Углеродные нанокластеры: строение, классификация, размерные эффекты

Лекция 3. Углеродные нанокластеры в электрическом поле.

Электростатические свойства.

Влияние электрического поля на атомное строение и электронные свойства.

Поляризуемость углеродных нанокластеров

Во внешнем электрическом поле дипольный момент и напряженность связаны соотношением:

$$\boldsymbol{\mu} = \boldsymbol{\epsilon}_0 \boldsymbol{\alpha} \boldsymbol{F} \, ,$$

где ε₀ – электрическая постоянная, α – тензор поляризуемости.

Фуллерен С₆₀

Известно, у сфероподобных молекул, как фуллерен C₆₀, поляризуемость не зависит от направления и равна кубу радиуса: 45 Å³ [*] (аналитическая оценка), 45,7 Å³ (расчет полуэмпирическими методами).

*Benedict L.X., Louie S.G., Cohen M.L. Static polarizabilities of single-wall carbon nanotubes // Phys.Rew.B.– 1995.– V.52.– N 11.–P.8541(9).

2

Фуллерен C_{60} в электрическом поле $F_z = 10 \ B/{\rm HM}$

Тензор поляризуемости фуллерена C₆₀
$$\begin{pmatrix} \alpha_{xx} & \alpha_{xy} & \alpha_{xz} \\ \alpha_{yx} & \alpha_{yy} & \alpha_{yz} \\ \alpha_{zx} & \alpha_{zy} & \alpha_{zz} \end{pmatrix}$$
, Å³ : $\begin{pmatrix} 2,8 & 9,5 & 9,5 \\ 9,5 & 2,8 & 9,5 \\ 9,5 & 9,5 & 2,8 \end{pmatrix}$

В сильных электрических полях относительное изменение диаметра фуллерена составляет несколько процентов. Например, при $F_z=10 B/hm$ каркаса фуллерена C₆₀ сжимается на 3%; $E_g = 1,79 \ 3B$, IP = 7,46 3B.

Тубулярные нанокластеры

Тензор поляризуемости тубулярного кластера (F = 3 В/нм)

Тип трубки	$\begin{pmatrix} \alpha_{xx} & \alpha_{xy} & \alpha_{xz} \\ \alpha_{yx} & \alpha_{yy} & \alpha_{yz} \\ \alpha_{zx} & \alpha_{zy} & \alpha_{zz} \end{pmatrix}, \mathring{A}^{2}$	$\mu \ (\mu_x, \mu_y, \mu_z) \cdot 10^{30}, $ Кл·м $F_z = 3 $ В/нм
(3,3)	$ \begin{pmatrix} 13 & 3 & 0,5 \\ 3 & 13 & 1,5 \\ 24 & 24 & 130 \end{pmatrix} $	57,27 (48,85; 5,10; 56,83) L = 21,06 Å
(4,4)	$ \begin{pmatrix} 25 & 2,6 & 4,2 \\ 2,6 & 25 & 1,7 \\ 65 & 65 & 54 \end{pmatrix} $	60,44 (-0,55; -1,65; 60,42) L = 34,44 Å
(5,5)	$ \begin{pmatrix} 136 & 18 & 9 \\ 18 & 136 & 9,4 \\ 423 & 423 & 103 \end{pmatrix} $	291,2 (41,25; 41,20; 285,35) L = 37,85 Å

Компоненты тензора поляризуемости инфинитных углеродных нанотрубок

Tube (n_1, n_2)		α_{zz}	α_{xx}	трубка /
(9,0)	3.57		40.6	(5.2)
(10,0)	3.94	174.7	48.5	$F_{\rm A}$
(11,0)	4.33	171.6	57.8	$\lambda \setminus \Gamma$
(12,0)	4.73		65.7	1) t
(13,0)	5.12	292.4	76.1	$// \langle \rangle$
(14,0)	5.52	268.3	87.4	(Λ)
(15,0)	5.91		97.4	1A
(16,0)	6.30	445.5	109.9	$L \setminus \lambda$
(17,0)	6.70	401.4	123.6	$[\mathcal{N}]$
(18,0)	7.09		136.3	
(19,0)	7.49	651.1	150.6	
(4,4)	2.73		26.6	
(5,5)	3.41		37.4	ΓV
(6,6)	4.10		49.8	
(4,2)	2.09	49.1	18.8	$\vdash \succ$
(5,2)	2.46		23.1	

Нанокластер, закрытый с обеих сторон фуллереновыми шапочками

 $|\vec{\mu}| = 2,85$ debyes

 $\Delta L / L = 3,8\% \qquad \Delta d / d = 1,7\%$ $\mu = 9,5 \cdot 10^{-30} \text{ Km} \cdot \text{m}, \quad \alpha_{xz} = 70 \text{ Å}^3, \ \alpha_{yz} = 70 \text{ Å}^3, \ \alpha_{zz} = 13 \text{ Å}^3$

Аналитические расчеты пондеромоторной силы

Пондеромоторная сила, действующая на фуллереновую шапочку вычисляется по формуле

$$F_{p} = \varepsilon_{0} \frac{E_{max}^{2} \pi d^{2}}{8} \int_{0}^{90} (1 - A\alpha^{2})^{2} \sin 2\alpha d\alpha$$

где d (диаметр трубки) = 10 Å, H (высота трубки) = 100 нм, L (расстояние катод-анод) = 200 мкм, α – минимальный угол между радиусом, проведенным к произвольной точке на полусфере и осью симметрии, E_{max} – максимальная напряженность на вершине нанотрубки.

Расчет напряженности электрического поля на вершине нанотрубки, закрытой фуллереновой шапочкой 1. Аналитический расчет напряженности

Область, заданная в криволинейной системе координат_σ и τ вытянутого эллипсоида вращения

Криволинейная система координат вытянутого эллипсоида вращения.

Граничная силовая линия определяется эллипсом:

$$\sigma_{g} = 2 \frac{R + r_{k}}{r_{1} + r_{2}}$$

,

где r₁ и r₂ – фокальные радиусы в точке А.

Форма эмиттера задается гиперболой:

Напряженность рассчитывается:

$$E = \frac{U_a - U_k}{a \cdot \operatorname{arth}\left(\frac{R}{a}\right) \sqrt{(\sigma^2 - \tau^2)(1 - \tau^2)}}$$

$$F = 3,2 \text{ B/HM}.$$

Область, заданная в криволинейной системе координато и т вытянутого эллипсоида вращения:

картина распределения электрического потенциала вблизи поверхности катода

2. Численный расчет напряженности

Расчетная область для вычисления напряженности на поверхности нанокластера

График зависимости коэффициента усиления поля от отношения геометрических параметров наноэмиттера

При напряжении на катоде 0 В, на аноде 800 В, $\beta = 115$, $E_{max} = 4,6 \cdot 10^9$ В/м пондеромоторная сила, растягивающая трубку, F = 0,054 нН. Максимальное значение напряженности на вершине фуллереновой шапочки нанотрубки составляет 4,6 В/нм.

Формула для коэффициента усиления поля на вершине наноэмиттера:

$$\beta = 1 + (2 + Bx^{D})(1 - \exp[C(1 - y])],$$

где x=H/d; y=2R/d; B=2,947; C=0,04554; D=0,7922.

Распределение напряженности электрического поля по квазисферической фуллереновой шапочке нанокластера описывается:

$$E = E_{max} (1 - A\alpha^2),$$

где E_{max} – максимальная напряженность на вершине наноэмиттера, α – минимальный угол между радиусом, проведенным к произвольной точке на полусфере и осью симметрии,

параметр $A = 3,89 \cdot 10^{-5}$.

Численные расчеты пондеромоторной силы

Пондеромоторная сила электростатического поля Fp₁, действующая на единицу площади открытого конца трубки, вычисляется:

$$Fp_1 = Y \frac{\Delta L}{L},$$

где $\Delta L / L$ – относительное удлинение тубуса нанокластера.

	$F(F_x, F_y, F_z),$	(5,5)	(4,4)	(3,3)
	В/нм	180 атомов	144 атома	108 атомов
L, Å	0	20,81	20,83	20,79
D, Å		6,87	5,50	4,19
$\Delta D / D$	3 (0;3;0)	0,2 %	0,2 %	0,2 %
$\Delta L / L$		-0,6 %	-0,6 %	-0,7 %
$\Delta D / D$	3 (0;0;3)	-0,4 %	-0,4 %	-0,5%
$\Delta L / L$		1,2 %	1,40 %	1,52%
Fp ₁ , нН		6,6	6,0	4,7
Fp₁, нН/атом		0,037	0,042	0,044

Влияние электрического поля на атомное строение и электронные свойства

 $\mathbf{F} = \mathbf{0}$

 $\overline{F}_Z=3~B/_{HM}$

Распределение заряда валентных электронов по атомам вдоль оси тубуса нанокластера (3,3):

в отсутствие электростатиче-

ского поля

и в электростатическом поле

Плотность электронных состояний нанокластера (3,3) длиной 20,8 Å в продольном стера электростатическом пространственнооднородном поле напряженностью 3 В/м ском

 Плотность электронных состояний нанокластера (4,4) длиной 20,8 Å в продольном про странственно-однородном электростатическом поле напряженностью 3 В/м

Энергетические и эмиссионные параметры тубулярных нанокластеров в электростатическом пространственно-однородном поле

Параметры	$F(F_x, F_y, F_z),$	(5,5)	(4,4)	(3,3)
	В/нм			
IP, эB		6,20	6,21	6,26
Eg, эB	0	0,21	0,13	0,08
φ, 3Β		4,52	4,5	4,43
IP, эВ		6,20	6,25	6,26
Eg, эB	2(0.2.0)	0,21	0,19	0,09
φ, 3Β	3 (0,3,0)	4,7	4,68	4,69
Δφ, ЭΒ		0,22	0,18	0,26
IP, эВ		6,12	6,16	6,21
Eg, эB		0,09	0,08	0,23
φ, 3Β	3 (0;0;3)	4,41	3,95	3,88
Δφ, ЭΒ		-0,39	-0,45	-0,52

Зависимости относительной величины работы выхода φ_F/φ_0 (φ_0 – работа выхода вне поля, φ_F – в поле с напряженностью F) УТН (3,3), (4,4), (5,5) от напряженности электростатического поля.

Изменение электрического сопротивления нанотрубки

в электрическом поле

Изменение электрического сопротивления нанотрубки с одним дефектом при наложении внешнего поперечного электрического поля

Синий кружок – атом азота Красный – атом бора

Сплошная/пунктирная кривая – результат расчета методом сильной связи;

точки – результат *ab initio* расчетов для трубки (10,10) и (20,20)

Изменение электрического сопротивления нанотрубки с дефектом типа вакансия атома углерода при наложении внешнего поперечного электрического поля.

Сплошная кривая – результат расчета методом сильной связи;

красные кружки – результат *ab initio* расчетов для трубки (10,10)