ALPHA **Collaboration**

Non-perturbative renormalization of the axial current in $N_{\rm f} = 3$ lattice QCD with Wilson fermions and tree-level improved gauge action

J. Bulava, M. Della Morte, J. Heitger, C. Wittemeier

Motivation

Axial current

 $A^a_\mu(x) = \bar{\psi}(x) \frac{1}{2} \tau^a \gamma_\mu \gamma_5 \psi(x)$

Applications

• PCAC masses

• decay constants $F_{\rm PS}$ (in particular for scale setting with $f_{\rm K}$) • matching of HQET currents (our next project)

• . . .

Improvement: **Renormalization:**

 $(A_{\rm I})^a_{\mu}(x) = A^a_{\mu}(x) + a c_{\rm A} \cdot \tilde{\partial}_{\mu} P^a(x)$ $(A_{\mathrm{R}})^{a}_{\mu}(x) = \mathbb{Z}_{\mathrm{A}} \cdot (1 + b_{\mathrm{A}} a m_{\mathrm{q}}) \cdot (A_{\mathrm{I}})^{a}_{\mu}(x)$

• improvement coefficient c_A determined in a previous project (see below) • renormalization coefficient Z_A is leading term, sensitive to errors • Goal: non-perturbative determination of Z_A

Correlators

basic Ward identity (1) in terms of renormalized and improved Schrödinger-functional correlation functions:

$$Z_{\rm A}^2 \cdot \left[F_{\rm AA}^{\rm I}(x_0, y_0) - 2m \cdot \tilde{F}_{\rm PA}^{\rm I}(x_0, y_0) \right] = F_1$$

$$Z_{\rm A}(x_0^2) = \lim_{x \to \infty} \left[F_{\rm PA}^{\rm I}(x_0, y_0) - 2m \cdot \tilde{F}_{\rm PA}^{\rm I}(x_0, y_0) \right]^2$$

$$\Rightarrow \qquad Z_{\rm A}(g_0^2) = \lim_{m \to 0} \sqrt{F_1} \left[F_{\rm AA}^{\rm I}(x_0, y_0) - 2m \cdot \tilde{F}_{\rm PA}^{\rm I}(x_0, y_0) \right]^{-1/2}$$

general form of correlators involved:

$$f_{XY}(x_0, y_0) = -\frac{a^6}{6L^6} \sum_{\mathbf{x}, \mathbf{y}} \varepsilon^{abc} \varepsilon^{cde} \left\langle O'^d \cdot X^a \cdot Y^b \cdot O^e \right\rangle$$

with insertions X, Y of

$$\partial_0 P^a(x_0),$$

Previous Project: Determination of c_A

- improvement condition based on PCAC mass
- PCAC mass is evaluated with two different external operators and $c_{\rm A}$ is adjusted so that the results are equal
- external operators have wave functions corresponding to $\eta^{(0)}$ and $\eta^{(1)}$ (approximate ground and first excited state, see section "Wave Functions") • to be published, see [1]

preliminary -0.03-0.04-0.05• full analysis -0.06 \circ analysis in $Q_{top}=0$ sector 1.6 1.71.8

Renormalization Condition for Z_A

• taken from $N_{\rm f} = 2$ case[2, 3]

• renormalization condition based on continuum chiral Ward identity, similar to PCAC • insertions of two axial currents A_0 and external sources O_{ext}

$$\int d^{3}\mathbf{x} d^{3}\mathbf{y} \,\epsilon^{abc} \left\langle A_{0}^{a}(x) \,A_{0}^{b}(y) \,O_{\text{ext}}^{c} \right\rangle$$
$$-2m \int d^{3}\mathbf{x} d^{3}\mathbf{y} \,\epsilon^{abc} \int_{y_{0}}^{x_{0}} dx_{0}^{\prime} \left\langle P^{a}(x_{0}^{\prime},\mathbf{x}) \,A_{0}^{b}(y) \,O_{\text{ext}}^{c} \right\rangle$$
$$= i \int d^{3}\mathbf{y} \left\langle V_{0}^{c}(y) \,O_{\text{ext}}^{c} \right\rangle$$
(1)

• RHS due to variation of second A_0 insertion

$(\partial_0 P^a \text{ needed for improving } A^a_0)$

 $A_0^a(x_0),$

Connected and Disconnected Contributions:

• standard choice: $x_0 = 2/3 \cdot T$ and $y_0 = 1/3 \cdot T$ • implemented in SFCF code and checked against old results • alternative definition $Z_{A,con}$ with connected contributions only

Simulation Parameters and Preliminary Results

, re-use of configurations from $c_{ m A}$ determination (generated with openQCD code[4])										
$N_{ m f}=3$ and tree-level-improved (Lüscher–Weisz) action										
heta=0, vanishing ba	ckground field									
β tuned to keep L constant ($pprox 1.2{ m fm}$)										
κ tuned towards vanishing (PCAC) quark mass										
reliminary Results:										
	$L/a T/a \beta$	κ	am_{PCAC}	$Z_{\rm A,con}$	Z_{A}					

12	17	3.3	0.13652	-0.00096(71)	0.82(2)	0.66(3)
12	17	3.3	0.13660	-0.0086(6)	0.83(2)	0.65(3)
16	23	3.512	0.13700	+0.0064(2)	0.78(1)	0.77(1)
16	23	3.512	0.13703	+0.0056(3)	0.78(1)	0.77(2)
16	23	3.512	0.13710	+0.0024(2)	0.78(1)	0.75(2)
20	29	3.676	0.13680	+0.0139(2)	_	_
20	29	3.676	0.13700	+0.0066(1)	0.79(1)	0.79(2)
24	35	3.810	0.13712	-0.00269(8)	0.80(2)	0.79(1)

- non-vanishing PCAC mass is explicitly taken into account to facilitate extrapolation to m = 0
- plot on the right shows chiral extrapolation at $\beta =$ 5.2, taken from $N_{\rm f} = 2$, with and without mass term

Schrödinger functional

• periodic in space, Dirichlet boundary conditions in time • boundary fields ζ , ζ' are used to build source operators Dimensions

T/L = 3/2

 $L \approx 1.2 \,\mathrm{fm}$

- trade-off between large infrared cutoff (small T) and small $\mathcal{O}(a^2)$ effects (large L)
- in [3], big $\mathcal{O}(a^2)$ ambiguities were observed at $N_{\rm f} = 2$, $L = 0.8 \, {\rm fm}$

Source Operator

• pseudoscalar sources with wave functions (see below) at $x_0 = 0$ and $x_0 = T$

$$O_{\text{ext}}^{c} = -\frac{1}{6L^{6}} \epsilon^{cde} O'^{d} O^{e}$$
$$O^{e} = \sum_{\mathbf{uv}} \bar{\zeta}(\mathbf{u}) \frac{1}{2} \tau^{e} \gamma_{5} \omega(\mathbf{u} - \mathbf{v}) \zeta(\mathbf{v})$$

Wave Functions

choose WF ω_{π} that couples almost exclusively to the ground state

• some configurations still have to be analyzed

- $Z_{A,con}$ not yet conclusive (need more statistics)
- Z_A : no strong mass dependence observed

Topology Freezing

• at finer lattices, topological charge Q gets stuck

• impact on results will be checked by alternative analysis taking only configurations with Q = 0 into account (for c_A we got compatible results indicating no strong dependence on Q)

• periodic basis functions ω_1 , ω_2 , ω_3

$$\bar{\omega}_1(r) = \mathbf{e}^{-r/r_0} \quad \bar{\omega}_2(r) = r \cdot \mathbf{e}^{-r/r_0} \quad \bar{\omega}_3 = \mathbf{e}^{-r/(2r_0)}$$
$$\omega_i(x) = N_i \sum_{\mathbf{n} \in \mathbb{Z}^3} \bar{\omega}_i(|x - \mathbf{n}L|)$$

 $(r_0: \text{ some physical length scale}; N_i: \text{ normalization})$

• determine eigenvalues $\lambda^{(0)} > \lambda^{(1)} > \lambda^{(2)}$ and eigenvectors $\eta^{(0)}$, $\eta^{(1)}$, $\eta^{(2)}$ of 3×3 matrix $F_1(\omega_i, \omega_j)$ (boundary-boundary correlator with ω_i at $x_0 = 0$ and ω_j at $x_0 = T$)

• our result:

$\eta^{(0)} = (0.53176, 0.59773, 0.59996)$

• approximate ω_{π} by

Outlook

• some measurements still to be done

• maybe new simulations at smaller masses

• analysis to be crosschecked

• determination of $Z_{\rm V}$

References

Literatur

- [1] J. Bulava, M. Della Morte, J. Heitger, and C. Wittemeier, Determination of c_A in three-flavour lattice QCD with Wilson fermions and tree-level improved gauge action, PoS LATTICE2013 (2013) 311, [arXiv:1312.3591].
- [2] M. Della Morte, R. Hoffmann, F. Knechtli, R. Sommer, and U. Wolff, Non-perturbative renormalization of the axial current with dynamical Wilson fermions, JHEP 0507 (2005) 007, [hep-lat/0505026].
- [3] M. Della Morte, R. Sommer, and S. Takeda, On cutoff effects in lattice QCD from short to long distances, Phys.Lett. B672 (2009) 407-412, [arXiv:0807.1120].
- [4] M. Lüscher and S. Schaefer, Lattice QCD with open boundary conditions and twisted-mass reweighting, Comput. Phys. Commun. 184 (2013) 519-528, [arXiv:1206.2809].