preamble

Black holes in modern gravity theories

7 сентября 2010 г.
D Intro
History of 'Black
holes'
Experimental
evidence
BH
thermodynamics
BH
thermodynamics
Information
paradox
Fuzzball paradigm
String-Black hole correspondence
Not a Black hole

Intro

History of 'Black holes'

Intro
History of 'Black holes' Experimental evidence
BH
thermodynamics BH
thermodynamics Information paradox

Fuzzball paradigm
String-Black hole correspondence

Not a Black hole

1. Black body

1783 - Light can't escape Big object with normal density.
2. Some strange solution in GR

1915-1933 - Schwarzschild surface.
3. Black hole

1958-1974 - The term 'Black hole', new solutions (rotating, charged), black hole mechanics.
4. Nowadays

Resolving paradoxes (thermodynamical interpretation, information paradox, initial singularity...)

Experimental evidence

Intro

History of 'Black holes'

Experimental evidence
BH
thermodynamics
BH
thermodynamics Information paradox

Fuzzball paradigm
String-Black hole correspondence

Not a Black hole

1. Middle-size BH

Matter accretion, Binary systems.
Several candidates.
2. Small BH

Hawking radiation. Evaporation of primordial BHs.
Yet no results.
3. Large BH

Stellar orbits near the center of our galaxy. Large dark object is found.

BH thermodynamics

Intro

History of 'Black holes'
Experimental evidence

BH
D thermodynamics
BH
thermodynamics Information paradox

Fuzzball paradigm
String-Black hole correspondence

Not a Black hole

0 - Surface gravity is constant on the event horizon (temperature).
1 - Dynamics:

$$
\delta M=\frac{\kappa_{S}}{8 \pi} \delta A+\omega \delta J+\phi \delta q,
$$

2 - Evolution: Area of event horizon can't decrease (entropy).
3 - Surface gravity can't reach zero
Yet it is always zero for extremal BHs.
(temperature)

BH thermodynamics

Intro
History of 'Black holes'
Experimental evidence
BH
thermodynamics
BH
thermodynamics
Information
paradox
Fuzzball paradigm
String-Black hole correspondence

Not a Black hole

Entropy-area correspondence

$$
\mathcal{S}=A /(4 \pi) .
$$

In case of radiation:
Area+Radiation entropy can't decrease.
Surface gravity-temperature correspondence

$$
\theta=\kappa_{S} /(2 \pi) .
$$

Thermodynamical systems have statistical interpretation.
What is the statistical entropy of the event horizon?

Information paradox

Intro

History of 'Black holes'
Experimental evidence
BH
thermodynamics
BH
thermodynamics
Information paradox

Fuzzball paradigm
String-Black hole correspondence

Not a Black hole

During accretion:

Distant observer: M, J, Q coincide Information is lost (Whatever1-Whatever2)

Intro

Fuzzball paradigm
History
Fuzzball
Advantages
Open questions
String-Black hole correspondence

Not a Black hole

Fuzzball paradigm

History

D History Fuzzball
Advantages
Open questions
String-Black hole correspondence

Not a Black hole

1931 - Chandrasekhar: plasma collapses to BH.
Others: something should stop the collapse.
White dwarf collapses to a neutron star.
1939 - Oppenheimer: neutron star collapses to BH.
Can something else stop the collapse?
2002 - Mathur, Lunin: collapse stops exactly at the event horizon.
Stringy fuzzball.

Fuzzball

Intro

Fuzzball paradigm
History
D Fuzzball
Advantages
Open questions
String-Black hole correspondence

Not a Black hole

Black hole

Fuzzball

$\mathrm{M}, \mathrm{J}, \mathrm{Q}$ and 'no hair'

Quantum 'hair'

Advantages

Intro
Fuzzball paradigm
History
Fuzzball
D Advantages
Open questions
String-Black hole correspondence

Solves information paradox, solves singularity paradox.
Small density of large BHs:

$$
R_{S c h} \sim M, V \sim R_{S c h}^{3}, \rho=M / V \sim R_{S c h}^{-2} .
$$

Supermassive BHs have density of water or air! During matter accretion strings recombine into very looooong strings. Their tension (and density) decreases exactly as for classical BHs!

Open questions

Intro
Fuzzball paradigm History
Fuzzball
Advantages
D Open questions
String-Black hole correspondence

Not a Black hole

Collapse into BH happens at the scale

$$
t_{\text {cross }}=R_{S c h} / c .
$$

Formation of the fuzzball happens at the scale

$$
t_{\text {evap }}=t_{\text {cross }}\left(M / m_{p l}\right)^{2} \gg t_{\text {cross }} .
$$

How can they do it?

```
Intro
Fuzzball paradigm
    String-Black
    hole
    correspondence
BH evaporation
String action
Classical action
Classical solution
Semi-classical
action
Hair
Different
corrections
Decouple Maxwell
field
Find symmetries
Formulate ICs
Find asymptotics
Find entropy
Obtain results
Not a Black hole
```


String-Black hole correspondence

BH evaporation

Intro

Fuzzball paradigm
String-Black hole correspondence
D BH evaporation

String action

Classical action
Classical solution
Semi-classical
action
Hair
Different

corrections

Decouple Maxwell field
Find symmetries

Formulate ICs

Find asymptotics
Find entropy
Obtain results
Not a Black hole

Beautiful coincidences

Resolves 'singularity evaporation'.
Stores information in the stringy state.

String action

Intro
Fuzzball paradigm
String-Black hole correspondence
BH evaporation
D String action
Classical action Classical solution Semi-classical action
Hair
Different
corrections
Decouple Maxwell field
Find symmetries
Formulate ICs
Find asymptotics
Find entropy
Obtain results
Not a Black hole

Effective bosonic action for the heterotic string:

$$
\frac{1}{16 \pi G^{(10)}} \int d^{10} x \sqrt{-g^{(10)}} e^{-2 \Phi}\left(R+4(\partial \Phi)^{2}-\frac{\mathbb{H}^{2}}{12}\right),
$$

where $\mathbb{H}=d \mathbb{B}$ is a field strength of the NS 2-form gauge potential \mathbb{B}. The ansatz for the compactification on $S^{1} \times T^{5}$ reads:

$$
\begin{aligned}
d s_{10}^{2} & =d s^{2}+e^{2 \lambda}\left(d x^{4}+A_{\mu} d x^{\mu}\right)+e^{2 \nu} d \ell^{2}\left(T^{5}\right), \\
2 \Phi & =2 \phi+\lambda+5 \nu, \quad \mathbb{B}=B_{\mu} d x^{\mu} \wedge d x^{4} .
\end{aligned}
$$

Classical action

Intro

Fuzzball paradigm
String-Black hole correspondence
BH evaporation
String action
D Classical action
Classical solution
Semi-classical
action
Hair
Different
corrections
Decouple Maxwell field
Find symmetries
Formulate ICs
Find asymptotics
Find entropy
Obtain results
Not a Black hole

Dilatonic black hole can be described by the action

$$
\mathcal{S}=\frac{1}{16 \pi G} \int\left(R+S^{-2}(\partial S)^{2}-S^{2} F^{2}\right) d^{4} x \sqrt{-g}
$$

with the dilatonic exponent $S=e^{-2 \phi}$ from the string theory and with the metrics

$$
d s^{2}=w d t^{2}-w^{-1} d r+\rho^{2} d \Omega^{2}
$$

Classical solution

Intro
Fuzzball paradigm
String-Black hole correspondence
BH evaporation
String action Classical action

Classical
solution
Semi-classical
action
Hair
Different
corrections
Decouple Maxwell field
Find symmetries Formulate ICs
Find asymptotics
Find entropy
Obtain results
Not a Black hole

The well-known Gibbons-Maeda solution can be written as

$$
\begin{gathered}
\rho=\sqrt{r^{2}-D^{2}}, S=\frac{Q(r+D)}{P(r-D)} \\
w=\frac{(r-M)^{2}-\left(M^{2}+D^{2}-Q^{2}-P^{2}\right)}{\rho^{2}}
\end{gathered}
$$

It has two horizons and singular dilaton.
Extremal limit: $S=Q / P \Rightarrow$ constant dilaton and Reissner-Nordström solution. Non-extremal BH: diverging dilaton (no-hair theorem).

Semi-classical action

Intro
Fuzzball paradigm
String-Black hole correspondence
BH evaporation
String action
Classical action
Classical solution
Semi-classical action

Hair
Different
corrections
Decouple Maxwell field
Find symmetries Formulate ICs
Find asymptotics
Find entropy
Obtain results
Not a Black hole

Four-dimensional action with stringy corrections:

$$
\mathcal{L} \sim S\left(R+S^{-2}(\partial S)^{2}-F^{2}\right) \sqrt{-g}+\Delta \mathcal{L} \sqrt{-g}
$$

where the correction term is second-order by curvature:

$$
\Delta \mathcal{L}=\frac{\alpha}{16 \pi} \psi(S) L_{G B}
$$

where

$$
L_{G B}=R^{2}-4 R_{\mu \nu} R^{\mu \nu}+R_{\alpha \beta \mu \nu} R^{\alpha \beta \mu \nu} .
$$

Hair

Intro

Fuzzball paradigm
String-Black hole correspondence
BH evaporation
String action
Classical action
Classical solution Semi-classical action
D Hair
Different corrections
Decouple Maxwell
field
Find symmetries
Formulate ICs
Find asymptotics
Find entropy
Obtain results
Not a Black hole

In the extremal limit the dilaton is not diverging and not vanishes: dilatonic hair.

BH in higher curvature gravity

Just hair

Different corrections

Intro

Fuzzball paradigm
String-Black hole correspondence
BH evaporation
String action
Classical action
Classical solution
Semi-classical
action
Hair
Different
corrections
Decouple Maxwell field
Find symmetries
Formulate ICs
Find asymptotics
Find entropy
Obtain results
Not a Black hole

What is the correction function $\psi(S)$ here?

\square From the S-duality symmetry:

$$
\psi(S)=-\frac{3}{\pi} \ln \left(2 S|\eta(i S)|^{4}\right)
$$

with the Dedekind η-function:

$$
\eta(\tau) \equiv e^{2 \pi i \tau / 24} \prod_{n=1}^{\infty}\left(1-e^{2 \pi i n \tau}\right)
$$

\square Simple choice $\psi(S)=S$.

Decouple Maxwell field

Intro
Fuzzball paradigm
String-Black hole correspondence
BH evaporation
String action
Classical action
Classical solution Semi-classical action
Hair
Different
corrections
Decouple
Maxwell field
Find symmetries
Formulate ICs
Find asymptotics
Find entropy
Obtain results
Not a Black hole

The Maxwell field is given by

$$
A=-f(r) d t-m \cos \theta d \varphi
$$

with the only function f easily obtained from the equations of motion:

$$
f^{\prime}=\frac{g}{\rho^{2} S} .
$$

Here g and m are charges 'on horizon' and the real value of the electric charge depends on the dilatonic asymptotic.

Find symmetries

Intro

Fuzzball paradigm
String-Black hole correspondence
BH evaporation
String action
Classical action
Classical solution Semi-classical
action
Hair
Different
corrections
Decouple Maxwell
field
Find
symmetries
Formulate ICs
Find asymptotics
Find entropy
Obtain results
Not a Black hole

The shift of the dilaton (only the EMD part)

$$
\begin{aligned}
S \rightarrow \beta S \quad w & \rightarrow \beta^{4} w, \quad \rho \rightarrow \frac{\rho}{\beta}, \quad r \rightarrow \beta r \\
g & \rightarrow g, \quad m \rightarrow \frac{m}{\beta}
\end{aligned}
$$

The charge rescaling

$$
g \rightarrow \gamma g, \quad m \rightarrow \gamma m, \quad w \rightarrow \frac{w}{\gamma^{2}}
$$

$$
\rho \rightarrow \gamma \rho, \quad \alpha \rightarrow \gamma^{2} \alpha .
$$

Formulate ICs

Intro
Fuzzball paradigm
String-Black hole correspondence
BH evaporation
String action
Classical action
Classical solution
Semi-classical
action
Hair
Different
corrections
Decouple Maxwell
field
Find symmetries
D Formulate ICs
Find asymptotics
Find entropy
Obtain results
Not a Black hole

Looking for the extremal black hole solutions:

$$
w\left(r_{0}\right)=w^{\prime}\left(r_{0}\right)=0, \quad \rho\left(r_{0}\right)=\rho_{0}>0
$$

the asymptotic of the metrics must be of the flat space

$$
w(r)=\text { const }, \quad \rho^{\prime}(r)=\text { const } \quad \text { as } \quad r \rightarrow \infty .
$$

Non-singular series expansion on horizon:

$$
w=\sum_{n=2}^{\infty} w_{n} x^{n}, \rho=\sum_{n=0}^{\infty} \rho_{n} x^{n}, S=\sum_{n=0}^{\infty} S_{n} x^{n} .
$$

Find asymptotics

Intro
Fuzzball paradigm
String-Black hole correspondence
BH evaporation
String action
Classical action
Classical solution Semi-classical
action
Hair
Different
corrections
Decouple Maxwell
field
Find symmetries
Formulate ICs Find
D asymptotics
Find entropy
Obtain results
Not a Black hole

The $A d S_{2} \times S^{2}$ metrics on horizon:

$$
d s_{H}^{2}=-w_{2} x^{2} d t^{2}+\frac{d x^{2}}{w_{2} x^{2}}+w_{2}^{2} d \Omega_{2}^{2}
$$

The flat asymptotic (Einstein frame):

$$
\begin{gathered}
w_{E}=1-\frac{2 M}{\hat{r}}+O\left(\hat{r}^{-2}\right), \\
S=S_{\infty}+\frac{2 S_{\infty} D}{\hat{r}}+O\left(\hat{r}^{-2}\right) .
\end{gathered}
$$

Find entropy

Intro
Fuzzball paradigm
String-Black hole correspondence
BH evaporation
String action
Classical action
Classical solution Semi-classical action
Hair
Different
corrections
Decouple Maxwell field
Find symmetries Formulate ICs
Find asymptotics
D Find entropy Obtain results

Not a Black hole

For the metrics exactly of $A d S_{2} \times S^{2}$ type write the Sen's 'entropy function':

$$
f\left(g, m, S_{0}\right) \equiv \int d \theta d \varphi \sqrt{-g} \mathcal{L} .
$$

The next step is a Legendre transformation of $f\left(g, m, S_{0}\right)$ to $F\left(\partial_{g} f, \partial_{m} f, \partial_{S} f\right)$.
Entropy is the extremal value of F :

$$
\mathrm{S}=\pi \rho_{E}^{2}+4 \pi \alpha S_{0}
$$

Obtain results

Intro

Fuzzball paradigm
String-Black hole correspondence
BH evaporation
String action
Classical action
Classical solution Semi-classical action
Hair
Different
corrections
Decouple Maxwell
field
Find symmetries Formulate ICs
Find asymptotics
Find entropy
D Obtain results
Not a Black hole

Growing string corrections produce the BH , or Evaporating BH will produce free string.

Intro

Fuzzball paradigm
String-Black hole correspondence

Not a Black hole
Motivation
GB Cusp
Different
corrections
What is the
difference?
History
Formulate ICs
Various cusps

Not a Black hole

Motivation

Intro
Fuzzball paradigm
String-Black hole correspondence

Not a Black hole
D Motivation
GB Cusp
Different
corrections
What is the difference?
History
Formulate ICs
Various cusps
'Naked' singularities are unpopular - at least shielded by horizon. Appears for classical BHs:

$$
Q^{2}+(J / M)^{2} \leq M^{2} .
$$

Modifications of the EH theory are popular. But what is a corrected gravity?
\square Corrected gravity $=$ First order of corrections
\square Singular solutions $=>$ Smoothed by 'full theory' (quantum gravity, string theory).

GB Cusp

Intro
Fuzzball paradigm
String-Black hole correspondence

Not a Black hole
Motivation
D GB Cusp
Different corrections What is the difference?
History
Formulate ICs
Various cusps

Gauss-Bonnet gravity in 4D:
$(\mathrm{EH}$ action $)+(\mathrm{GB}$ term $) *$ dilaton
Why GB-corrections?
\square Simple R^{2} correction
\square Comes from the string theory
Cusp is:
\square Finite non-vanishing metric components
\square Diverging second derivatives of metrics

Different corrections

Intro

Fuzzball paradigm
String-Black hole correspondence

Not a Black hole Motivation
GB Cusp
Different
corrections
What is the difference?
History
Formulate ICs
Various cusps

Simple R^{2} correction (EDGB):

$$
\mathcal{L}^{(E)}=\left(R-\frac{\left(\partial_{\mu} \ln S\right)^{2}}{2 a^{2}}+\alpha S \mathcal{R}_{G B}^{2}\right) \sqrt{-g} .
$$

String-theory variant (SEDGB):

$$
\mathcal{L}^{(s t r)}=\left(R+\left(\partial_{\mu} \ln S\right)^{2}+\alpha \mathcal{R}_{G B}^{2}\right) S \sqrt{-g} .
$$

Dilaton comes as $S=e^{2 a \phi}, a=1$ in string action.

What is the difference?

Intro

Fuzzball paradigm
String-Black hole correspondence

Not a Black hole Motivation
GB Cusp
Different
corrections
What is the
difference?
History
Formulate ICs
Various cusps

From SEDGB to EDGB (with $a=1$): conformal transformation

$$
g_{\mu \nu}^{(s t r)}=S^{-1} g_{\mu \nu}^{(E)}
$$

leads to

$$
\Delta \mathcal{S}_{G B}^{(E)}=\frac{1}{16 \pi} \int \sum_{n=2}^{4} \Lambda_{n}(\ln S)^{\prime n} \cdot \sqrt{-g} d^{4} x
$$

When $\mathcal{R}_{G B}^{2}$-correction is not small, $\Delta \mathcal{S}_{G B}$ is not small too!

History

Intro
Fuzzball paradigm
String-Black hole correspondence

Not a Black hole
Motivation
GB Cusp
Different corrections What is the difference?
D History
Formulate ICs
Various cusps

EH system without GB-correction:
\square Schwarzschild BH with constant dilaton.
EDGB system: P. Kanti et al, S.O. Alexeyev and M.V. Pomazanov
$\square \mathrm{BH}$-solution with inner $x^{1 / 2}$ singularity

$$
\left(x=\left|r-r_{s}\right|\right) ;
$$

\square Naked $x^{1 / 2}$ singularity.
SEDGB system: K. Maeda et al.

Formulate ICs

Intro

Fuzzball paradigm
String-Black hole correspondence

Not a Black hole Motivation
GB Cusp
Different corrections What is the difference?
History
D Formulate ICs Various cusps

For spherically symmetric metrics

$$
d s^{2}=-w(r) \sigma(r)^{2} d t^{2}+\frac{d r^{2}}{w(r)}+\rho(r)^{2} d \Omega_{2}^{2}
$$

in the gauge $\sigma=1$ the cusp ansatz will be

$$
\begin{gathered}
w=\sum_{n=0}^{\infty} w_{n / z} x^{n / z}, \rho=\sum_{n=0}^{\infty} \rho_{n / z} x^{n / z}, \\
S=\sum_{n=0}^{\infty} p_{n / z} x^{n / z} .
\end{gathered}
$$

Various cusps

```
Intro
Fuzzball paradigm
String-Black hole
correspondence
Not a Black hole
Motivation
GB Cusp
Different
corrections
What is the
difference?
History
Formulate ICs
Various cusps
\(x^{1 / 2}\) case:
\(\square\) From cusp to Minkowski asymptotic;
\(\square\) From cusp at \(x_{1}\) to cusp at \(x_{2}\).
\(x^{1 / 3}\) case:
\(\square\) From cusp at \(x_{1}\) to cusp at \(x_{2}\). Minkowski transition area \(w \sim\) const, \(\rho \sim x, S \sim x\).
```

