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‘ Abstract |

Tight-binding model of the AA-stacked bilayer graphene
with screened electron-electron interactions has been stud-
led using the Hybrid Monte Carlo simulations on the origi-
nal double-layer hexagonal lattice. Instantaneous screened
Coulomb potential is taken into account using Hubbard-
Stratonovich transformation. G-type antiferromagnetic or-
dering has been studied and the phase transition with spon-
taneous generation of the mass gap has been observed.
Dependence of the antiferromagnetic condensate on the
on-site electron-electron interaction is examined.

‘ Monolayer graphene and bilayer graphene |

Monolayer graphene is represented by a single sheet of
carbon atoms, which form hexagonal lattice. Each carbon
atom has 4 valence electrons, 3 of them form o-bonds and
the last remains on 7-orbital.
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Figure 1: Aftomic structure of monolayer graphene. Elec-
frons on w-orbitals are oriented perpendicular to the
graphene plane.

Bilayer graphene is represented by two graphene sheets,
stacked upon each other.
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Figure 2: Two common types of bilayer graphene. Energy
spectrum of electrons and transport properties depends
heavily on the way of stacking.

We concentrate on the AA-stacked bilayer graphene (AA-
BLG).
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Figure 3: Afomic structure of the elementary cell of AA-
BLG (as =142 A, ls =33 A).

Tight-binding Hamiltonian for electrons in the AA-BLG may
be written as follows:
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where aX and ax ., are creation and annihilation opera-
tors for the electron with spin ¢ at the site X on the layer ;
respectively, t = 2.57eV represents nearest-neighbour hop-
ping inside one layer and ¢ty = 0.36eV — between layers
(values of hoppings are taken from [1]).

Energy spectrum of such system has the following form:
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Figure 4: Energy spectrum of AA BLG from tight-binding
Hamiltonian.

Near the Dirac points:

e = vplk],

where v = Jta ~ o= =

e coupling constant o = & ~ 2.3, in AA-BLG we have elec-
trodynamics with a strong interaction

e magnetic and retardation effects can be neglected, only
Coulomb interaction may be considered

Interaction potentials: screened Coulomb inside the
graphene layer, usual Coulomb between the layers.
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Figure 5: Electron-electron interaction potential inside one
graphene layer. For detailed dicsussion about screening by
o-electrons see [2].
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Figure 6: There are arguments from mean-field theory, that
Coulomb interaction in the AA-BLG may open the energy
gap and lead to formation of G-type AFM condensate [3]

‘ Lattice formulation |

We start from the Hamiltonian formulation of partition
function. Hamiltinian is formulated in terms of electrons and
holes:

H = th+Hstag + Hjpyt.

PR Sl (@ dy, + bl by,) —
1=1 <X, Y;>

— 1 Z(&jﬁd){? + b}leQ) + h.c.

2
Hy =SS £mat

_CALy; + mi?;_(_z?yi,
i=1 XY

where the sign before m in the H,; are chosen according
to the left part of Fig. 6. Electron-electron interaction are
added by

where gx, = a} ax, — [A’}X;Xi and Vy,, is the matrix of po-
tentials.

Exponentials in partition function are splitted as follows:
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Important feature: there are now 2N; time layers due to
such splitting, only even time layers are physical.

To deal with e~ 27t we perform Hubbard-Stratonovich
transformation [4]:
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Finally we arrive at the following expression:
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The observable: AFM condensate. Electron density opera-
tors:
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In terms of inverse Dirac operator:
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‘ Numerical results |

T=0.19 eV, 12°x35 lattice, At=0.15 eV
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Figure 7: The dependence of the AFM condensate on the
on-site interaction potential V.., at fixed temperature. AFM
condensate vanishes at the value (8.89 + 0.33) eV.

Here we have disagreement with MF result: An ~ 0.5 at

e=3.0, At=0.15 eV
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Figure 8: The dependence of the AFM condensate on tem-

perature, measured on lattices with different temporal sizes.
All potentials, except V., were rescaled by the factor of

_ VA, Lj
e =3.0: Vi, — Vi, /3.0.

‘ Conclusions |

e Original hexagonal lattice model for AA-bilayer graphene
with long-range Coulumb interaction was studied.

e Formation of the AFM condensate was observed and its
dependence on the on-site electron-electron interaction
was examined.
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