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Abstract
Simple Path Integral Metropolis Algorithm has been generalized for relativistic ki-

netic energy. In this work average of x2, kinetic T and potential V energy, correlation
function x(t)x(t+ τ ), probability density ρ(x) are calculated. Each observable value has
been checked for nonrelativistic limit(big mass).

Introduction
The model of the Harmonic Oscillator is one of the most popular in physics.
The Path Integral Monte-Carlo methods are well developed for this model. A
lot of work are made in this field. We considered the model of oscillator, which
has a relativistic kinetic energy instead of usual classical. Kinetic energy T ,
potential energy V , average of x square 〈x2〉, density of probability ρ(x), corre-
lation function 〈x(t)x(t+τ )〉 are calculated for the case of relativistic harmonic
oacillator.

Designations
x(t) - the path to be integrated, t ∈ [0, T ] and we took periodic bound condi-
tions : x(0) = x(T ). m is the mass of particle and ω is frequency. p is the
momentum. Hamiltonian function is

H =

√
p2 + m2 +

1

2
mω2x2.

β = 1/θ - inverse temperature for this system. We considered limit of large β
(β ≥ 10). Np - count of paths, Ns - count of sweeps, Nt - count of time slices,
N - count of attemptions to change value in one time scile, τ = a - time step.

Mathematical Section
ρ(x, x′; β) is position-space density matrix:

ρ(x, x′; β) = 〈x|e−βH |x′〉.
Discretization τ = T/Nt = β/Nt Matrix element of kinetic energy T =√
p2 + m2 was calculated

〈xi−1|e−τT |q〉 =
mτ

π
√
τ2 + (q − xi−1)2

K1(m
√
τ2 + (q − xi−1)2).

Finally,

ρ(xi−1, xi; τ ) =
mτ

π
√
τ2 + (xi − xi−1)2

K1(m
√
τ2 + (xi − xi−1)2)e−V (xi)τ ,

ρ(x0, xNt
; β) =

∫
. . .

∫
dx1 . . . dxNt

ρ(x0, x1; τ ) . . . ρ(xNt−1, xNt
; τ ).

Observable values
Densities of probability were calculated by formula

ρ(x) = |ψ(x)|2 =
1

∆xNtNp

all paths∑
i

θ(∆x− |xi − x|).

Kinetic energy of relativistic oscillator

〈
√
p2 + m2 −m〉 = 〈 mτ√

τ2 + (xn+1 − xn)2

K0(m
√
τ2 + (xn+1 − xn)2)

K1(m
√
τ2 + (xn+1 − xn)2)

+

+
τ2 − (xn+1 − xn)2

τ (τ2 + (xn+1 − xn)2)
−m〉

Results
Paths for different masses at fixed ω = 1 were calculated.

Figure 1: Dependence of some x(t) on t.

We calculated dependence 〈x2〉 on m and ω over paths were generated with
relativistic density matrix.

Figure 2: Dependence 〈x2〉 on m and ω for Np = 100, Ns = 1000, Nt = 100, τ = 0.1, N = 10.

The next figure is more informative

Figure 3: Dependence 〈x2〉 on m for ω = 1, Np = 100, Ns = 2000, Nt = 100, τ = 0.1,
N = 10.

We see good agreement with nonrelativistic limit at mass more, than 5 for
ω = 1. At lower masses, there is a relativistic effect - average of x2 is lower,
than in nonrelativistic limit, which has a good agreement with polynomial fit-
ting.

Typical figures for correlation functions

Figure 4: Correlation Function and Logarithm of Correlation Function for Np = 1000,
Ns = 2000, Nt = 100, τ = 0.1, N = 10, m = 10, ω = 1.

Figure 5: Correlation Function and Logarithm of Correlation Function for Np = 1000,
Ns = 2000, Nt = 100, τ = 0.1, N = 10, m = 1, ω = 1.

Figure 6: Correlation Function and Logarithm of Correlation Function for Np = 1000,
Ns = 2000, Nt = 100, τ = 0.1, N = 10, m = 1, ω = 10.

Inspite of changes in hamiltonian function, probability densities were fitted
gaussian excellentlly. Although, at ultrarelativistic limit probability density
describes by Airy function.

Figure 7: Probability density for m = 0.1, ω = 1, Np = 500, Ns = 1500, Nt = 100, τ = 0.1,
N = 10, Nb = 100.

Figure 8: Probability density for m = 1, ω = 1, Np = 500, Ns = 1500, Nt = 100, τ = 0.1,
N = 10, Nb = 100.

Figure 9: Probability density for m = 10, ω = 1, Np = 500, Ns = 1500, Nt = 100, τ = 0.1,
N = 10, Nb = 100.

At the limit m � ω, nonrelativistic limit has been achieved. We obtained
good fitting with probability density of main state of usual harmonic oscillator.
Results for energy

Figure 10: Dependence energy for ω = 1, Np = 1500, Ns = 1500, Nt = 300, τ = 0.1, N = 10.

Figure 11: Probability density for ω = 2.5, Np = 1500, Ns = 1500, Nt = 300, τ = 0.1,
N = 10.

Conclusions

The Path Integral Metropolis Algorithm has been generalized for relativistic
kinetic energy. The expression of kinetic energy observable was found. We
calculated observable values for this model and checked them for nonrelativis-
tic limit.


