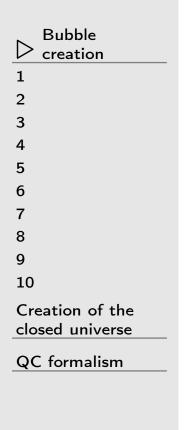
preamble

Quantum cosmology

8 сентября 2010 г.



Bubble creation ▷ 1 2 3 4 5 6 7 8 9 10 Creation of the closed universe QC formalism	Consider spherically-symmetric bubble of true vacuum in a metastable false vacuum. - only radial degree of freedom, - thin wall. Two opposite forces: Energy of vacuum decay in the bubble volume $\sim R^3$ causing expansion, Surface tension $\sim R^2$ causing contraction. The larger bubble is — the faster it grows. Forbidden area: $R < R_0$ when $E_{decay} < E_{surface}$.

8 9

 \triangleright_2

3

5 6 7

10

Creation of the closed universe

QC formalism

The lagrangian can be written as

$$L = -4\pi\sigma R(1 - \dot{R}^2)^{1/2} + \frac{4\pi}{3}\epsilon R^3.$$

 $\dot{D}_{2} = -D^{2} \dot{D} (1 \dot{D}^{2}) - 1/2$

$$p_R = 4\pi\sigma R^2 R (1 - R^2)^{-1/2},$$

and the hamiltonian is

Conjugate momenta to R is

$$\mathcal{H} = [p_R^2 + (4\pi\sigma R^2)^2]^{1/2} - \frac{4\pi}{3}\epsilon R^3$$

Bubble creation
1
2
3
4
5
6
7
8
9
10
Creation of the
closed universe
QC formalism

Energy conserves:

$$\mathcal{H} = \text{const} = 0.$$

$$p_R^2 + U(R) = 0$$

$$U(R) = (4\pi\sigma R^2)^2 (1 - R^2/R_0^2),$$

where
$$R_0 = 3\sigma/\epsilon$$
.

Creation of the

closed universe

QC formalism

2

5

7

8 9 10

3 ▷ 4 The solution will be

$$R(t) = (R_0^2 + t^2)^{1/2}.$$

The worldsheet of the bubble has metrics

$$ds^{2} = (1 - \dot{R}^{2})dt^{2} - R^{2}(t)d\Omega^{2}.$$

On solution it will be a de Sitter 2+1: $ds^2 = d\tau^2 - R^2(\tau)d\Omega^2, \ R = R_0\cosh(\tau/R_0).$

Thus there will be an inflation.

Creation of the closed universe

QC formalism

3

8 9

10

 \triangleright 5

In quantum mechanics one has

$$\hat{H}\psi=0,$$

where ψ is a 'wave function of the universe'. In the hamiltonian the quantum operator is standard:

$$p_R = -i\frac{\partial}{\partial R}.$$

The hamiltonian without square root:

$$[-\partial_R^2 + U(R)]\psi = 0.$$

7 / 37

Creation of the closed universe

QC formalism

The commutator of R and p_R is significant at the turning point $p_R \approx 0$. One can estimate this region as

$$\delta R/R_0 \sim (\sigma R_0^3)^{-2} \ll 1.$$

Next we will work in the WKB approximation. The formulation of the initial conditions:

one for multiplicative constant (not so important)one to distinguish the modes.

1 2 3

5

8 9

10

Creation of the closed universe

QC formalism

 \triangleright_7

Bubble creation

– WKB solution for $R > R_0$ is

$$\psi_{\pm}(R) = [p(R)]^{-1/2} \exp\left(\pm i \int_{R_0}^R p(R') dR' \mp i\pi/4\right),$$

where \boldsymbol{p} is a classical momentum

$$p(R) = [-U(R)]^{1/2}.$$

In the leading order

$$\hat{p}_R \psi_{\pm}(R) \approx \pm p(R) \psi_{\pm}(R).$$

 $\psi_+(R)$ — expanding; $\psi_-(R)$ — contracting.

2 3

1

9

7 28

10

Creation of the closed universe

QC formalism

In the classically forbidden range $R < R_0$:

$$\tilde{\psi}_{\pm}(R) = |p(R)|^{-1/2} \exp\left(\pm \int_{R}^{R_0} |p(R')| dR'\right),$$

Boundary condition is for $\psi(R)$ — outgoing mode. It can be obtained by matching at $R \approx R_0$:

$$\psi(R < R_0) = \tilde{\psi}_+(R) + \frac{i}{2}\tilde{\psi}_-(R).$$

In the forbidden range $R < R_0$ the term $\tilde{\psi}_+$ dominates (except the border $R \approx R_0$).

1

8 |> a

10

Creation of the

closed universe

QC formalism

Tunneling probability

$$\left|\frac{\psi(R_0)}{\psi(0)}\right|^2 \sim \exp\left(-2\int_0^{R_0} |p(R)|dR\right)$$

So the probability of the bubble creation is proportional to

$$\exp(-\pi^2 \sigma R_0^3/2).$$

The bubble may be not exactly spherical. In perturbative approach one obtains scalar field living on a bubble worldsheet.

2 3 4

8

1

 \triangleright_{10}

Creation of the closed universe

QC formalism

In nonperturbative approach one has to deal with parametrization of bubble worldsheet by $x^{\mu}(\xi^{a})$, a = 0..2. Then

$$\psi = \int [dx^{\mu}] e^{iS}.$$

The conditions are: Integration over compact worldsheets, No bubble at $x^0 = 0$, Boundary at $x^0 = T$ is given, $0 < x^0(\xi) < T$. For a bubble worldsheet observer ξ^0 is 'time' and x^0 is just one of scalar fields. So he expects the conditions by ξ^0 , not x^0 .

Bubble creation		
Creation of the Closed universe		
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
QC formalism		

Creation of the closed universe

Bubble creation Creation of the closed universe

 \triangleright_1

2 3

5

6 7 8

9 10 11

QC formalism

Consider homogeneous isotropic closed universe described by the simple action

$$S = \int d^4x \sqrt{-g} \left(\frac{R}{16\pi G} - \rho_v\right),$$

where ρ_v is a constant vacuum energy, with the metrics

$$ds^{2} = \sigma^{2} [N^{2}(t)dt^{2} - a^{2}(t)d\Omega_{3}^{2}].$$

 $\sigma^2 = 2G/(3\pi)$ is a normalizing factor.

Creation of the closed universe

1

6 7 8

9

10

11

QC formalism

The lagrangian is

$$L = \frac{N}{2} \left(a (1 - \dot{a}^2 / N^2) - \Lambda a^3 \right),$$

where $\Lambda = (4G/3)^2 \rho_v$. One can find the momentum $p_a = -a \dot{a}/N.$ Then

$$L = p_a \dot{a} - N\mathcal{H},$$

where the hamiltonian is

$$\mathcal{H} = -\frac{1}{2} \left(\frac{p_a^2}{a^2} + a - \Lambda a^3 \right).$$

Variation w.r.t. N gives the constraint $\mathcal{H}=0$ In the gauge N=1 one has the equation of motion

$$\dot{a}^2 + 1 - \Lambda a^2 = 0.$$

The solution to it will be

$$a(t) = H^{-1}cosh(Ht),$$

where $H = \Lambda^{1/2}$.

Bubble creation Creation of the closed universe 1 2 3 > 4 5 6 7 8 9 10 11

QC formalism

Quantization implies the replacing

$$\partial_a \to -i \frac{\partial}{\partial a}$$

and imposing Wheeler-De Witt equation

$$\left(\frac{d^2}{da^2} + \frac{\gamma}{a}\frac{d}{da} - U(a)\right)\psi(a) = 0,$$

with the potential term

$$U(a) = a^2(1 - \Lambda a^2).$$

Bubble creation Creation of the closed universe

 \triangleright_{5}

7 8 9

10

11

QC formalism

 γ -term describes the non-commutation of \hat{a} and \hat{p}_a . If we ignore it, the equation describe the particle with zero energy in the potential U. Classically allowed region is $a \ge H^{-1}$. WKB:

$$\psi_{\pm}(a) = [p(a)]^{-1/2} \exp\left(\pm i \int_{H^{-1}}^{a} p(a') da' \pm i\pi/4\right),$$

where again $p(a) = [-U(a)]^{1/2}$. The under-barrier solution for $a < H^{-1}$:

$$\tilde{\psi}_{\pm}(a) = |p(a)|^{-1/2} \exp\left(\pm \int_{a}^{H^{-1}} |p(a')| da'\right).$$

Bubble creation Creation of the closed universe 1 2 3 4 5 ▷ 6 7 8 9 10 11

QC formalism

One can find outgoing mode from the relation

$$\hat{p}_a \psi_{\pm}(a) \approx \pm p(a)) \psi_{\pm}(a).$$

Now ψ_{-} is the expanding mode since $p_{a} < 0$ when $\dot{a} > 0$. (In the gauge N = 1). We assume that the universe expanded from very small size to very large:

$$\psi(a > H^{-1}) = \psi_-(a).$$

That is no contraction.

QC formalism

To connect under-barrier solution with the outgoing mode we obtain

$$\psi(a < H^{-1}) = \tilde{\psi}_+(a) - \frac{i}{2}\tilde{\psi}_-(a).$$

This allows us to calculate the tunneling probability:

$$\left|\frac{\psi(H^{-1})}{\psi(0)}\right|^2 \sim \exp\left(-2\int_0^{H^{-1}}|p(a)|da\right) =$$
$$= \exp\left(-\frac{3}{8G^2\rho_v}\right).$$

Creation of the closed universe

1 2 3

10 11

QC formalism

From vacuum energy ρ_v to inflation with $V(\phi)$:

$$\left(\frac{\partial^2}{\partial a^2} - \frac{1}{a^2}\frac{\partial^2}{\partial \phi^2} - U(a,\phi)\right)\psi(a,\phi) = 0.$$

The effective potential term:

$$U(a) = a^2(1 - a^2V(\phi)).$$

The probability of tunneling will be of the order

$$P(\phi) \propto \exp\left(-\frac{3}{8G^2V(\phi)}\right).$$

Bubble creation Creation of the closed universe

10 11 Universe with vacuum energy and radiation:

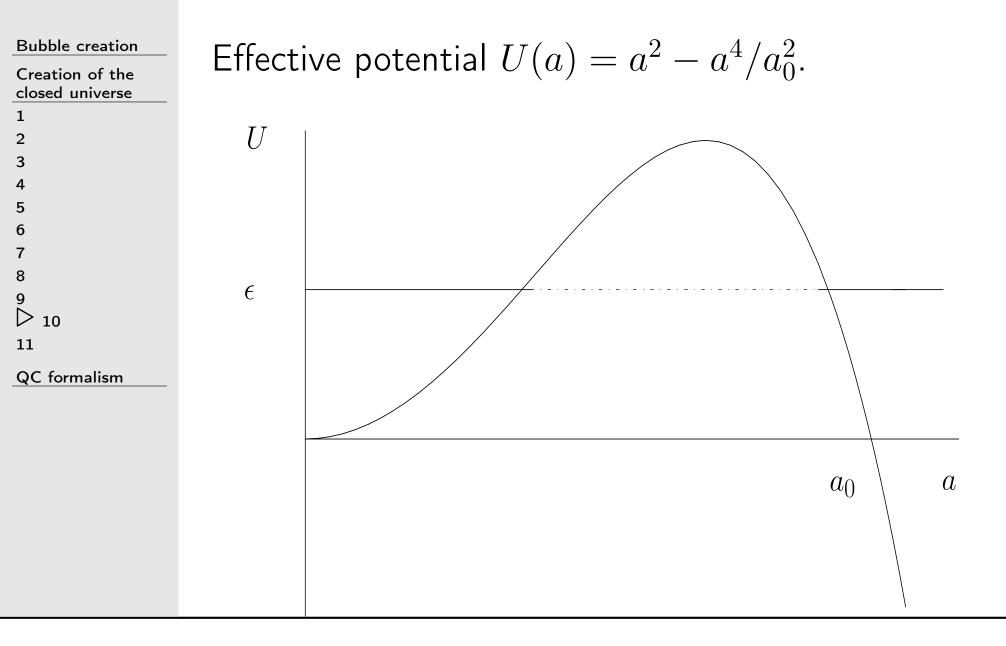
$$\rho = \rho_v + \epsilon/a^4.$$

The evolution equation will be

$$p^2 + a^2 - a^4/a_0^2 = \epsilon$$

QC formalism

with
$$a_0 = (3/4)\rho_v^{-1/2}$$
,
(units $G = 1$, gauge $N = 1$).



Creation of the closed universe 1

2 3

5 6 7

8 9

 $\stackrel{10}{\triangleright}_{11}$

Tunneling probability

$$P \sim \exp\left(-2\int_{a_1}^{a_2} |p(a)|da\right).$$

One can consider limit $\epsilon \to 0$: from 'nothing' to a_0

 $P \sim \exp\left(-2\int_0^{a_0} |p(a)|da\right) = \exp\left(-\frac{3}{8\rho_v}\right).$

QC formalism

Bubble creation Creation of the closed universe ▶ QC formalism 1 2 3 4 5 6 7 8 9 10 11 12	QC formalism

Bubble creation Creation of the closed universe

QC formalism

12

Establishing of the QC 1950s: ADM formalism (hamiltonian approach to GR) 1960s: Wheeler-De Witt equation (ψ , Einstein-Schrodinger equation) 1970-1980s: Boundary conditions (creation from 'nothing')

Expectations from QC: Initial conditions of the universe Original density fluctuations

Creation of the closed universe

QC formalism

 $\stackrel{1}{\triangleright}_{2}$

3

5

6 7

8 9

10 11 12

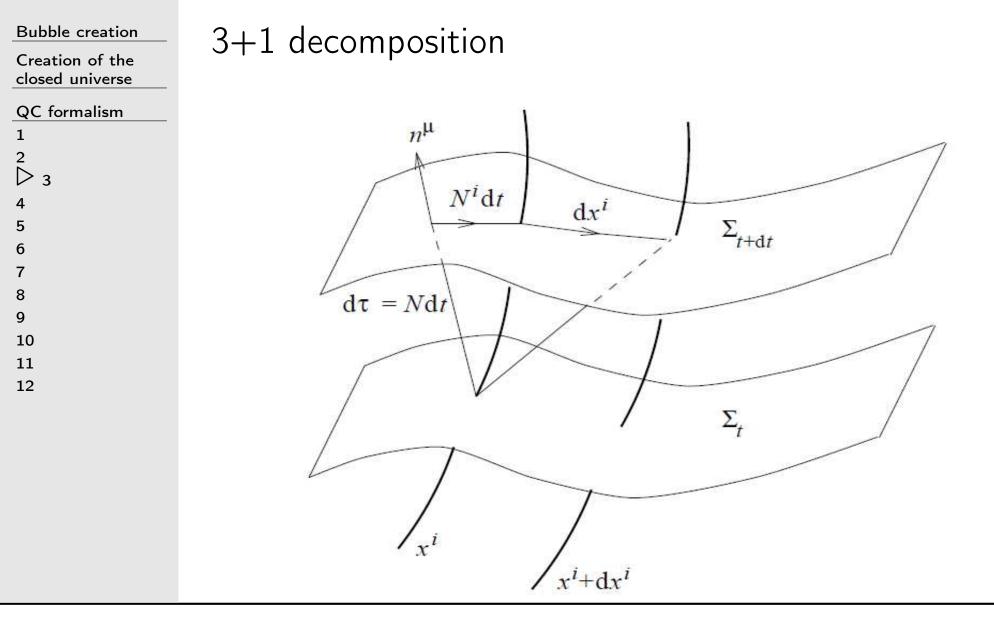
Spacetime
$$\mathcal{M}$$
 to slices Σ_t :

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = -\omega^{0}\otimes\omega^{0} + h_{ij}\omega^{i}\otimes\omega^{i},$$

where $\omega^0 = Ndt$ and $N(t, x^k)$ is a lapse function; $\omega^i = dx^i + N^i dt$ and $N^i(t, x^k)$ is shift vector; $h_{ij}(t, x^k)$ — intrinsic metric of Σ_t . In components:

$$g_{\mu\nu} = \begin{pmatrix} -N^2 + N_k N^k & N_i \\ N_i & h_{ij} \end{pmatrix}$$

with $N_k = h_{kj} N^j$.



Creation of the closed universe

QC formalism

1 2

3 ▷ 4

5

6 7

8 9

10 11

12

Extrinsic curvature

$$K_{ij} \equiv n_{i;j} = \frac{1}{2} \left(N_{i|j} + N_{j|i} - \frac{\partial h_i j}{\partial t} \right)$$

where ';' and ']' are covariant derivatives w.r.t. g and h.

One can arrive to the action of decomposed GR with $\Lambda:$

$$\frac{1}{4\kappa^2} \int dt d^3x N \sqrt{h} (K_{ij} K^{ij} - K^2 + R^{(3)} - 2\Lambda).$$

Creation of the closed universe

QC formalism

▷ 5

Canonical momenta will be

$$\pi^{ij} \equiv \frac{\delta L}{\delta \dot{h}_{ij}} = -\frac{\sqrt{h}}{4\kappa^2} \left(K^{ij} - h^{ij} K \right),$$
$$\pi^0 \equiv \frac{\delta L}{\delta \dot{N}} = 0, \ \pi^i \equiv \frac{\delta L}{\delta \dot{N}_i} = 0$$

One can add matter lagrangian $[-(\partial_{\mu}\phi)^2 - V(\phi)]\sqrt{-g}$ and decompose it.

$$\pi_{\phi} \equiv \frac{\delta L}{\delta \dot{\phi}} = \frac{\sqrt{h}}{N} (\dot{\phi} - N^{i} \phi_{,i}).$$

Bubble creation Creation of the

closed universe

QC formalism

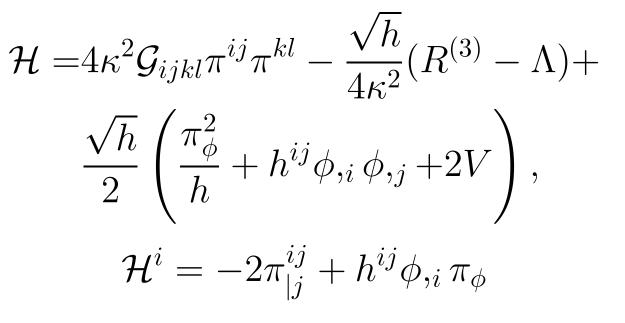
1 2 3

 $\stackrel{5}{\triangleright}_{6}$

7 8 9

10 11 12 One can obtain the hamiltonian

 $H = \int d^3x (\pi^0 \dot{N} + \pi^i \dot{N}_i + N\mathcal{H} + N_i \mathcal{H}^i),$



Creation of the closed universe

QC formalism

Wheeler-De Witt metric:

$$\mathcal{G}_{ijkl} = \frac{1}{2\sqrt{h}} (h_{ik}h_{jl} + h_{il}h_{jk} - h_{ij}h_{kl}).$$

On the equations of motion

$$\mathcal{H}=0, \ \mathcal{H}^i=0$$

(dynamical constraints).

Creation of the closed universe

QC formalism

⊳ 8

Quantization

$$\pi^{ij} \to -i\frac{\delta}{\delta h_{ij}}, \ \pi^i \to -i\frac{\delta}{\delta N_i},$$
$$\pi^0 \to -i\frac{\delta}{\delta N}, \ \pi_\phi \to -i\frac{\delta}{\delta \phi}.$$

vanishing momenta implies

$$\hat{\pi}^0 \psi = 0 = -i \frac{\partial \psi}{\partial N}, \ \hat{\pi}^i \psi = 0 = -i \frac{\partial \psi}{\partial N_i}.$$

Creation of the closed universe

QC formalism

1 2 3

5 6 7

8 ▷ 9

10

11 12 of ψ on Σ . Wheeler-De Witt equation $\hat{\mathcal{H}}\psi = 0$: $\left[-4\kappa^2 \mathcal{G}_{ijkl} \frac{\partial^2}{\partial h_{ij}\partial h_{kl}} + \frac{\sqrt{h}}{4\kappa^2} (2\Lambda - R^{(3)} + 4\kappa^2 \hat{T}_{\phi})\right]\psi = 0,$

Constraint $\hat{\mathcal{H}}^i \psi = 0$ reveals coordinate invariance

where

$$\hat{T}_{\phi} = -\frac{1}{2h} \frac{\partial^2}{\partial \phi^2} + h^{ij} \phi_{,i} \phi_{,j} + V(\phi).$$

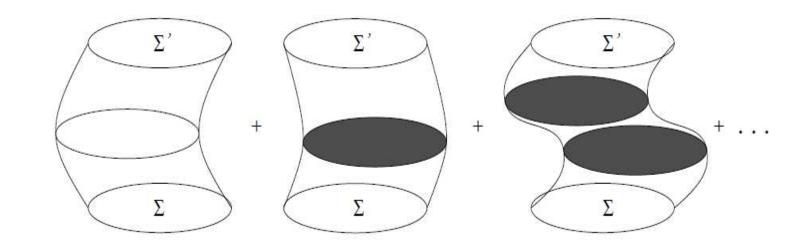
Creation of the closed universe

QC formalism

Ď 10

 Path integral approach:

 $< h'_{ij}, \phi', \Sigma' | h_{ij}\phi, \Sigma > = \int [d\phi] [dg] e^{iS(g,\phi)}.$



Creation of the closed universe

QC formalism

 $\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8 \\
9 \\
10 \\
11 \\
12
\end{array}$

Wave-function of the universe creation:

$$\psi = \int^{h,\phi} [d\phi] [dg] e^{-S_E(g,\phi)}$$

('No-boundary' boundary condition);

$$\psi = \int_{\emptyset}^{h,\phi} [d\phi] [dg] e^{iS(g,\phi)}$$

('Tunneling' boundary condition).