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Introduction

The Overlap operator is de�ned as

Dov := 1
a (1 + γ5sign[γ5 DW])

with the Wilson Dirac operator DW and the lat-
tice spacing a. It satis�es the Ginsparg-Wilson
equation, preserves chiral symmetry in the limit
a → 0 and can be de�ned for �nite chemical
potential µ [1]. The matrix sign function makes
the Overlap operator numerically very expensive
and for realistic lattice sizes one usually has to
rely on approximation methods.
In many situations we need to compute deriva-
tives of the lattice Dirac operator, for example to
compute the fermionic force in HMC simulations
or to study conserved currents. To take deriva-
tives of the Overlap operator we need to know
how to di�erentiate the approximation of the
sign function, which is often highly non-trivial.
We present a method to compute derivatives of
the Overlap operator.

The Lanczos Algorithm

An e�cient method to approximate the matrix
sign function is the nested, two-sided Lanczos
algorithm[2]:

• Compute approximation to
~y = f(A)~x, A ∈ Cn×n

• Krylov subspace method:
Kk(A, ~x) := span(~x,A~x, . . . ,Ak−1~x)

• Works for �nite µ, where γ5 DW is non-
hermitian

• Approximate f(A) by a polynomial of de-
gree k − 1

• Information about ~x taken into account

• Scales like O(nk) +O(k3)

• In General: Very good approximation al-
ready for k � n

The Problem

To evaluate the Overlap operator we use the
Lanczos algorithm. Therefore we need to know:

How can we compute the

derivative of the Lanczos

algorithm?

Straight forward algorithmic di�erentiation
turned out to be numerically unstable even for
small matrix sizes.

The Solution

Let A(t) ∈ Cn×n be di�erentiable at t = 0 and assume that the spec-
trum of A(t) is contained in an open subset D ⊂ C for all t in some
neighbourhood of 0. Let f be 2n− 1 times continuously di�erentiable
on D. We then have:

f

([
A(0) Ȧ(0)

0 A(0)

])
≡

[
f(A(0)) d

dt

∣∣
t=0

f(A(t))
0 f(A(0))

]

Theorem (R. Mathias)[3]

We can simultaneously compute the matrix sign function and its derivative!

sign

([
A Ȧ
0 A

])(
0
~x

)
=

(
d
dt sign(A)~x
sign(A)~x

)

Convergence of the Method

The convergence of the Lanczos algorithm depends on the spectrum of the matrix. Therefore it is

important to study the properties of Ā :=

[
A Ȧ
0 A

]
.

• det Ā = (detA)
2

• λ eigenvalue of A ⇔ λ eigenvalue of Ā

• ~x eigenvector of A ⇔
(
~x
0

)
eigenvetor of Ā

• Convergence depends only on A

Numerical Results
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• SU(3) con�gurations with improved action

• Compute derivatives with respect to background
gauge �eld θµ(x)

• Matrix size 31104 (6x63) and 98304 (8x83)

• Finite chemical potential, γ5 DW is not hermitian

• Nested Lanczos algorithm:
Inner Krylov size l �xed, error ploted as function
of the outer Krylov subspace size

• Results for simultaneous computation of the sign
function and the derivative from the matrix γ5 DW

∂
∂θµ(x)

(γ5 DW)

0 γ5 DW


• Results for sign(γ5 DW) ("Sign Small") lie on top of

the results for the bigger block matrix.

• The Krylov subspace size needed to achieve a given
precision does not nearly grow as fast as the matrix
size when we go to larger lattices.

Summary and Outlook

• Summary

� We present a method to compute
derivatives of the Overlap operator

� Tests on small lattices

� First results are very promising

• Outlook

� Generalisation to higher derivatives

� Implement de�ation

� Calculation of conserved currents
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