The deconfinement phase transition in SU(2) lattice gauge theory

TECHNISCHE UNIVERSITÄT DARMSTADT

Lukas Holicki

Technische Universität Darmstadt, Institut für Kernphysik

1 Lattice action for $SU(2)$ gauge theories	5 $\mathbb{Z}(2)$ symmetry breaking: Deconfinement transition	5.4 Polyakov loop distributions
 Lattice gauge transporters: Link variables U_μ(n) = exp [iaA_μ(n)] ∈ SU(2) Wilson's plaquette action 	With the present code it is possible to investigate the decon- finement transition in pure gauge theory utilizing Polyakov loops as true order parameter for centre symmetry breaking.	 Local Polyakov loop distributions for increasing temperature (decreasing N_τ) [3] Deconfinement transition reflected by asymmetrical distri-
R	5.1 Polyakov loops on the lattice	bution

$$S_G[U] = \frac{\beta}{2} \sum_{n \in \Lambda} \sum_{\mu < \nu} \operatorname{tr} \left[1 - P_{\mu\nu}(n) \right]$$

for the plaquette $P_{\mu\nu} = U_{\mu}V_{\mu\nu}$ with the staple $V_{\mu\nu}$

$$n + \nu \qquad U_{\mu}^{\dagger}(n + \nu) \qquad n + \mu + \nu$$

$$U_{\nu}^{\dagger}(n) \qquad U_{\nu}^{\dagger}(n) \qquad U_{\nu}(n + \mu)$$

$$n \qquad U_{\mu}(n) \qquad n + \mu$$

- Wilson's ansatz provides correct continuum limit
- -Note that this formulation is not unique and can be expanded to higher order in the lattice spacing such that the action takes into account more involved loops.

2 Update algorithms

• Heatbath:

Sample update matrices $\chi = x_0 \mathbb{1} + i\vec{x} \cdot \vec{\sigma} \in SU(2)$ along equilibrium distribution [1]

$$\int d\chi P[\chi] \propto \int_{-1}^{1} dx_0 \left(1 - x_0^2\right)^{1/2} e^{\beta k x_0} \int d^2 \Omega_{\chi}$$

Update links with the sum of staples $V_{\mu} = \sum_{\nu > \mu} V_{\mu\nu}$

$$U_{\mu} \mapsto U' = \frac{1}{2} \gamma V^{\dagger}$$
 where $k = \sqrt{\det V_{\mu}}$

•

• Polyakov loop = closed path of links around the torus in time direction [2]

$$L(n) = \prod_{n_{\tau}=0}^{N_{\tau}-1} U_4(\vec{n}, n_{\tau}) \equiv \text{static quark}$$

• Polyakov loop expectation value is a measure for the energy difference with and without static quark

$$\langle \left| \operatorname{tr} L \right| \rangle = \frac{1}{Z} \int \mathscr{D} U \frac{1}{V} \left| \sum_{n} \operatorname{Tr} \left[L(n) \right] \left| e^{-S_G[U]} = e^{-F_q/T} \right|$$

Confinement:
$$F_q = \infty \Rightarrow \langle | \operatorname{tr} L | \rangle = 0$$

Deconfinement: $F_q < \infty \Rightarrow \langle | \operatorname{tr} L | \rangle \neq 0$

5.2 Centre symmetry breaking

• Topologically non-trivial gauge transformation:

 $g(\tau + N_{\tau}, x) = hg(\tau, x) \text{ with } h \in \mathbb{Z}(2)$ $\Rightarrow U^{g}_{\mu}(\tau + N_{\tau}, x) = hU^{g}_{\mu}(\tau, x)h^{\dagger}$

• Polyakov loop transforms then like

 $\operatorname{tr} L^g = h \operatorname{tr} L$

 \Rightarrow Average moves away from 0 (the confined phase) to the deconfined phase, where in principle both directions are possible

Figure 3: The local distribution of the Polyakov loop shows a clear asymmetry for increasing temperature.

6 Outlook: Including dynamical fermions

Current works aim at a full Hybrid Monte Carlo simulation
 Staggered Dirac operator:

$$D_{n,m} = \sum_{\mu} \frac{\eta_{\mu}(n)}{2a} \left(U_{\mu}(n) \delta_{m,n+\mu} - U_{-\mu}(n) \delta_{m,n-\nu} \right) + m \delta_{n,m}$$

• Overrelaxation:

leaves the action invariant but speeds up the movement through configuration space

$$U_{\mu} \mapsto U'_{\mu} = S^{\dagger}_{\mu} U^{\dagger} S^{\dagger}_{\mu} \quad \text{with} \quad S_{\mu} = \frac{1}{k} V_{\mu}$$

3 Implementation in OpenCL

- Open Computing Language:
 - based on C99, compiled at runtime
 - allows platform-independent computations
 → wide variety of devices accessible
- Currently implemented:
 - Several update algorithms: Metropolis, Heatbath, HMC, Overrelaxation
 - Preparations for dynamical fermions:
 - Leapfrog integrator, Conjugate gradient inverter
- Planned features:
 - Include dynamical (staggered) fermions

4 The plaquette action

• Investigate the **average plaquette** as a measure for the plaquette action Spontaneous breaking of centre symmetry \equiv **deconfinement phase transition** order parameter: $\langle | \operatorname{tr} L | \rangle$

5.3 Critical coupling

• Susceptibility

 $\chi_L \propto \langle \left| \operatorname{tr} L \right|^2 \rangle - \langle \left| \operatorname{tr} L \right| \rangle^2$

is maximal at the critical coupling β_c

– Evolve the whole lattice configuration along a fictitious time dimension → Global Monte Carlo update

– Integrate the **equations of motion**:

$$\frac{\partial}{\partial \tau} U_{\mu}(n) = i \pi_{\mu}(n) U_{\mu}(n) \text{ and } \frac{\partial}{\partial \tau} \pi_{\mu}(n) = F_{\mu}(n) \Big|_{TA}$$

- Molecular Dynamics force term for staggered fermions:

 $F_{\mu}(n) = -\frac{\beta}{N_c} U_{\mu}(n) \sum_{\nu > \mu} V_{\mu\nu}(n)$ $-\frac{\eta_{\mu}(n)}{a} U_{\mu}(n) \left[\rho(D\rho)^{\dagger} - (D\rho)\rho^{\dagger}\right]_{n+\mu}$

with
$$ho = \left(D^{\dagger}D
ight)^{-1}\phi$$

• Centre symmetry:

Fermi statistics \Rightarrow **Anti-periodic boundary conditions** for fermions, the winding gauge transformation then reads

$$\psi^{g}(\tau + N_{\tau}, x) = -h\psi(\tau, x) \Rightarrow h = 1$$

 \Rightarrow Centre symmetry expl. **broken**

• Observe increase around the deconfinement transition

Figure 1: The average plaquette over β as a measure for the action.

I.8 2 2.2 2.4 2.6 2.8 3 3.2 N_s=48, N_t=8: $β_c$ =2.5056 +- 0.0026

Figure 2: The Polyakov loop over β indicates the deconfinement phase transition for increasing temperature. Note the crossover transition, that is due to finite volume. The critical coupling was obtained from the maximum of a fit to the susceptibility χ_L

• Pair production & string breaking are screening confinement $\Rightarrow F_a$ is **finite**

 \Rightarrow Polyakov loop is not a true order parameter anymore

 \Rightarrow smooth **crossover**

References

[1] Michael Creutz. Monte Carlo study of quantized SU(2) gauge theory. *Physical Review D*, 21(8), April 1980.

[2] Owe Philipsen. Lattice QCD at non-zero temperature and baryon density. pages 273–330, 2010.

[3] Dominik Smith, Adrian Dumitru, Robert Pisarski, and Lorenz von Smekal. Effective potential for SU(2) Polyakov loops and Wilson loop eigenvalues. *Phys.Rev.*, D88(5):054020, 2013.