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Abstract

Tight-binding model of the AA-stacked bilayer graphene
with screened electron-electron interactions has been stud-
ied using the Hybrid Monte Carlo simulations on the origi-
nal double-layer hexagonal lattice. Instantaneous screened
Coulomb potential is taken into account using Hubbard-
Stratonovich transformation. G-type antiferromagnetic or-
dering has been studied and the phase transition with spon-
taneous generation of the mass gap has been observed.
Dependence of the antiferromagnetic condensate on the
on-site electron-electron interaction is examined.

Monolayer graphene and bilayer graphene

Monolayer graphene is represented by a single sheet of
carbon atoms, which form hexagonal lattice. Each carbon
atom has 4 valence electrons, 3 of them form σ-bonds and
the last remains on π-orbital.

Figure 1: Atomic structure of monolayer graphene. Elec-
trons on π-orbitals are oriented perpendicular to the
graphene plane.

Bilayer graphene is represented by two graphene sheets,
stacked upon each other.

Figure 2: Two common types of bilayer graphene. Energy
spectrum of electrons and transport properties depends
heavily on the way of stacking.

We concentrate on the AA-stacked bilayer graphene (AA-
BLG).
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Figure 3: Atomic structure of the elementary cell of AA-
BLG (as = 1.42 A, ls = 3.3 A).

Tight-binding Hamiltonian for electrons in the AA-BLG may
be written as follows:

Ĥtb = −t
2∑
i=1

∑
<Xi,Yi>

∑
σ=↑,↓

â+
Xiσ

âYiσ −

−t0
∑
X

∑
σ=↑,↓

â+
X1σ

âX2σ + h.c.,

where â+
Xiσ

and âXiσ are creation and annihilation opera-
tors for the electron with spin σ at the site X on the layer i
respectively, t = 2.57eV represents nearest-neighbour hop-
ping inside one layer and t0 = 0.36eV — between layers
(values of hoppings are taken from [1]).

Energy spectrum of such system has the following form:
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Figure 4: Energy spectrum of AA-BLG from tight-binding
Hamiltonian.

Near the Dirac points:

ε = vF |k|,

where vF = 3
2ta ≈

1
315 ⇒

• coupling constant α = e2

vF
≈ 2.3, in AA-BLG we have elec-

trodynamics with a strong interaction
•magnetic and retardation effects can be neglected, only

Coulomb interaction may be considered
Interaction potentials: screened Coulomb inside the
graphene layer, usual Coulomb between the layers.
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Figure 5: Electron-electron interaction potential inside one
graphene layer. For detailed dicsussion about screening by
σ-electrons see [2].

Figure 6: There are arguments from mean-field theory, that
Coulomb interaction in the AA-BLG may open the energy
gap and lead to formation of G-type AFM condensate [3].

Lattice formulation

We start from the Hamiltonian formulation of partition
function. Hamiltinian is formulated in terms of electrons and
holes:

Ĥ = Ĥtb + Ĥstag. + Ĥint.

Ĥtb = −t
2∑
i=1

∑
<Xi,Yi>

(â+
Xi
âYi + b̂+Xi

b̂Yi)−

− t0
∑
X

(â+
X1
âX2

+ b̂+X1
b̂X2

) + h.c.

Ĥst. =

2∑
i=1

∑
X,Y

±mâ+
Xi
âYi ±mb̂

+
Xi
b̂Yi,

where the sign before m in the Ĥst. are chosen according
to the left part of Fig. 6. Electron-electron interaction are
added by

Ĥint. =
1

2

2∑
i,j=1

∑
X,Y

q̂Xi
V
ij
XY q̂Yj,

where q̂Xi
= â+

Xi
âXi
− b̂+Xi

b̂Xi
and V

ij
XY is the matrix of po-

tentials.
Exponentials in partition function are splitted as follows:

Z = Tr
(
e−βĤ

)
= Tr

(
e−∆τ (Ĥtb+Ĥstag.+Ĥint.)

)Nt

=

= Tr
(
e−∆τ (Ĥtb+Ĥst.)e−∆τĤint.e−∆τ (Ĥtb+Ĥst.) . . .

)
+ O(∆τ2)

Important feature: there are now 2Nt time layers due to
such splitting, only even time layers are physical.
To deal with e−∆τĤint. we perform Hubbard-Stratonovich
transformation [4]:

e
−∆τ

2

∑
X,Y

q̂XVXY q̂Y
=

∫
Dϕe

− 1
2∆τ

∑
X,Y

ϕXV
−1
XYϕY−i

∑
X

ϕX q̂X

Finally we arrive at the following expression:

Z =

∫
DϕDηDηDχDχe−ηMη−χM+χ− 1

2∆τϕ
T V̂ −1ϕ

=

∫
Dϕdet(M+M)e−

1
2∆τϕ

T V̂ −1ϕ

Fermionic determinant is positive!
The observable: AFM condensate. Electron density opera-
tors:

n̂iA↑ =
1

Nsubl.

∑
X∈A

â+
XA,i↑âXA,i↑

n̂iB↓ =
1

Nsubl.

∑
X∈B

â+
XB,i↓âXB,i↓

∆n =
〈
n̂1A↑

〉
−
〈
n̂2A↑

〉
=
〈
n̂1B↓

〉
−
〈
n̂2B↓

〉
In terms of inverse Dirac operator:

〈∆n〉 =
1

NτNsubl.

∑
τ

〈∑
X∈A

(
M̂−1
X2X2 − M̂

−1
X1X1

)〉

=
1

NτNsubl.

∑
τ

〈∑
X∈B

(
M̂−1
X1X1 − M̂

−1
X2X2

)〉

Numerical results
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Figure 7: The dependence of the AFM condensate on the
on-site interaction potential Vxx at fixed temperature. AFM
condensate vanishes at the value (8.89 ± 0.33) eV.

Here we have disagreement with MF result: ∆n ≈ 0.5 at
Vxx = 8.9 eV [3].
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Figure 8: The dependence of the AFM condensate on tem-
perature, measured on lattices with different temporal sizes.
All potentials, except Vxx, were rescaled by the factor of
ε = 3.0: V ijXY → V

ij
XY /3.0.

Conclusions

•Original hexagonal lattice model for AA-bilayer graphene
with long-range Coulumb interaction was studied.
• Formation of the AFM condensate was observed and its

dependence on the on-site electron-electron interaction
was examined.
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