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1. Motivation

• The pion photoproduction γ∗N → πN near the ∆(1232) resonance re-

gion. The ∆Nγ∗ transition is experimentally most accessible one to reveal

a possible hadron deformation.

• The rare B-meson decays B → K∗γ∗ and B → K∗l+l− with K∗(892) →

Kπ. These processes are forbidden at tree level and thus sensitive to physics

beyond the Standard Model.

• The resonances are treated as stable particles in current lattice QCD sim-

ulations.

• A proper theoretical framework for the lattice extraction of the correspond-

ing amplitudes and form factors at lower pion masses is needed.

2. Theoretical background

• Lattice QCD provides an ab initio method to find the properties of reso-

nances.

• Lattice simulations are done in a finite space ⇒ impossible to prepare

asymptotic states ⇒ no resonances on the lattice.

• Lüscher approach: resonance parameters (its mass and width) are found

by determination of the scattering phase shift from the finite volume two

particle energy spectrum.

• Example: a scalar resonance.
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η = pL
2π , p2 = λ(s,m2

1,m
2
2)/4s,

pR cot δ0(sR) = − 1
a0

+ 1
2 r0p

2
R + · · · = −ipR

⊲ Lattice data ⇒ Lüscher equation ⇒ a0, r0 ⇒ resonance pole pR

3. The framework: non-relativistic EFT

• Very useful theoretical tool for generalization of the Lüscher approach to

the case of 3-point functions, involving resonances.

⊲ The total number of heavy particles is conserved.

⊲ The theory can be formulated in a manifestly Lorentz-invariant way.

⊲ The theory is matched to the full QFT (e.g., ChPT).

• The pole structure of the T-matrix emerges as a sum of bubble-chain

diagrams:
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• Previous work [1]: the case of the scalar resonance form factor (analog:

∆∆γ∗) in the external scalar field.

• We modify it in two aspects:

⊲ inclusion of spin;

⊲ generalization to the transition form factors.

4. Results for the ∆Nγ∗ transition

• Kinematics: the ∆ is at rest P = 0, the nucleon 3-momentum Q along

3-axis. To perform the fit (see below): vary p, while |Q| fixed.

⊲ twisted boundary conditions;
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→֒ already applied for the nucleon form factor

⊲ asymmetric boxes L× L× L′.
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⊲ The current matrix elements in a finite volume Fi = Fi(pn, |Q|),

i=1, 2, 3 → GM , GE, GC form factors, are measured on the lattice.

⊲ The F̄i(pn, |Q|) are volume-independent irreducible amplitudes.

• Real energy axis:
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where Ai = Ai(pn, |Q|) are γ∗N → πN multipole amplitudes.

⊲ The narrow width approximation:
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where FA
i (pA, |Q|) are the ∆Nγ∗ matrix elements.

• Complex energy plane:
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⊲ The narrow width approximation:

FR
i (pR, |Q|) → FA

i (pA, |Q|) as pR → pA !

⊲ Prescription on the lattice:
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R (Ai(|Q|) + p2RBi(|Q|) + · · · ) ,

where Ai(|Q|), . . . are fitted to latice data.

5. Preliminary study of B → K∗ transitions
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• The b → s transitions proceed through the loops in SM.
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Long distance contributions

• If q2 > m2
cc̄, then since VubV

∗
us << VtbV

∗
ts ⇒ we can apply our framework!

• Outlook: complete the work on B → K∗.
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