:

$$\varphi - \sqrt{E} > \frac{E^{3/4}}{\pi} + \frac{kT}{1 - ckT},$$

$$1 - ckT > \sqrt{2f}kT$$

$$f = \frac{\sqrt{2}}{2E} \varphi^{3/2} \frac{\theta \left(\sqrt{E} / \varphi \right)}{\varphi^2 - E}$$

Форма потенциального барьера вблизи наноэмиттера

Эмитирующая поверхность – плоская

Эмитирующая поверхность – криволинейная

Сравнение моделей нанотрубной пленки

Вольтамперные характеристики углеродной нанотрубной пленки при 293 К, 473 К, 723 К, 745 К: "Э" – экспериментальная кривая, "П" – двумерная (плоская) топологическая модель пленки, "Т" – тубулярная (трехмерная) модель пленки

Температурное поле нанотрубной пленки

Уравнение Пуассона:

div λ gradT + $\omega = 0$,

где ω – объемная мощность внутренних источников тепла, λ – коэффициент теплопроводности.

Тепловой поток q_к, переносимый в единицу времени через единичную площадь изотермической поверхности:

$$\vec{q}_{\kappa} = -\lambda gradT$$
.

Тепловой поток q_л, излучаемый в единицу времени поверхностью с единичной площадью:

$$\int q_{\pi} = \varepsilon k \left(T^{4} - T^{4}_{cp} \right)$$

где є – излучательная способность, k – постоянная Стефана-Больцмана, T_{ср} – температура среды.

Количество энергии, выделяемое или поглощаемое в единицу времени на единице поверхности эмиттера определяется выражением

$$q_{\rm N} = \frac{j_{\rm F}}{e} \pi k \text{Tetg}\left(\frac{\pi T}{2T^*}\right), \qquad T^* = \frac{ehF}{8\pi k\sqrt{2m\phi}},$$

где j_F – плотность автоэмиссионного тока, описываемая формулой Фаулера-Нордгейма, рассчитываемая при данной напряженности без учета температурной зависимости, T – температура при которой наблюдается эмиссия, T* – температура инверсии, е – заряд электрона, h – постоянная Планка, F – напряженность, k – постоянная Больцмана, m – масса электрона и φ – работа выхода. Результирующий тепловой поток на поверхности электрода:

$$Q_{pe3} = Q_{co5} + Q_{nag} - Q_{orp}$$

 $Q_{nag} = \sum_{i=1}^{n} Q_{pe3_i}$,

где n – число излучающих поверхностей электродов.

$$Q_{orp} = \rho \sum_{i=1}^{n} Q_{\pi a \pi_{i}},$$

где где
с – коэффициент отражения данной поверхности. Угловой коэффициент излучения с конечной диффузной поверхности k площадью S_k на конечную диффузную поверхность i площадью S_i:

$$\gamma_{S_k-S_i} = \frac{1}{S_k} \int_{S_i} \int_{S_k} d\gamma_{dS_k-dS_i} dS_k,$$

в котором $d\gamma_{dS_k-dS_i}$ (коэффициент излучения между двумя бесконечно малыми элементами площадью $dS_k \, u \, dS_i)$ рассчитывается по формуле

$$d\gamma_{dS_k-dS_i} = \frac{\cos\beta_i \cos\beta_k dS_i}{\pi r^2},$$

где r – расстояние между элементарными площадками; β_i и β_k – углы, образованные единичными нормальными векторами к элементарным площадкам dS_i , dS_k и линией, соединяющей центры площадок.

Картина температурного поля в многослойной нанотрубке

Изменение температуры на вершине наноэмиттера – многослойной нанотрубки, с ростом напряженности

Влияние дефектов на эмиссионную способность тубулярных нанокластеров

Изменение потенциала ионизации тубеленов

Изменение потенциала ионизации фуллерена C₆₀ (a) и фуллерена C₇₀ (б) при удалении двенадцати атомов

Дефект двойной вакансии (2V-дефект)

Изменение структуры нанокластера в области 2V-дефекта: а) сегмент бездефектного нанокластера, б) сегмент нанокластера с 2V-дефектом, в) изменяющиеся длины связи (серым цветом и стрелочками помечены те связи, которые перестраиваются при появлении дефекта)

Классификация 2Vдефекта

. Нанокластер С₉₆ (4,4) с *2V*-дефектом: а) класса *2V*₁, б) класса *2V*₂

Влияние дефекта типа 2V на геометрические, энергетические, эмиссионные и упругие параметры нанокластера

Дефект	$2V_1$				$2V_2$					
C ₉₆ (6,0)										
Кол-во дефектов	0	1	2		0	1	2			
r ₁ , Å	_	1,49	1,49		_	1,53	1,56			
r ₂ , Å	1,44	1,44	1,43		1,44	1,43	1,44			
r ₃ , Å	1,41	1,42	1,42		1,44	1,47	1,46			
r ₄ , Å	1,42	1,43	1,43		1,44	1,46	1,46			
r ₅ , Å	1,44	1,45	1,46		1,44	1,45	1,46			
r ₆ , Å	1,42	1,39	1,39		1,44	1,41	1,41			
r ₇ , Å	1,44	1,43	1,43		1,42	1,40	1,38			
r ₈ , Å	1,44	1,44	1,45		1,42	1,47	1,47			
IP, ₉ B	6,59	6,58	6,58		6,59	6,62	6,64			
$\Delta E_{g}, \Im B$	0,03	0,05	0,06		0,03	0,13	0,17			
Ү, ТПа	1,08	0,63	0,49		1,08	0,70	0,96			
C ₉₆ (4,4)										
IP, эB	6,26	6,34	6,43		6,26	6,21	6,16			
Ү, ТПа	1,02	0,55	1,27		1,02	0,50	0,70			

SW-дефект (дефект изомеризации Стоуна-Велса)

Изменение атомного каркаса нанокластера в окрестности дефекта Стоуна-Велса: a) фрагмент бездефектного нанокластера;

б) фрагмент нанокластера, содержащий дефект Стоуна-Велса (серым цветом отмечены те связи, которые перестраиваются при появлении дефекта)

Классификация SW-дефекта

Нанокластер С₉₆ (4,4) с различными классами дефектов 5-7-7-5: а) дефект класса SW_1 , б) дефект класса SW_2

Влияние *SW*-дефекта (дефект Стоуна-Велса) на

 \mathbf{r}_{7}

фект Стоуна-Велса) на геометрические характеристики нанокластера

Дефект	SW_1				SW ₂				
Кол-во дефектов	0	1	2		0	1	2		
Кол-во атомов	96	96	96		96	96	96		
Нанокластер С ₉₆ (6,0)									
Е _{атом} , эВ	-42,70	-42,68	-42,66		-42,70	-42,67	-42,64		
IP, эB	6,59	6,63	6,60		6,59	6,60	6,59		
$\Delta E_{g}, \Im B$	0,03	0,04	0,10		0,03	0,06	0,09		
Ү, ТПа	1,08	1,64	0,46		1,09	0,88	0,94		
Нанокластер С ₉₆ (4,4)									
Е _{атом} , эВ	-42,88	-42,84	-42,81		- 42,88	-42,85	-42,83		
IP, ₃ B	6,26	6,24	6,28		6,26	6,39	6,50		
$\Delta E_{g}, \Im B$	0,33	0,17	0,34		0,33	0,45	0,54		
Ү, ТПа	1,02	0,45	1,13		1,02	0,35	0,93		

ad-dimer дефект

Морфологические изменения гексагональной сетки углеродного нанокластера в окрестности *ad-dimer* дефекта:

а) фрагмент сетки до появления дефекта;

б) после допирования атомами углерода дефект (серым цветом отмечены те связи, которые перестраиваются и/или образуются при появлении дефекта)

Нанокластер С₉₆ (4,4) с *addimer* дефектом:

а) класса AD_{l} ,

б) класса *AD*₂

Влияние дефектов *AD* (*ad-dimer*) на некоторые энергетические параметры и модуль Юнга гексагонального нанокластера

Нанокластер C ₉₆ (6,0)									
Дефект	AD_{I}				AD_2				
Кол-во дефек- тов	0	1	2		0	1	2		
Кол-во ато- мов	96	98	100		96	98	100		
Е _{атом} , эВ	-42,70	-42,65	-42,60		-42,70	-42,69	-42,67		
IP, эВ	6,59	6,59	6,61		6,59	6,60	6,60		
$\Delta E_{g}, \Im B$	0,03	0,09	0,07		0,03	0,07	0,08		
Ү, ТПа	1,08	0,95	1,07		1,08	0,79	0,49		
Нанокластер С ₉₆ (4,4)									
Е _{атом} , эВ	-42,88	-42,87	-42,86		-42,88	-42,83	-42,80		
IP, эB	6,26	6,47	6,64		6,26	6,23	6,34		
$\Delta E_{g}, \Im B$	0,33	0,49	0,60		0,33	0,25	0,44		
Ү, ТПа	1,02	1,01	0,83		1,02	0,55	0,59		

Дефект замещения атомов углерода атомами азота

Топологическая модель нанокластера С-N

(кружочками отмечены атомы азота) равновесной конфигурации

Некоторые характеристики С-N нанокластеров

Трубка	Кол-во ато- мов	Е _{атом} , эВ	I, эВ	$\Delta E_{g}, \Im B$	Ү, ТПа	Ү _р , ТПа∙нм	μ
C ₉₆	96	-42,70	6,59	0,03	1,08	0,37	0,48
C ₉₀ N ₆	96	-44,46	6,57	0,05	0,84	0,28	0,50
C ₈₄ N ₁₂	96	-46,22	6,56	0,06	0,95	0,32	0,83

Дефект замещения атомов углерода атомами кремния

Топологическая модель тубулярного нанокластера (3,3) с симметричным позиционирование атомов кремния относительно пл. σ_v и конц. 8,3%

Зависимости потенциала ионизации (а) и величины энергетической щели (б) от длины для топологической модели тубулярного нанокластера (4,4) с *прямым расположением замещающих атомов Si* с различной концентрацией (для сравнения приведена зависимость IP трубки без атомов кремния – 0 %)

Зависимости потенциала ионизации (а) и величины энергетической щели (б) от длины каркаса для топологической модели тубулярного нанокластера (3,3) с *прямым расположением ем замещающих атомов Si* (1) и с *зигзагообразным расположением* (2) с различной концентрацией