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Abstract

" We derive an analytical gauge-invariant relation between the Polyakov loop L pand the Dirac eigenvalues A,,in lattice QCD where the temporal lattice size N, A
is odd. From this relation, we conclude that low-lying Dirac modes are not essential modes for confinement, which indicates no direct one-to-one
correspondence between confinement and chiral symmetry breaking in QCD. In the confinement phase, we find a new “positive/negative symmetry” of the

L Dirac-mode matrix element of the link-variable operator. In the deconfinement phase, there is no such symmetry. y
Introduction relation between confinement and chiral symmetry breaking
] ] i ] ] The analytical relation connecting the Polyakov loop and Dirac mode
Question: confinement = chiral symmetry breaking in QCD ? 21N )
T Z ANa=1(n|U,In) on temporally odd number lattice: Ny is odd  (in lattice unit:a = 1 )
Transition temperatures are almost same n

Low-lying Dirac-modes are important for CSB (Banks-Casher relation)
(/\n ~ O)

deconfinement transition chiral transition F. Karsch, Lect. Notes Phys. 583, 209 (2002)

L . . o] ope
(L), XL - Polyakov loop and its susceptibility - Low-lying Dirac-modes have little contribution to Polyakov loop

<¢¢>a X'm : chiral condensate and its susceptibility

- zero quark chemical potential
two flavor QCD with light quarks

The relation between Confinement and CSB is not one-to-one correspondence in QCD.

In fact, from similar analysis, we can derivate the similar relation between Wilson loop and Dirac mode.
Therefore, low-lying Dirac-modes have little contribution to the string tension o, or the confining force.

critical temperature is defined
as the peak of susceptibility

Numerical analysis

—> HighT LowT i » Transition temperatures are almost same

Numerical analysis for the relation
confinement properties are kept after removing low-lying Dirac-modes
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Analytical relation between
Polyakov loop and Dirac mode

1)81+82+83

confinement phase || 7 =56

lattice size : 10° x 5

standard square lattice
“with ordinary periodic boundary condition for gluons,
with the odd temporal length N, ( temporally odd-number lattice ) N4 = 3 case

In this study, we use
t [

Derivation

Consider the functional trace on the temporally odd-number lattice:

004 | ]
. A 006 . . . . . A
2 n -2 -1 0 1 2 n

(L) = 0 is due to the symmetric distribution of positive/negative value of (n|Us|n), AN+~ (n|U4|n)

I = Trcn,(ULl EN‘l_l) (N4 : Odd) (ch,»y = Estrctr'y) |s) : site Low-lying Dirac modes have little contribution to Polyakov loop.
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because the length of the trajectories, Ny, is odd. &
length of trajectories: N, = 3
[Almost all trajectories are gauge-variant & give no contribution.] odd S u mim a ry
L . . .
Nj =3 case [ Jauge variant We derive the relation between the Polyakov loop and the Dirac mode on
T I [ [ (no contribution) the temporally odd-number lattice. From this relation, we conclude that

low-lying Dirac modes are not essential modes for confinement, which

[Only the exception is the Polyakov loop. ] _ _ ] ]
indicates no direct one-to-one correspondence between confinement and

N4 — 3 case . Iis proportional to the Polyakov loop.
- N T % chiral symmetry breaking in QCD.
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