НАУЧНО-МЕТОДИЧЕСКИЙ АППАРАТ

1. Метод сильной связи Харрисона в модификации Гудвина, адаптированный для изучения финитных объектов – нанокластеров, в частности углеродных и содержащих связи типа *C-N* и/или *Si-C*.

Полная энергия E_{tot} кластера рассчитывается как сумма:

$$E_{tot} = E_{rep} + E_{bond}, \qquad (1.15)$$

где E_{rep} – феноменологическая энергия, учитывающая межэлектронное и межъядерное взаимодействия, E_{bond} – энергия заполненных уровней электронного спектра, образованного собственными значениями гамильтониана.

Диагональные элементы гамильтониана суть атомные термы, а недиагональные элементы определяются выражением:

$$V_{\alpha\beta}(r) = V_{\alpha\beta}^0 \left(\frac{p_3}{r}\right)^{p_1} \exp\left\{p_1 \left[-\left(\frac{r}{p_2}\right)^{p_4} + \left(\frac{p_3}{p_2}\right)^{p_4}\right]\right\}, (1.11)$$

где r – расстояние между атомами; α – индекс, указывающий взаимодействующие орбитали (ss, sp или pp); β – индекс, указывающий тип связи (σ или π). Феноменологическая энергия представляется суммой парных отталкивательных потенциалов

$$E_{rep} = \sum_{i < j} V_{rep} \left(\left| r_i - r_j \right| \right), \qquad (1.13)$$

где i, j – номера взаимодействующих атомов; r_i, r_j – декартовы координаты.

Функция V_{rep} рассчитывается по формуле:

$$V_{rep}(r) = p_5 \left(\frac{p_3}{r}\right)^{p_6} \exp\left\{p_6 \left[-\left(\frac{r}{p_2}\right)^{p_4} + \left(\frac{p_3}{p_2}\right)^{p_4}\right]\right\}. (1.14)$$

2

Суть предложенной адаптации заключается в нахождении набора равновесных интегралов перекрытия $V_{ss\sigma}^0$, $V_{sp\sigma}^0$, $V_{pp\sigma}^0$, $V_{pp\pi}^0$, а также атомных термов углерода ε_s , ε_p и параметров p_n (n=1..6) функций, описывающих энергию межатомного взаимодействия. Перечисленные параметры, позволяющие моделировать *C*-*C* связь нанокластера, будем называть *характеристическими параметрами*.

Характеристические параметры являются решением минимаксной задачи с ограничениями в следующей постановке:

 $\underset{A}{\operatorname{mimaxS}(A)}, \quad \Gamma \text{де} \quad S(A) = \sum_{i=1}^{2} |\mathbf{r}_{i} - \mathbf{r}_{i}^{0}| + |IP - IP^{0}| + |\mathbf{E}_{g} - \mathbf{E}_{g}^{0}|$, (1.22) $\mathbf{A} = \left(\varepsilon_{s}, \varepsilon_{p}, V_{ss\sigma}^{0}, V_{sp\sigma}^{0}, V_{pp\sigma}^{0}, V_{pp\pi}^{0}, \mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}, \mathbf{p}_{4}, \mathbf{p}_{5}, \mathbf{p}_{6} \right) - \text{ вектор}$ варьируемых параметров, $\{\mathbf{r}_{i}\} - \text{ множество } C-C$ длин связей, $\{\mathbf{r}_{i}^{0}\}, IP^{0}, \mathbf{E}_{g}^{0} - \text{ множество } известных$ (расчетных или экспериментальных) значений. Таблица 1.1 Характеристические параметры для *С-С* связи

ε _s , эВ	ε _p , эВ	$V_{ss\sigma}^0$, $\Im B$	V ⁰ _{spσ} , ЭВ	V ⁰ _{ppσ} , ЭВ	V ⁰ _{ppπ} , эВ
- 10,932	-5,991	-4,344	3,969	5,457	-1,938
p ₁	p ₂ , Å	p ₃ , Å	p ₄	р ₅ , эВ	p ₆
2,796	2,32	1,54	22	10,92	4,455

Таблица 6.1

Атомные термы и недиагональные матричные эле-

менты гамильтониана (эб)						
Связь	ε _s	ε _p	$V^0_{ss\sigma}$	$V^0_{sp\sigma}$	$V^0_{pp\sigma}$	$V^0_{pp\pi}$
C- N	_	-7,2	0	0	5,1	-7,1
Si-C	-5,25	-0,811	-4,8	4,3	4,75	-2,6
					Табл	ица 6.2

Параметры p_n функций энергии межатомного взаимодействия (1.11) и (1.14)

					/	
Связь	p_1	\mathbf{p}_2	p ₃	p_4	\mathbf{p}_5	p_6
C- N	3	2,32	1,54	22,9	4	8
Si-C	2,796	2,15	1,92	22	10,92	4,455

Решение тестовой задачи. Фуллерен С₆₀

Полная плотность электронных состояний фуллерена C₆₀ (a) и электронный спектр *π*-системы фуллерена C₆₀ (б)

Таблица 1.2

Параметры	Экспери-	Ab initio	Базовый ме- тод	
	мент			
r ₁ , Å	$1,45 \pm 0,01$	1,45	1,45	
r ₂ , Å	$1,40 \pm 0,01$	1,39	1,40	
IP, эВ	7,6	7,58; 7,62	7,61	
E _g , \Im B	1,7÷2,35	2,15; 1,5	2,0	

Некоторые характеристики фуллерена $C_{60}(I_h)$

Решение тестовой задачи. Фуллерен С70

Таблица 1.3

Модификации схемы сильной связи Харрисона

2. Модифицированная эмпирическая модель углеродных тубулярных

нерегулярных нанокластеров

Полная энергия финитного углеродного тубулярного нанокластера есть многочлен, каждая составляющая которого имеет свой весовой коэффициент, определяемый в результате обработки экспериментальных данных:

$$E_{tot} = \sum K_r (r - r_0)^2 + \sum K_{\theta} (\theta - \theta_0)^2 + \sum (\frac{K_a}{r^{12}} - \frac{K_b}{r^6})$$
. (1.28)

Здесь первое слагаемое учитывает изменение длин связей в наноструктуре по отношению к длине связи в графите ($r_0 = 1,42$ Å), второе – изменение углов между связями по отношению к углу между связями в графите ($\theta_0 = 120^\circ$), а третье – взаимодействие Ван-дер-Ваальса (потенциал Леннарда – Джонса); K_r , K_θ , K_a , K_b – весовые коэффициенты.

Весовые коэффициенты суть решение минимаксной задачи с ограничениями в следующей постановке:

min max S(A), где S(A) =
$$\sum_{i=1}^{3} |\mathbf{r}_i - \mathbf{r}_i^0|$$
,
A (1.29)

где $\{r_i\}$ – множество *C*-*C* длин связей, $\{r_i^\circ\}$ – множество известных (расчетных или экспериментальных) значений, $\mathbf{A} = (K_r, K_\theta, K_a, K_b)$ – вектор варьируемых параметров. Множество $\{r_i\}$ находилось минимизацией полной энергии (1.28) нанотрубки по координатам всех атомов. В качестве известных значений $\{r_i^\circ\}$ взяты экспериментальные и теоретические данные о геометрических размерах и длинах связей нанотрубок.

Таблица 1.5

Диаметры нанотрубок, измеренные и рассчитанные

Труб- ка	Графено- вая мо- дель	Экспери- менталь- ные данные	Полуэмпи- рические модели, <i>ab initio</i>	Модифици- рованная эмпириче- ская модель
(4,0)	0,313 нм	0,33 нм	0,317	0,336 нм
(5,5)	0,678	_	0,69; 0,686	0,685
(8,8)	1,085	—	1,098	1,092
(10, 10)	1,356	1,36	1,37	1,360
(17,0)	1,331	1,35	1,374	1,337
$(\overline{18,0})$	1,409	1,43	1,427	1,422

В результате решения минимаксной задачи (1.29) получены следующие значения весовых коэффициентов:

$$K_r = 3,25 \cdot 10^2 \frac{\Pi \pi}{M^2}, \qquad K_{\theta} = 4,4 \cdot 10^{-19} \frac{\Pi \pi}{pa \pi^2},$$

$$K_a = 4,0 \cdot 10^{-139} \frac{\Pi \pi}{M^{12}}, \qquad K_b = 1,5 \cdot 10^{-80} \frac{\Pi \pi}{M^6}.$$
(1.30)

Графеновая модель: R= $a\sqrt{3(n^2 + m^2 + nm)}/\pi$ (a = 1,42Å)

3. Трехпараметрический метод

Атомный остов, построенный трехпараметрическим методом, и регибридизация σ-и πэлектронов:

а) для трубки зигзаг; б) для трубки кресло

1 – трехпараметрический метод, *2* – теория групп точечной симметрии.

Зависимость модуля Юнга Y нанокластера *зигзаг* (6,0) от числа атомов в каркаса (• – кривая, соответствующая трехпараметрической модели; – кривая, соответствующая модели, генерированной с помощью методов теории групп)

	кресло (4,4)				зигзаг (6,0)				
л Д	Дли	іна, Å Время		ремя	NI	Длина, Å		Время	
IN	1	2	1	2	IN	1	2	1	2
40	4,78	4,74	5"	40"	48	6,98	7,00	8"	1'03"
48	6,00	5,95	9"	1'15"	60	9,18	9,22	25"	3'20"
56	7,25	7,20	20"	2'37"	72	11,31	11,34	38"	5"01"
64	8,50	8,50	28"	3'45"	84	13,43	13,47	59"	8'07"
72	9,71	9,66	39"	5'12"	96	15,56	15,60	1'20"	10'46"
80	10,96	10,92	1'03"	8'23"	108	17,68	17,72	2'13"	17'52"

Линейный параметр остова и время оптимизации остова

4. Модель нанокластера в электрическом поле

В рамках применяемой квантовой модели гамильтониан нанокластера, находящегося в электрическом поле (не зависящем от времени), модифицируется введением дополнительного слагаемого, учитывающего величину "диполя на связях"

$$\langle \psi(\mathbf{r}) | \mathbf{r} | \psi(\mathbf{r}) \rangle$$
, (5.3)

где $\psi(\mathbf{r})$ – волновая функция электрона, зависящая от координат, \mathbf{r} – радиус-вектор электрона. Векторная величина (5.3) определяет положение центра тяжести плотности электронов, участвующих в связи, относительно точки, расположенной на середине расстояния между атомами.

Изменение энергии электронов под действием поля **F** определяется выражением вида:

$$-(-\mathbf{e})\mathbf{F}\cdot\left\langle \psi(\mathbf{r})\big|\mathbf{r}\big|\psi(\mathbf{r})\right\rangle _{.} \qquad (5.4)$$

С появлением внешнего поля напряженностью **F** матричные элементы определяются следующим выражением:

$$V_{ij\alpha}(\mathbf{r}) = V_{ij\alpha}^{0} \left(\frac{\mathbf{p}_{3}}{\mathbf{r}}\right)^{\mathbf{p}_{1}} \exp\left\{p_{1}\left[-\left(\frac{\mathbf{r}}{\mathbf{p}_{2}}\right)^{\mathbf{p}_{4}} + \left(\frac{\mathbf{p}_{3}}{\mathbf{p}_{2}}\right)^{\mathbf{p}_{4}}\right]\right\} + \left(-\left(-\mathbf{e}\right)\mathbf{F} \cdot \left\langle\psi_{i} |\mathbf{r}|\psi_{j}\right\rangle\right)$$
(5.5)

где r – расстояние между атомами; i, j – орбитальные моменты волновых функций; α – индекс, указывающий тип связи (σ или π , момент импульса σ -орбитали относительно оси молекулы равен нулю, момент импульса π орбитали равен единице).

Выражение $-e \cdot \langle \psi_i | \mathbf{r} | \psi_j \rangle$ в (5.5) определяет вектор дипольного момента на связи, который рассчитывается посредством предварительного вычисления распределения заряда по атомным орбиталям каждого квантового состояния нанокластера.

Диполь на связи, например, для p_{xi} – суммы: p_{yj} (i, j – номера взаимодействующих атомов), вычисляется по формуле:

$$\mathbf{p}_{ij} = \mathbf{e} \cdot \left(\mathbf{c}_i^2 \left(\mathbf{p}_{xi} \right) \cdot \mathbf{r}_i + \mathbf{c}_j^2 \left(\mathbf{p}_{yj} \right) \cdot \mathbf{r}_j \right) \cdot \mathbf{n}_e$$
(5.6)

где $\mathbf{r}_i, \mathbf{r}_j$ – радиус-векторы атомов с номерами і и j.

Равновесное состояние диполя на связи при наличии электрического поля определяется в результате минимизации полной энергии нанокластера, которая складывается из энергии заполненных электронных уровней и феноменологической энергии, учитывающей межъядерное, межэлектронное и обменно-корреляционное взаимодействия.

Дипольный момент вычисляем в виде геометрической кі – суммы:

$$\boldsymbol{\mu} = \boldsymbol{e} \cdot \sum_{I} Z_{I} \boldsymbol{R}_{I} - \boldsymbol{e} \cdot \sum_{i} \boldsymbol{r}_{i}, \qquad (5.7)$$

где \mathbf{r}_i , \mathbf{R}_I – радиус-векторы электрона и ядра атома, Z_I – эффективный заряд ядра атома, соответствующий по абсолютной величине суммарному заряду валентных электронов.

Во внешнем электрическом поле дипольный момент и напряженность связаны соотношением:

$$\boldsymbol{\mu} = \boldsymbol{\varepsilon}_0 \boldsymbol{\alpha} \mathbf{F}, \qquad (5.8)$$

где ε₀ – электрическая постоянная, α – тензор поляризуемости (для тубулярных нанокластеров). У сфероподобных молекул, как фуллерен С₆₀, поляризуемость не зависит от направления и равна кубу радиуса – 0,045 нм³.

Расчет:

В случае продольного поля с $F_z = 3$ В/нм получены следующие результаты: IP=7,61 эВ, $E_g = 2,03$ эВ, $\alpha = 47$ Å³.

Альтернативные расчеты отдельных компонентов тензора поляризуемости* дают для трубки (4,4) α_{xx} = 26 Å².

*Benedict L.X., Louie S.G., Cohen M.L. Static polarizabilities of single-wall carbon nanotubes // Phys.Rew.B.– 1995.– V.52.– N 11.–P.8541(9). Таблица 5.8 Тензор поляризуемости тубулярного кластера (F = 3 В/нм)

Параметры	$\begin{pmatrix} \alpha_{xx} & \alpha_{xy} & \alpha_{xz} \\ \alpha_{yx} & \alpha_{yy} & \alpha_{yz} \\ \alpha_{zx} & \alpha_{zy} & \alpha_{zz} \end{pmatrix}, Å^{2}$	$\mu \ (\mu_x, \mu_y, \mu_z) \cdot 10^{30},$ Кл·м $F_z = 3 \text{ B/нм}$
(3,3)	$ \begin{pmatrix} 13 & 3 & 0,5 \\ 3 & 13 & 1,5 \\ 24 & 24 & 130 \end{pmatrix} $	57,27 (48,85; 5,10; 56,83) L = 21,06 Å
(4,4)	$ \begin{pmatrix} 25 & 2,6 & 4,2 \\ 2,6 & 25 & 1,7 \\ 65 & 65 & 54 \end{pmatrix} $	60,44 (-0,55; -1,65; 60,42) L = 34,44 Å
(5,5)	$ \begin{pmatrix} 136 & 18 & 9 \\ 18 & 136 & 9,4 \\ 423 & 423 & 103 \end{pmatrix} $	291,2 (41,25; 41,20; 285,35) L = 37,85 Å