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False Vacuum Decay

scalar field theory with two minima

Sφ =

∫

d4x

(

1

2
∂µφ∂

µφ− V (φ)

)

transition amplitude given by Euclidean path integral

〈φt|e−HT |φf 〉 = N

∫

Dφe−Sφ ≈ A exp(−SE)

Coleman’s result for the imaginary part of the Euclidean action
(assuming O(4)-symmetry)

ℑ(SE) =
27π2S4

1

4ǫ3
, S1 =

∫ φf

φt

dφ
√

2V (φ)

reduction of infinitely many field degrees of freedom to single
quantum variable
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Effective Action

Bubble radius R as effective quantum variable (O(3)-symmetry)

→ SR =

∫

dt

(

∫

|x|≤R

d3x
√−ηǫ−

∫

|x|=R

d2x
√−γσ

)

generalization to arbitrary space-time background

SR =

∫

dt

(

∫

|x|≤R

d3x
√−gǫ−

∫

|ξ|=R

d2ξ
√−γσ

)

reduction of infinitely many degrees of freedom to single quantum
mechanical degree of freedom as before
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Friedmann Universe

line element ds2 = a2(y)(dy2 − dx2 − f2(x)dΩ2)

=⇒ Sx,FRW =

∫

dy

(

4πǫa4(y)

∫ x(y)

0

dx′f2(x′)

−4πσa3(y)f2(x)
√

1− ẋ2(y)

)

ansatz
√
1− ẋ2 = g(y)ẋ , g arbitrary

=⇒ ȧ

a
− ġ

3g
− ga

R0
+

2

3

∂xf(x)

f(x)ẋ
= 0

from x(y) (comoving radius) follows analytical expression for a(y)
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Friedmann Universe

scale factor for given shell trajectory

a(y) =

(

g(y)
g(y0)

)1/3

e−F (y)

C − 1
R0

∫ y

y0

dy′
(

g(y′)
g(y0)

)1/3

g(y′)e−F (y′)

with

F (y) =
2

3

∫ y

y0

dy′
∂xf(x)

f(x)ẋ

shell trajectory determined by g

x(y) =
Rphys

a
=

∫ y

ỹ0

dy′
1

√

1 + g2(y′)
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Example I: De Sitter

flat slicing

Rphys = − 1

Hz

√

α2 +

(

z +
α

R0H

)2

open slicing

Rphys = − 1

H sinh(w)

√

(

1 +A2

1−A2

)2

cosh2(w + w0)− 1

with

A = α

√

1 +
1

R2
0H

2
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Example I: De Sitter

closed slicing

Rphys =
1

H cos(y)

√

1−
(

1−A2

1 +A2

)2

sin2(y − y0)

decay rate does not depend on choice of coordinates
(see coordinate invariant approach of Coleman)

imaginary part of euclidean action (Parke 1983):

ℑ(S) = π2ǫ

3H4

(

1−
√

1 + R2
0H

2
)2

√

1 +R2
0H

2

ǫ→ 0 : ℑ(S) = π2σ/H3 and H → 0 : ℑ(S) = 27π2S4
1/(4ǫ

3)
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Shell Trajectories
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Example 2: Power-Law Scale Factors

analytical solution only possible for degenerate vacua, i.e. ǫ = 0

choice of trajectory:

x(z) =

√

α2 +
2n− 2

2n+ 1
z2

corresponding scale factor:

a(z) =
1

H

(

−n− 1

n
z

)− n
n−1

(

1 +
6(n− 1)

(2n+ 1)2
z2

α2

)1/6

,

de Sitter limit for n→ ∞
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Static Space-times

time-independent Lagrangian
=⇒ equations of motion solved using conservation of energy

O(3)-invariant line-element ds2 = f(r)dt2 − f−1(r)dr2 − r2dΩ2

reparametrization of square-root-Lagrangian leads to effective
potential:

V (x) =
2π

3
ǫR4

0x
2f−1(f − x2)

examples: Schwarzschild-de Sitter (mass M and horizon H) and
Reissner-Nordström (mass M and charge Q)
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SDS Trajectories
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tunneling always occurs between the horizons
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SDS Action

0 0.1 0.2 0.3 0.4
0

0.05

0.1
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2M/R0

ℑ
(S

)

R0H = 0

R0H = 0.2

R0H = 0.4

R0H = 0.6
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barrier and action vanish for M > R0/
√

27(1 +R2
0H

2)
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RN Trajectories
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unlimited expansion of the bubble
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RN Action

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

2M/R0

ℑ
(S

)

Q/R0 = 0

Q/R0 = 0.05

Q/R0 = 0.1

Q/R0 = 0.15

Q/R0 = 0.2

tunneling observable for Q2 < M2 <
R2

0

54

(

1 + 36Q2

R2

0

+
(

1− 12Q2

R2

0

)3/2
)
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Decoherence

~ → 0 not sufficient for quantum-to-classical transition

generation of entanglement between system and environment
explains classical appearance

phase relations delocalized in the environment

coherences not locally observable, no interference effects

Hint =
∑

n |n〉〈n| ⊗An

=⇒∑

n cn|n〉|Φin〉 →
∑

n cn|n〉|Φn〉

=⇒ ρsys =
∑

nm cnc
∗
m|n〉〈m| →∑

nm cnc
∗
m〈Φn|Φm〉|n〉〈m|
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Bubble-Environment Interaction

environmental field ψ bi-linearly coupled to field φ

Sint = g

∫

d4xφψ = g(φt − φf )

∫

dt
∑

k

4π

k3
(sin(kR)− kR cos(kR))ψk

rough approximation: effective two-state system

suppression of coherences for vanishing temperature:

ρS,01(t) = ρS,01(0) exp

[

−4g2

9
(φf − φt)

2R6
0

(

7

4
+ ln

(

t

2R0

))]

compare with standard result from spin-boson model

Γ(t) = ln[ρS,01(t)/ρS,01(0)] = −λ1
2
ln(1 + Ω2t2)− λ ln

(

sinh(tπT )

tπT

)
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Growing Vacuum Bubble

exact solution not possible → master equation

factor ordering ambiguities due to the square-root term in the system
Hamiltonian

Hsys =

√

16π2R̂4σ2 + P̂ 2
R − 4πR̂3ǫ

3

assumption: momentum PR dominates

Heisenberg operators:

R̂H(t) = R̂0 ± |t|

P̂H
R (t) = P̂R(0) +

4πǫ

3

(

(R̂0 ± |t|)3 − R̂3
0

)

.
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Reduced Density Matrix

solution of the master equation for t≫ R,R′

ρ(R,R′, t) ≈ ρ(R,R′, 0) exp

[

−g
2

90
(φt − φf )

2t4(R−R′)2
]

.

result sensitive to vacuum bubble size

t4-dependence represents increasing space-time volume of the
expanding bubble

quantum-to-classical transition immediately after nucleation

analogous effect: decay of alpha particles
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Modified Tunneling Rate

dissipation leads to friction term in equations of motion

1

R2

d

dT

(

4πσR2Ṙ
√

1 + Ṙ2

)

= −4πǫ+
8πσ

R

√

1 + Ṙ2

+
4g2

3
(φt − φf )

2

∫ ∞

−∞
dT ′ R

3 −R′3

(T − T ′)2

effective action has positive definite correction term

Seff = SE,R +

∫ ∞

−∞
dT ′

∫ T0

0

dT
∑

k

e−
√
k2+m2|T−T ′|

8V
√
k2 +m2

(fk(R)− fk(R
′))2

=⇒ reduction of tunneling rate (Caldeira-Leggett model)
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Modified Tunneling Rate

spectral density is determined through Lorenz-invariance of the field
theory

integral is UV- and IR convergent

mass-dependence of correction term (neglecting back-reaction):

0 1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

mR0

S
e
f
f
−

S
E

,
R

g
2
(φ

t
−

φ
f
)2

R
6 0
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One-loop corrections

correction of order ~ are determined by ratio of functional
determinants:

Γ =
S2
eff

4π2

∣

∣

∣

∣

∣

Det(δ2S̃eff/δφ
2)

Det′(δ2Seff/δφ2)

∣

∣

∣

∣

∣

1/2

exp(−Seff)

for g = 0: determinant has one negative eigenvalue (Coleman 1980)

summation over instantons and anti-instantons:

E1/2 = VT (ρ0 ± Γ)

=⇒ small imaginary correction to eigenenergies

vacuum becomes perturbatively unstable

is this also true for g 6= 0?
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One-loop corrections

effective action for field φ

Seff = SE,φ +
g2

(4π)2

∫

dT

∫

dT ′
∫

dx3
∫

dy3 ×

×
(

φ(|x|, T )φ(|y|, T )
|x− y|2 + |T − T ′|2 − φ(|x|, T ′)φ(|y|, T )

|x+ y|2 + |T − T ′|2
)

choose embedding: φλ = φ̄(|x|/λ, T/λ) and vary action with respect
to λ

effective action is positive and at least one negative eigenvalue

Seff(φ̄) =
1

6

∫

d4x(∂µφ̄)
2 > 0 ,

d2Seff(φλ)

dλ2

∣

∣

∣

∣

λ=1

= −2

∫

d4x(∂µφ̄)
2 < 0
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Conclusions

we determined tunneling rates and tunneling trajectories of vacuum
bubbles for different space-time backgrounds

nucleation rate increases with H and M

no gravity back-reaction was taken into account
(inclusion of Ricci scalar)

decoherence explains quantum-to-classical transition of growing
bubble

reduction of tunneling rate due to dissipation
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