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We present new results on the reconstruction of mesonic spectral functions for three temperatures above Tc in quenched QCD. Making use of non perturbatively
improved clover Wilson valence quarks allows for a clean extrapolation of correlator data to the continuum. For the case of vanishing momentum the spectral
function is obtained by fitting the data to a well motivated ansatz. In the vector channel for light quarks the electrical conductivity of the hot medium, related to
the origin of the spectral function at zero momentum, is computed from the resulting parameters at all three temperatures.

I. Motivation
The ongoing heavy ion collision experiments at different facilities all over the world necessi-
tates a deeper theoretical understanding of the out of equilibrium phenomena encountered.
The use of hydrodynamics to describe the collision process calls for accurately determined
transport coefficients such as diffusion constants and viscosities [1].

From a theoretical point of view electromagnetic observables such as dileptons and photons
constitute good probes of all stages of a collision within the “fireball” paradigm, as they only
interact electromagnetically with the sorrounding plasma. They stem from decaying vector
mesons as the latter ones are the currents in electromagnetic interactions among hadrons,
described by the Vector Meson Dominance Model [2]. On the other hand, PHENIX and
STAR experiments see enhancements in the measured dilepton rates in the low energy
region of heavy ion collisions compared to proton-proton collisions [3] Since this regime
is slightly above the deconfinement temperature, and thus one expects it to be strongly
interacting, perturbative calculations are both conceptually difficult and show poor conver-
gence for most observables. Utilizing numerical lattice QCD techniques on the other hand
provides an inherently nonperturbative way to obtain needed correlation functions, though
still being computationally expensive in the physical case and adding the necessity of an
analytic continuation [4,5], resulting in its very own problems of obtaining above mentioned
observable quantities.

Nevertheless a nonperturbative approach is indispensable in the energy regime slightly above
Tc and thus ought to be addressed in this work.

II. The spectral function
Our goal is to compute lattice data of the vector channel correlator, because dilepton
and photon rate are directly linked to (parts of) the vector correlator spectral function (SPF)
as follows,
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This not only yields a direct connection of experimentally accessible and theoretically in-
teresting quantities, but furthermore transport coefficients are generally related to SPFs via
so called Kubo formulae. In case of the light vector particle SPF this leads to a simple
formula for the electromagnetic conductivity,
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where different components of the vector SPF ρH, H = V, ii, 00 are denoted by

• ρV ≡ ρii − ρ00 full vector SPF

• ρii spatial vector SPF

• ρ00 temporal vector SPF

The (renormalized) Euclidean vector correlation functions are constructed as

JH = ZV ψ̄(x)γHψ(x)

GH(τ, ~x) = 〈JH(τ, ~x)J†H(0,~0)〉,

and projected to momenta ~p:
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∑
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The connection of the Euclidean correlator and the SPF, thus establishing the needed ana-
lytic continuation, is then given by the integral transformation
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with K(ω, τ, T ) being the integration kernel at finite temperature. The conceptual diffi-
culties now lie in the inversion of eqn. (2), which is on the analytical level still a matter
of mathematical discussion [5] and from the numerical standpoint an “ill posed problem”:
while having Nτ ∼ O(10) in typical finite T lattice simulations on the l.h.s, the desired
resolution of the SPF as a function of ω on the r.h.s. of eqn. (2) is far larger, i.e. around
O(1000).

III. A solution
There are two main ideas that try to soften this very fundamental problem by supplying
additional information to the raw data.

1. The Maximum Entropy Method (MEM) is based on maximizing an entropy term
while supplying a priori known, testable information (correlator data points) and a so
called default model. The result is the most probable SPF given the former constraints.

2. By specifiying an ansatz for the SPF and fitting it to the correlator data points
one is provided with an analytically known SPF parameterized by a few parameters. The
ansatz should be phenomenologically well motivated and yet simple enough to allow for
successful χ2 minimization.

As opposed to MEM, which is inherently statistical, the latter method yields solid estima-
tions of the SPF with systematical uncertainties stemming directly from the choice of the
ansatz itself.

Looking for a suitable ansatz a good starting point is the free, non interacting case, corre-
sponding to very high temperature, for which the vector SPF components ρH are analytically
known:
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Upon the influence of interactions the temporal component is not altered because the tempo-
ral part of the vector current J0 is linked to the conserved net quark number and thus is inde-
pendent of euclidean time. The quark number susceptibility χq = − 1

T
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is thus a constant, and the delta function in ρ00 remains there:

ρfree
00 → 2πχqωδ(ω).

On the other hand, the spatial component does not feature such protection by symmetry
and thus is modified. The naive and general expectation is that the delta peak melts and
becomes broader and more analytic. To get an idea of its possible analytical structure, in-
troducing and solving Langevin diffusion and Boltzmann gas toy models for heavy and light

quarks, respectively, yields that the delta peak of the free case smears out into the shape of
a Breit-Wigner peak [6].
Hence we choose our ansatz for the spatial part of the vector SPF to be composed of a
Breit-Wigner peak for small frequencies ω and a slightly modified large ω part from the free
vector SPF:
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with Γ, cBW , κ parameterizing the resulting SPF. Note that for the modification of the large
ω part κ = αs

π holds at leading order.

III. Lattice data and continuum extrapolation

Lattice calculations have been done using a
nonperturbatively improved Wilson-
Clover action with no dynamical sea
quarks. Runs were performed at three differ-
ent temperatures T = 1.1Tc, 1.2Tc, 1.45Tc with
3-4 increasingly finer lattices each. All valence
quark masses are chosen to be small around
mMS(µ = 2GeV ) ∼ O(10MeV ). Note that for
the two lowest temperatures the aspect ratio is
fixed to Ns/Nt = 3, ensuring a constant phys-
ical volume, while for the T = 1.45Tc lattice
finite volume effects were verified to be small.

Nσ Nτ β κ 1/a[GeV] #

T = 1.1Tc

32 96 7.192 0.13440 9.65 314

48 144 7.544 0.13383 13.21 358

64 192 7.793 0.13345 19.30 242

T = 1.2Tc

28 96 7.192 0.13440 9.65 232

42 144 7.544 0.13383 13.21 417

56 192 7.793 0.13345 19.30 273

T = 1.45Tc

16 128 6.827 0.13495 6.43 191

24 128 7.192 0.13440 9.65 340

32 128 7.457 0.13390 12.86 255

48 128 7.793 0.13340 19.30 456

Using these lattices, ratios of correlation functions

Rii =
T 2

χq

Gii(τT )

Gfree,lat
V (τT )

, χq = −G00/T (5)

are formed for each lattice per temperature available. The spatial correlation function is nor-
malized by the quark number susceptibility χq to cancel the necessary renormalization and
furthermore normalized by the free full vector correlation function to cancel the exponential
fall-off.
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Figure 1: Left: The computed ratios as a function of τT = τlat/Nt. Right: The actual linear
extrapolation procedure in a2 for four selected values of τT with the extrapolation results
colored in black.

These ratios are extrapolated to the contin-
uum via a linear fit in the squared lattice con-
stant a2 due to the improved action. Note that
the resulting continuum ratio is computed for
all Nmax

t data points of the largest lattice per
temperature by spline interpolating the ratios
on the smaller lattices. The whole resulting
continuum correlator for this temperature is
shown in fig. (2).
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Figure 2: The resulting extrapolation of ra-
tio eqn. (5)

Aside from the ratio of correlation functions also the continuum value of the quark number
susceptibility χq is determined in the same fashion after obtaining χNt

q from the constant
correlator G00 at finite lattice spacing. However, these now have to be renormalized using the
proper nonperturbatively determined renormalization constants [7]. The continuum result
for χq is needed in the computation of the electrical conductivity shown in the next section.

IV. Obtaining the SPF
In order to obtain estimators for the parameters of the fit ansatz eqn. (4) the contin-
uum extrapolated correlators are used as input data for the fitting process.
Having determined the parameters the electrical conductivity of the QGP is immediately
available from the Kubo formula eqn. (1) as
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2
i and Qi being the charges of the involved quark flavors. Note that, as it

is proportional to the origin of the SPF, it does not depend on the parameter κ governing
the large ω behavior. Expanding the integration kernel eqn. (3) for small frequencies yields
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showing that the contribution of the low frequency part to the correlation function is nearly
a constant given τT ∈ [0, 0.5]. Hence the information about the peak region of the spectral
function lies in the weakly τ dependent region of the correlator, i.e. around the midpoint,
see [8] for further discussion. In order to improve the signal coming from this region, any
additional information to the correlator data is usefull. One possibility, chosen in this work,
is to define thermal moments G

(n)
H as Taylor coefficients of the correlation function,
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and to form the midpoint subtracted correlator ratio

∆H(τT = 1/2) ≡ 1

χq

GH(τT )−G(0)
H

Gfree
H (τT )−G(0),free

H

∣∣∣∣∣
τT=1/2

=
1

χq

G
(2)
H

G
(2),free
H

. (6)

The value of ∆H(τT = 1/2) is then used as an additional data point for the fit as it essen-
tially encodes information on the curvature of the correlation function ratio at the midpoint.

The fits are done by a Levenberg-Marquardt minimization algorithm and using a standard
gaussian quadrature for the integral of eqn. (2).

As mentioned in section III , a very large part of the error on the results will be a systematic
one, because an important part in overcoming the “ill-posed”-ness of the inversion problem
is to provide the functional form of the SPF as additional information: the structure of our
fit ansatz, or, more specifically, the choice of the Breit-Wigner peak as a “melted delta”
peak. In order to check on an effect in changing the ansatz, a parameterized low ω cutoff is
multiplied into the free part of the ansatz,

θ(ω0,∆ω) =
(
1 + exp((ω2

0 − ω2)/(ω∆ω))
)−1

, (7)

This way the form of the ansatz can be changed
in a controlled and continuous way, the Breit-
Wigner peak reacting to cutting off the early
onset of the large ω free part in the ansatz.
Upon increasing ω0 at a fixed but small ∆ω ∼
0.1 the resulting electrical conductivity rises
as the Breit-Wigner peak has to adapt to the
decreasing influence the free part has on the
low to intermediate ω regime. At some point
the fit quality becomes much worse and the
peak cannot account anymore for the missing
contribution of the free part. Thus we choose
the upper error bound. The procedure is illus-
trated in fig. (3).
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Figure 5.13: Spectral functions obtained by fitting eq. (5.19) to data (left) and dilepton
rates (right) calculated by eq. (5.1) from the spectral functions. The thin lines
represent the spectral function obtained with systematic error estimates as laid out
in section 5.7. The free spectral function (Born) is given in eq. (5.6), the HTL results
follow [62].

ω0 ∆ω (1 + κ)/χq 2cBW/Γ Γ 2
3χq

cBW
Γ χ/d.o.f Data

– – 1.216(5) 1.353(23) 2.058(85) 0.387(7) 0.52 RS
1.215(3) 1.328(12) 2.110(34) 0.380(4) 0.65 ST

0.0

0.5

1.217(5) 1.399(20) 1.963(74) 0.401(6) 0.97 RS
0.5 1.218(5) 1.420(19) 1.923(69) 0.406(6) 1.24 RS
1.0 1.219(4) 1.497(15) 1.783(57) 0.429(5) 2.71 RS
1.0 1.219(4) 1.595(8) 1.643(16) 0.456(3) 2.81 ST

1.5

0.0 1.222(4) 1.609(12) 1.607(45) 0.461(4) 6.99 RS
0.1 1.222(4) 1.705(11) 1.506(39) 0.488(3) 4.71 RS
0.1 1.213(2) 1.675(7) 1.528(14) 0.479(3) 5.50 ST
0.25 1.222(4) 1.728(11) 1.481(38) 0.495(3) 5.37 RS
0.5 1.222(4) 1.632(12) 1.572(43) 0.467(4) 8.27 RS

1.75 0.5 1.206(4) 2.139(8) 1.247(26) 0.612(2) 2.21 RS

Table 5.5: Results for fits of eqs. (5.7) and (5.19) to data, at 1.1 Tc. Values ω0 and ∆ω

in eq. (5.19) are motivated in the discussion of systematic errors. 2
3χq

cBW
Γ relates to

the electrical conductivity as given in eq. (5.8). Columns 3 to 5 directly relate to fit
variables, see eq. (5.12) and the discussion there. Abbreviations in the column Data
denote the dataset used in the fit, where RS is the dataset with resampling error
estimates, ST the dataset with standard errors, see section 5.5.3. Correlator data
points with τT ≥ 0.1875 enter into the fit.

100

Figure 3: The low ω cutoff varied to yield
final tolerable fit qualities, drawn for all
three temperatures. The thin lines are the
error estimations.
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Figure 5.19: Electrical conductivity for temperatures 1.1 Tc, 1.2 Tc and 1.4 Tc, with sys-
tematic error estimates as laid out in section 5.6.2, with a maximal ω0 = 1.5 and
∆ω = 0.1, see also tables 5.5 and 5.6. To compare the temperature dependence, re-
sults are given in units of temperature T (left) and in units of the critical temperature
Tc (right).

correlators normalized by the quark number susceptibility as T 2 ·Gii(τT )/χq ·Gfree
V (τT ).

The ratios are smooth so they allow for a cubic spline interpolation on the coarser
lattices. The continuum extrapolation is well behaved and removes lattice cutoff effects
down to distances τT = 0.125 at 1.1 Tc and τT = 0.142 at 1.2 Tc.
Spectral functions have been extracted successfully from the continuum extrapolated

correlators at all three temperatures by using a phenomenologically motivated ansatz.
This rather simple ansatz, consisting of a Breit-Wigner peak and a continuum contri-
bution, see eq. (5.7), is found to provide a good descriptions of the data set at all three
temperatures.
A systematic error analysis was performed via a parametrized modification of the

ansatz, by truncating the continuum contributions, see eq. (5.19). It is found that an
increasing continuum cutoff can not be fully compensated by an enhanced Breit-Wigner
peak, thus the truncated ansatz yields an inferior description of the data set. This allows
to find an upper limit for the Breit-Wigner contribution.
The spectral function is linked to the dilepton rate, which thus can be calculated for

all three temperatures. A summarizing plot of the spectral functions and associated
dilepton rates is provided in fig. 5.13.
In the low frequency limit, the spectral function also gives access to the electrical

conductivity as an important transport coefficient. With the systematic error estimates
in place, lower and upper bounds for the electrical conductivity have been calculated.
Within these limits, the conductivity shows no clear temperature dependence, see

fig. 5.19. The systematic error analysis – as currently employed – implies a low limit
for the electrical conductivity at each temperature. The upper limit is influence by
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Figure 4: Left: The results for the electrical conductivity. The error stems from the system-
atic error analysis procedure described above. Right: The result for the low energy dilepton
production. Note the agreement with the HTL result in green for intermedate and large
frequencies.

The results for the electrical conductivity and the dilepton rate are shown in fig. (4), note
that the factor Cem is divided out in the conductivity plot. At the current size of the er-
rorbars it is not possible to make a statement about the temperature dependence of the
conductivity, though a rise with temperature is expected.

The dileptonrate is evaluated at zero momentum ~p, as all correlators in this work were pro-
jected to zero momentum. Note the free case labeled “Born” coinciding for large frequencies
and the HTL result qualitatively agreeing with our nonperturbative result at intermediate
and large frequencies. The former reflects that the parameter in the ansatz governing the
large ω behaviour turns out to be very small (∼ O(10−2) for all three temperatures, thus
the high frequency part of the ansatz is confirmed to be a good choice.

Similar nonperturbative studies for comparison can be found in e.g. [9,10].

VI. Conclusion / Outlook

For each of three different temperatures above Tc quenched lattices with decreasing lattice
spacings have been produced. Using Wilson-Clover valence fermions correlation function
data has been extrapolated to the continuum using a linear ansatz in a2. Using a well
motivated fit ansatz the spatial component of the vector spectral function has been con-
structed and thus the electrical conductivity of the plasma and the dilepton production rate
obtained. An idea to assess the systematic error on the result has been implemented. For a
more detailed background also see [11,12].

As future plans

• the reassessment of the systematical error and a possible study of the temperature depen-
dence of the transport properties are attempted.

• The analysis of spectral functions at finite momentum building up on the methods used
so far is on the way.

• The inclusion of dynamical sea quarks now becomes possible utilizing increasing compu-
tational power available.
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