Углеродные нанокластеры: строение, классификация, размерные эффекты

Лекция 2.

Электронная структура и эмиссионная способность углеродных тубулярных нанокластеров (УТН).

Механические свойства УТН: деформация растяжения/сжатия, изгиб.

Размерные эффекты.

Тубулярные нанокластеры: электронная структура и потенциал ионизации

E_{Vacuum} (нулевым уровнем) и энергией НОМО-уровня :

$$IP = E_{Vacuum} - E_{HOMO}.$$

По рассчитанному электронному спектру вычисляются, кроме IP, энергетическая щель E_g – энергетический интервал HOMO–LUMO (LUMO – низший незаполненный уровень):

$$E_g = E_{LUMO} - E_{HOMO}$$
.

Схема энергетических уровней с указанием энергетической щели и потенциала ионизации

Некоторые метрические характеристики

остова тубелена С₆₀

Параметры					
r ₁ , Å	1,42				
r ₂ , Å	1,48				
r ₃ , Å	1,46				
r4, Å	1,45				
r5, Å	1,46				
r ₆ , Å	1,43				
IP, эВ	7,30				
E _g , эВ	0,02				

Размерный эффект: влияние длины тубуса на энергетические параметры Нанотрубки без фуллереновых шапочек на концах

Изменение энергетической щели с увеличением длины тубуса УТН (6,6) с открытыми концами

Изменение потенциала ионизации с увеличением длины тубуса УТН (5,5) с открытыми концами

Изменение длин связей открытых концов нанотрубки

 $R = 0.343 \,\mu$ M H-УТН (с атомами водорода на концах): двойные длины связей 0.137 нм

УТН (без атомов водорода): тройные длины связей 0.126 нм.

0.126 нм Метод сильной связи 0.124 нм Ab initio

Изменение потенциала ионизации нанокластера *кресло* с длиной (при фиксированном диаметре): кластер (3,3). Длина увеличивается присоединением нитей из атомов углерода (пунктирная линия) или кольцами из шестиугольников (точки отмечены кружками)

Изменение потенциала ионизации нанокластера *кресло* с длиной (при фиксированном диаметре): кластер (12,12). Длина увеличивается присоединением нитей из атомов углерода (пунктирная линия) или кольцами из шестиугольников (точки отмечены кружками) Зависимость потенциала ионизации УТН (m,m) – *кресло*, от длина атомного каркаса: а) для УТН с числом m кратным трем, б) для УТН с прочими числами m

Поверхность ионизационного потенциала трубки (n,n)

Размерный эффект: влияние длины тубуса на энергетические параметры Нанотрубки с фуллереновыми шапочками на концах

Изменение энергетических характеристик нанокластера типа *зигзаг* (6,0) с увеличением длины: а) изменение потенциала ионизации, б) изменение энергетической щели. Длина каркаса увеличивается присоединением нитей из атомов углерода

Изменение энергетических характеристик нанокластера A5 типа кресло (5,5) с увеличением длины: а) изменение потенциала ионизации, б) изменение энергетической щели. Пунктирная линия: длина каркаса увеличивается присоединением нитей из атомов углерода; точки в кружках: наращивание кольцами из шестиугольников

Распределение заряда валентных электронов по атомам вдоль оси симметрии тубуса у нанокластеров С₈₀ и С₉₀ (*e* – абсолютная величина заряда электрона)

Эмиссионная способность тубулярных нанокластеров

Углеродные наноструктуры: а) тонкие углеродные нанотрубки, б) углеродные нанокластеры, в) ВАХ углеродных нанотрубных пленок (снимки предоставлены коллективом лаборатории нано- и микроэлектроники СФ ИРЭ РАН)

Графен

Графен: a) топология гексагональной сетки, б) изменение энергии графена (энергии, приходящейся на атом) с увеличением числа атомов в атомной сетке

Сворачивание графена: а) графен, изогнутый на 120 градусов, б) изменение энергии графена при сворачивании в нанотрубку

Потенциалы ионизации тубулярного кластера (5,5) и

графена с параметром M=5

(N меняется от 2 до 8) при одинаковом количестве атомов

		Длина графена вдоль	
Длина трубки, Å	IP трубки, эВ	параметра N, Å	IР графена, эВ
4,80	6,56	4,76	6,93
7,28	6,65	7,23	7,09
9,76	6,27	9,72	6,99
12,28	6,32	12,20	6,90
14,77	6,39	14,64	6,84
17,27	6,15	17,08	6,97
19,82	6,26	19,52	6,91

Потенциал ионизации графена

Характеристики графена при М=9

			Eg,	IP,
LN,Å	LM, Å	Е _{аtom,} В/атом	эВ	эΒ
2,32	37,42	-42,10	0,43	6,91
4,77	37,00	-42,47	0,27	6,94
7,25	36,83	-42,65	0,05	6,88
9,72	36,85	-42,76	0,02	6,77
12,15	36,86	-42,83	0,22	6,92
14,64	36,94	-42,88	0,20	6,85
17,15	36,85	-42,92	0,08	6,78
19,6	36,85	-42,95	0,06	6,74
22,05	36,93	-42,97	0,12	6,82
24,50	36,93	-42,99	0,11	6,80
26,95	36,93	-43,00	0,02	6,77
56,58	37,01	-43,09	0,02	6,73
59,04	37,01	-43,09	0,05	6,73
61,50	37,01	-43,09	0,06	6,71
63,96	37,01	-43,10	0,02	6,72
	LN,Å 2,32 4,77 7,25 9,72 12,15 14,64 17,15 19,6 22,05 24,50 26,95 56,58 59,04 61,50 63,96	LN,ÅLM, Å2,3237,424,7737,007,2536,839,7236,8512,1536,8614,6436,9417,1536,8519,636,8522,0536,9324,5036,9326,9536,9356,5837,0159,0437,0161,5037,0163,9637,01	LN,ÅLM, ÅEatom,B/atrom2,3237,42-42,104,7737,00-42,477,2536,83-42,659,7236,85-42,7612,1536,86-42,8314,6436,94-42,8817,1536,85-42,9219,636,85-42,9222,0536,93-42,9724,5036,93-42,9926,9536,93-43,0056,5837,01-43,0961,5037,01-43,0963,9637,01-43,10	LN,ÅLM, Å $E_{atom},B/atom$ Eg,2,3237,42-42,100,434,7737,00-42,470,277,2536,83-42,650,059,7236,85-42,760,0212,1536,86-42,830,2214,6436,94-42,880,2017,1536,85-42,920,0819,636,85-42,950,0622,0536,93-42,970,1224,5036,93-42,990,1126,9536,93-43,000,0256,5837,01-43,090,0561,5037,01-43,090,02

Характеристики графена при N=9

				Eg,	IP,
NxM	LN,Å	LM, Å	Е _{аtom,} эВ/атом	эΒ	эВ
9x1	22,05	2,57	-41,886	0,17	7,15
9x2	22,05	7,04	-42,464	0,02	6,91
9x3	22,05	11,31	-42,681	0,08	6,93
9x4	22,04	15,58	-42,79	0,00	6,84
9x5	22,05	19,84	-42,85	0,00	6,84
9x6	22,05	24,15	-42,90	0,15	6,85
9x7	22,05	28,41	-42,93	0,11	6,85
9x8	22,04	32,66	-42,95	0,15	6,85
9x9	22,05	36,93	-42,97	0,12	6,82
9x10	22,05	41,19	-42,98	0,07	6,76
9x11	22,05	45,45	-43,00	0,02	6,71
9x12	22,05	49,71	-43,01	0,02	6,69
9x22	22,05	92,53	-43,06	0,03	6,61
9x23	22,05	96,8	-43,06	0,01	6,59
9x24	22,05	101,07	-43,06	0,00	6,58

Некоторые энергетические параметры графена/УТН с гексагональной сеткой, соответствующей нанокластеру (3,3)

Кол-во	Длина, Å	E _{atom} ,	$\Delta H^0_{f(C_n)}, \frac{$ ккал $}{$ моль · атом $}$	Е _b , э В	IP, эВ	E _g , эВ
		JD/alom		9		
		графен/нанок.	ластер $(3,3)$ d = 4,1	10 A		
10	2,31/	-42,05/	32,01/	6,04/	7,22/	0,53/
10	2,32	-42,11	31,08	6,08	7,02	1,47
24	3,64/	-42,08/	31,85/	6,05/	7,22/	1,06/
24	3,48	-42,33	26,00	6,29	7,22	1,54
30	4,77/	-42,40/	24,35/	6,37/	7,05/	0,17/
50	4,78	-42,44	23,57	6,41	6,72	0,80
26	5,99/	-42,32/	26,30/	6,27/	7,03/	0,24/
30	6,00	-42,53	21,47	6,50	6,63	0,84
12	7,23/	-42,53/	21,38/	6,50/	7,16/	0,40/
42	7,22	-42,67	20,80	6,64	6,65	0,68

Таким образом, потенциал ионизации графена выше потенциала ионизации УТН типа *кресло* при одинаковой длина тубуса и графитового листа.

Сравнение потенциалов ионизации УТН и графена

Расчет работа выхода

Методика расчета работа выхода УТН заключается в следующем.

– Рассчитываются атомная структура УТН, соответствующая основному состоянию системы, электронный спектр и потенциал ионизации УТН IP_{tube}.

– Рассчитываются атомная структура графена, отвечающего данному УТН, электронный спектр и потенциал ионизации графена IP_{graph}.

– Вычисляется работы выхода УТН:

$$\varphi_{\text{tube}} = \varphi_{\text{graph}} + (IP_{\text{tube}} - IP_{\text{graph}}).$$

Здесь будем использовать значение работы выхода графита $\phi_{graph} = 4,8$ эВ.

Результаты расчета работы выхода

Тип трубки	Диаметр, Å	Базовая схема	Метод функционала плотности*, <i>ab initio</i> **
(3,3)	4,10	4,43	4,5**
(4,4)	5,52	4,5	4,55**
(5,5)	6,84	4,52	4,6** ; 4,68*
(6,6)	8,36	4,5	4,71*; 4,86
(12,12)	16,30	4,5	4,66**; 4,77*
графит	œ	-	4,66**; 4,91*
(4,0)	3,34	5,25	5,95**
(5,0)	4,14	4,97	5,28**
(6,0)	4,84	4,63	4,90**
(7,0)	5,66	4,83	5,10**; 5,45*
(8,0)	6,42	4,85	4,80**
(9,0)	7,20	4,73	4,6**
(10,0)	8,00	4,81	4,66**; 5,25*
(12,0)	9,52	4,77	4,66**; 4,73*

Эксперимент:

для пучков нанотрубок – [4,8; 5,1] эВ;

для индивидуальных трубок – 3,7 эВ; 4,5-5,0 эВ

Sun J.P., Zhang Z.X., Hou S.M. et al.// Appl. Phys.A: Mater. Sci. Process.-2002.-V.75.-P.479-481.

Механические свойства УТН: деформация растяжения/сжатия, изгиб.

Расчет параметров упругости.

1. Генерация координат атомов структуры модели кластера заданной киральности.

2. Моделирование деформации растяжения/сжатия. Длина каркаса увеличивается (или уменьшается) на несколько процентов и фиксируется.

Расчет модуля Юнга и коэффициента Пуассона Модуль Юнга

$$Y = \frac{F}{S} \cdot \frac{L}{\Delta L}$$

Псевдомодуль Юнга

$$Y_{P} = \frac{F}{P} \cdot \frac{L}{\Delta L},$$

где Р – периметр остова.

Коэффициент Пуассона

$$\mu = -\frac{\Delta R}{R} \cdot \frac{L}{\Delta L},$$

где R − радиус недеформированного остова; ΔR − изменение радиуса в результате деформации.

1. Расчет координат УТН по трем линейным параметрам атомного каркаса (*трехпараметрический метод*)

Нанокластеры типа зигзаг

 $X_k = R \cdot \cos \alpha_k$, $Y_k = R \cdot \sin \alpha_k$, где $R = n \cdot H_3/2\pi$ – радиус нанокластера, α – угол, соответствующий сегменту и номеру атома в сегменте (вычисляется по формулам, приведенным ниже), k = 1..4 – номер атома в сегменте.

Координата Z и угол α атомов сегмента вычисляются по следующим формулам:

$$Z_{1} = i \cdot (H_{1} + H_{2}), \qquad \alpha_{1} = j \cdot \frac{2\pi}{n},$$

$$Z_{2} = i \cdot (H_{1} + H_{2}) + \frac{H_{1} - H_{2}}{2}, \qquad \alpha_{2} = (j \cdot 2 - 1) \cdot \frac{\pi}{n},$$

$$Z_{3} = \left(i + \frac{1}{2}\right) \cdot (H_{1} + H_{2}), \qquad \alpha_{3} = (j \cdot 2 - 1) \cdot \frac{\pi}{n},$$

$$Z_{4} = i \cdot (H_{1} + H_{2}) + H_{1}, \qquad \alpha_{4} = j \cdot \frac{2\pi}{n},$$

где i = 0..(M/2 - 1) – номер сегмента вдоль оси Z, j = 0..(n - 1) – номер сегмента по окружности.

Нанокластеры типа кресло

 $X_k = R \cdot \cos \alpha_k$, $Y_k = R \cdot \sin \alpha_k$, где $R = m \cdot (H_1 + H_2)/2\pi$ – радиус нанокластера, α – угол, соответствующий сегменту и номеру атома в сегменте (вычисляется по формулам, приведенным ниже), k = 1..4 – номер атома в сегменте.

$$\begin{split} Z_{1} &= i \cdot H_{3}, \ \alpha_{1} = j \cdot \frac{2\pi}{m}, \ Z_{2} = i \cdot H_{3}, \\ \alpha_{2} &= \left[j + \frac{H_{2}}{H_{1} + H_{2}} \right] \cdot \frac{2\pi}{m}, \ Z_{3} = \left(i + \frac{1}{2} \right) \cdot H_{3}, \\ \alpha_{3} &= \left[j - \frac{H_{1} - H_{2}}{2 \cdot (H_{1} + H_{2})} \right] \cdot \frac{2\pi}{m}, \ Z_{4} = \left(i + \frac{1}{2} \right) \cdot H_{3}, \\ \alpha_{4} &= \left[j + \frac{H_{2}}{H_{1} + H_{2}} - \frac{H_{1} - H_{2}}{2 \cdot (H_{1} + H_{2})} \right] \cdot \frac{2\pi}{m}, \end{split}$$

где i = 0..(N/2 - 1) – номер сегмента вдоль оси Z, j = 0..(m - 1) – номер сегмента по окружности.

Зависимость модуля Юнга Y нанокластера *зигзаг* (6,0) от числа атомов в каркаса (• – кривая, соответствующая трехпараметрической модели; **–** кривая, соответствующая модели, генерированной с помощью методов теории групп)

2. Моделирование деформации растяжения/сжатия

Модуль Юнга

Ν	(m,n)	d, Å	Ү, ТПа	Ү _р , ТПа ∙нм	μ
96	(6,0)	4,83	0,67	0,23	0,44
112	(7,0)	5,60	0,69	0,23	0,43
128	(8,0)	6,37	0,71	0,24	0,43
144	(9,0)	7,14	0,72	0,24	0,43
160	(10,0)	7,92	0,73	0,25	0,43
176	(11,0)	8,69	0,73	0,25	0,43

Изменение параметров упругости нанокластеров зигзаг с увеличением диаметра

Изменение параметров упругости нанокластеров кресло с увеличением диаметра

N	(m,n)	d, Å	Ү, ТПа	Ү _р , ТПа ∙нм	μ
120	(3,3)	4,18	0,68	0,23	0,44
160	(4,4)	5,51	0,72	0,24	0,44
200	(5,5)	6,85	0,74	0,25	0,45
240	(6,6)	8,19	0,75	0,25	0,45
280	(7,7)	9,54	0,76	0,26	0,45

Сравнение модулей Юнга открытых и закрытых нанотрубок

Зависимости модуля Юнга пентагон-гексагональных тубулярных нанокластеров от длины при постоянном диаметре (точки – результат расчета с помощью *базовой схемы*, кривые – интерполяция): а) для топологических моделей типа Z5, б) для топологических моделей типа A5 Моделирование деформации кручения

Модуль кручения.

Модуль кручения вычисляется по формуле:

$$f_{\Delta E} = \frac{2 \cdot \Delta E}{\varphi^2}.$$

С позиции классической теории упругости модуль кручения вычисляется по известному значению модуля Юнга и коэффициента Пуассона:

$$f_{Y} = \frac{\pi \cdot Y}{4 \cdot (1+\mu) \cdot L} \cdot \left[\left(R + \frac{t}{2} \right)^{4} - \left(R - \frac{t}{2} \right)^{4} \right],$$

где R – радиус полой цилиндрической трубки, t – толщина стенки цилиндра (для кластера – 3,4 Å).

Зависимость модуля кручения гексагональных тубулярных нанокластеров от длины типа Z6 и A6: а) результаты расчетов по квантовой модели, б) интерполяционные кривые типа $f = A + B \cdot EXP(C \cdot L)$

Зависимость модуля кручения гексагональных тубулярных нанокластеров от диаметра при фиксированной длине: а) результаты расчетов по квантовой модели, б) экстраполяционные кривые типа $f = A + B \cdot EXP(C \cdot L)$

Моделирование деформации изгиба (эмпирическая модель)

– Сравнение расчетов модулей Юнга эмпирическим и квантовым методами

Модули упругости деформации растяжения нерегулярных гексагональных нанокластеров, рассчитанные по эмпирической/квантовой моделям

Число атомов	(m,n)	Ү, ТПа	Ү _р , ТПа ∙нм	μ
	Топ	ологическая м	иодель Z6	
96	(6,0)	0,65/0,67	0,22/0,23	0,41/0,44
112	(7,0)	0,68/0,69	0,23/0,23	0,40/0,43
128	(8,0)	0,71/0,71	0,24/0,24	0,41/0,43
144	(9,0)	0,72/0,72	0,25/0,24	0,43/0,41
160	(10,0)	0,73/0,73	0,25/0,25	0,43/0,41
176	(11,0)	0,74/0,73	0,25/0,25	0,43/0,41
	Топ	ологическая м	иодель Аб	
120	(3,3)	0,69/0,68	0,23/0,23	0,45/0,44
160	(4,4)	0,74/0,72	0,25/0,24	0,45/0,44
200	(5,5)	0,76/0,74	0,25/0,24	0,45/0,44
240	(6,6)	0,76/0,75	0,26/0,25	0,46/0,45
280	(7,7)	0,78/0,76	0,27/0,26	0,44/0,45

- Сравнение модулей Юнга

Модули Юнга однослойных индивидуальных нанотрубок, полученные из эксперимента и при помощи эмпирической модели

Эксперимент			Расчет эмпирическим методом			
Диаметр,	Длина,	Модуль Юнга,	Тип трубки –	Диаметр,	Длина,	Модуль
HM	HM	ΤПа	число атомов	НМ	HM	Юнга,
						ΤПа
1 12	23.4	1,02±0,3	(8,8) - 3072	1,09	23,45	0,82
-,	_ , ·		(14,0) – 3108	1,10	23,46	0,92
1.52	24 3	$1,20\pm 0,2$	(11,11) – 4378	1,50	24,3	0,90
-,	,e		(19,0) – 4308	1,50	24,34	1,02
1 50 36 8	$1,33 \pm 0,2$	(11,11) – 6600	1,50	36,77	1,14	
-,	20,0		(19,0) – 6612	1,50	36,91	1,21

