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Abstract

The results of numerical simulation of monolayer graphene
in external magnetic field are presented. The numerical
simulation is performed in the effective lattice field theory
with noncompact 3 + 1-dimensional Abelian lattice gauge
fields and 2+1-dimensional staggered lattice fermions. The
dependences of fermion condensate and graphene con-
ductivity on the dielectric permittivity of substrate for differ-
ent values of external magnetic field are calculated. It is
found that magnetic field shifts insulator-semimetal phase
transition to larger values of the dielectric permittivity of sub-
strate. The phase diagram of graphene in external mag-
netic field is drawn.

1. Introduction

Graphene is a two dimensional crystal composed of carbon
atoms packed in a honeycomb lattice.

This material is well known due to its low energy electronic
spectrum which can be described by an effective theory
with two massless Dirac fermions living in two dimensions
with sufficiently large coupling constant αeff ∼ αemc/vF ∼
300/137 ∼ 2.
Due to technological limitations graphene is usually placed
on some substrate which effectively screens interactions in
graphene. This screening is characterized by dielectric per-
mittivity ε.
Graphene sheet in real life is not plain and may con-
tain many defects. One of them are so called ”rip-
ples” (see pic. A). It is known that ”artificial” magnetic
field may appear due to stretching of graphene sheet.
This magnetic field will lead to the emergence of Lan-
dau levels and it can be observed in experiment [1].

It is interesting to study the phase diagram of graphene in
the presence of the external magnetic field.

2. Effective theory

Dispersion relation of electronic excitations in graphene.

Fermi velocity vF/c ∼ 1/300 plays the role of the speed of
light for the fermionic fields.

The partition function of graphene can be written in the fol-
lowing form

Z =

∫
Dψ̄DψDA0 exp

(
−1

2

∫
d4x (∂iA0)2−

−
∫
d3x ψ̄f

Γ0 (∂0 − igA0)−
∑
i=1,2

Γi∂i

ψf

 , (1)

where A0 is the zero component of the vector potential of
the 3 + 1 electromagnetic field, Γµ are Euclidean gamma-
matrices and ψf (f = 1, 2) are two flavours of Dirac fermions
which correspond to two spin components of the non-
relativistic electrons in graphene. Effective coupling con-
stant is g2 = 2αem/(vF (ε + 1)) (~ = c = 1 is assumed). It is
worth to note that partition function (1) doesn’t contain dy-
namical vector part of the potential Ai, since the inclusion
of this part leads to the corrections which are suppressed
by the factor vF/c ∼ 1/300.

3. Simulation Algorithm

In order to discretize the fermionic part of the action in (1)
the staggered fermions are used:

SΨ
[
Ψ̄x,Ψx, θx, µ

]
=
∑
x,y

Ψ̄xDx,y
[
θx, µ

]
Ψy =

=
1

2

∑
x

δx3, 0

 ∑
µ=0,1,2

Ψ̄xαx,µe
iθx, µΨx+µ̂−

−
∑

µ=0,1,2

Ψ̄xαx,µe
−iθx, µΨx−µ̂ + mΨ̄xΨx

 , (2)

where the lattice coordinate x3 is restricted to x3 = 0. One
flavor of staggered fermions in 2+1 dimensions corresponds
to two flavors of continuum Dirac fermions.
To discretize the electromagnetic part of partition function
(1) noncompact action is used

Sg
[
θx, µ

]
=
β

2

∑
x

3∑
i=1

(
θx, 0 − θx+î, 0

)2
, (3)

where

β ≡ 1

g2
=

vF
4πe2

ε + 1

2
. (4)

The introduction of nonzero homogeneous magnetic fieldH
perpendicular to graphene plane can be done in a standard
way through the modification of the link variable θx,i, i = 1, 2,
which corresponds to the vector potential Ai = H(x2δi1 −
x1δi2)/2 and quantized magnetic field

H =
2π

eL2
s
n, (5)

where Ls is the size of the lattice.
Since action (2) is bilinear in fermionic fields, they can be
integrated out and one gets the following effective action

Seff
[
θx, 0

]
= Sg

[
θx, 0

]
− ln det

(
D
[
θx, 0

])
. (6)

To generate configurations of the field θx, 0 with the statis-
tical weight exp

(
−Seff

[
θx, 0

])
the standard Hybrid Monte-

Carlo Method is used.

4. Observables

The goal is to measure the phase diagram. So, one need
the electric conductivity of graphene in external magnetic
field. By virtue of the Green-Kubo dispersion relations, the
Euclidean current-current correlators

G (τ ) =
1

2

∑
i=1,2

∫
dx1 dx2 〈Ji (0) Ji (x)〉 (7)

can be expressed in terms of the conductivity σ (w) as

G (τ ) =

∞∫
0

dw

2π
K (w, τ ) σ (w) . (8)

Note that the conductivity σ (w) is dimensionless. Moreover,
the DC conductivity σ (0) is a universal quantity which does
not depend on the lattice spacing or on the ratio of lattice
spacings in temporal and spatial directions. For conversion
to the SI system of units, it should be multiplied by e2/ (2πh).
We use middle point of Euclidean current-current correlator
to measure the conductivity at low frequencies:

G

(
1

2T

)
≈ πT 2σ (w) . (9)

To study insulator-semimetal phase transition it is useful to
consider the fermion condensate 〈 ψ̄ ψ 〉. In the insulator
phase

〈 ψ̄ ψ 〉 6= 0 (10)

and in the semimetal phase

〈 ψ̄ ψ 〉 = 0. (11)

So, the fermion condensate 〈 ψ̄ ψ 〉 is the order parameter
for the insulator-semimetal phase transition.

5. Results
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The fermion condensate 〈 ψ̄ ψ 〉 at dielectric permittivity
ε = 15 as a function of the fermion mass m for the fields
H = 0.5, 2.5, 4.5 kT. Solid lines are the linear extrapolations
to the massless limit.

From the study of the fermion condensate 〈 ψ̄ ψ 〉 one
can state that external magnetic field shifts the insulator-
semimetal phase transition in graphene to the direction of
larger values of the ε.
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The conductivity σ as a function of the ε for the fields
H = 0.5, 1 kT.

One can clearly see that magnetic field shifts point of phase
transition to the larger values of ε and makes transition
broader.
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The resulting phase diagram for graphene in the (H, ε)
plane.

References

[1] N. Levy et. al., Science 329, 544, (2010)

JINR 2014, The Helmholtz International Summer School ”Lattice QCD, Hadron Structure and Hadronic Matter”, 25 August - 6 September 2014, Dubna, Russia


