Electroweak probes in the presence of resonances on the lattice

Andria Agadjanov¹, V. Bernard², Ulf-G. Meißner¹, A. Rusetsky¹

¹Helmholtz-Institut für Strahlen- und Kernphysik (Theorie), ²IPN Orsay

1. Motivation

• The pion photoproduction $\gamma^* N \to \pi N$ near the $\Delta(1232)$ resonance region. The $\Delta N \gamma^*$ transition is experimentally most accessible one to reveal a possible hadron deformation.

• The rare B-meson decays $B \to K^* \gamma^*$ and $B \to K^* l^+ l^-$ with $K^*(892) \to K\pi$. These processes are forbidden at tree level and thus sensitive to physics beyond the Standard Model.

• The resonances are treated as stable particles in current lattice QCD simulations.

4. Results for the $\Delta N\gamma^*$ transition

• Kinematics: the Δ is at rest $\mathbf{P} = 0$, the nucleon 3-momentum \mathbf{Q} along 3-axis. To perform the fit (*see below*): vary p, while $|\mathbf{Q}|$ fixed.

 \triangleright twisted boundary conditions;

 \hookrightarrow already applied for the nucleon form factor

 \triangleright asymmetric boxes $L \times L \times L'$.

• A proper theoretical framework for the lattice extraction of the corresponding amplitudes and form factors at lower pion masses is needed.

2. Theoretical background

bcgs

• Lattice QCD provides an *ab initio* method to find the properties of resonances.

• Lattice simulations are done in a finite space \Rightarrow impossible to prepare asymptotic states \Rightarrow no resonances on the lattice.

• Lüscher approach: resonance parameters (its mass and width) are found by determination of the scattering phase shift from the finite volume two particle energy spectrum.

• Example: a scalar resonance.

$$\cot \delta_0(s) = w_{00}(\eta) \quad \text{(Lüscher equation)},$$

$$\eta = \frac{pL}{2\pi}, \quad p^2 = \lambda(s, m_1^2, m_2^2)/4s,$$

▷ The current matrix elements in a finite volume F_i = F_i(p_n, |Q|), i=1,2,3 → G_M, G_E, G_C form factors, are measured on the lattice.
▷ The F_i(p_n, |Q|) are volume-independent irreducible amplitudes.
• Real energy axis:

$$\mathcal{A}_{i}(p_{n}, |\mathbf{Q}|) = e^{i\delta(p_{n})} V^{1/2} \left(\frac{1}{|\delta'(p_{n}) + \phi'(\eta_{n})|} \frac{p_{n}^{2}}{2\pi} \right)^{-1/2} |F_{i}(p_{n}, |\mathbf{Q}|)|,$$

where $\mathcal{A}_i = \mathcal{A}_i(p_n, |\mathbf{Q}|)$ are $\gamma^* N \to \pi N$ multipole amplitudes. \triangleright The narrow width approximation:

$$|\operatorname{Im} \mathcal{A}_i(p_A, |\mathbf{Q}|)| = \sqrt{\frac{8\pi}{p_A \Gamma}} |F_i^A(p_A, |\mathbf{Q}|)|,$$

where $F_i^A(p_A, |\mathbf{Q}|)$ are the $\Delta N \gamma^*$ matrix elements.

• Complex energy plane:

$$F_i^R(p_R, |\mathbf{Q}|) = Z_R^{1/2} \, \bar{F}_i(p_R, |\mathbf{Q}|), \quad Z_R = \left(\frac{p_R}{8\pi E_R}\right)^2 \left(\frac{16\pi p_R^3 E_R^3}{w_{1R} w_{2R}(2p_R h'(p_R^2) + 3ip_R^2)}\right)$$

$$p_R \cot \delta_0(s_R) = -\frac{1}{a_0} + \frac{1}{2}r_0p_R^2 + \dots = -ip_R$$

 \triangleright Lattice data \Rightarrow Lüscher equation $\Rightarrow a_0, r_0 \Rightarrow$ resonance pole p_R

3. The framework: non-relativistic EFT

• Very useful theoretical tool for generalization of the Lüscher approach to the case of 3-point functions, involving resonances.

- \triangleright The total number of heavy particles is conserved.
- ▷ The theory can be formulated in a manifestly Lorentz-invariant way.
- \triangleright The theory is matched to the full QFT (e.g., ChPT).
- The pole structure of the T-matrix emerges as a sum of bubble-chain diagrams:

▷ The narrow width approximation:

 $F_i^R(p_R, |\mathbf{Q}|) \to F_i^A(p_A, |\mathbf{Q}|)$ as $p_R \to p_A$!

 \triangleright Prescription on the lattice:

 $F_i^R(p_R, |\mathbf{Q}|) = i p_R^{-3} Z_R^{1/2}(A_i(|\mathbf{Q}|) + p_R^2 B_i(|\mathbf{Q}|) + \cdots),$ where $A_i(|\mathbf{Q}|), \ldots$ are fitted to latice data.

5. Preliminary study of $B \rightarrow K^*$ transitions

• The $b \to s$ transitions proceed through the loops in SM.

 $T \propto 1 + cJ + cJ^2 + \dots = \frac{1}{1 - cJ}$

- Previous work [1]: the case of the *scalar* resonance form factor (analog: $\Delta \Delta \gamma^*$) in the external *scalar* field.
- We modify it in two aspects:
 - \triangleright inclusion of *spin*;
 - \triangleright generalization to the *transition* form factors.

• If $q^2 > m_{c\bar{c}}^2$, then since $V_{ub}V_{us}^* << V_{tb}V_{ts}^* \Rightarrow$ we can apply our framework! • Outlook: complete the work on $B \rightarrow K^*$.

References

[1] V. Bernard et al., JHEP **1209** (2012) 023.
[2] A. Agadjanov et al., arXiv:1405.3476 [hep-lat].
[3] C. Alexandrou et al., Phys. Rev. D **77** (2008) 085012.
[4] R. Horgan et al., Phys. Rev. D **89** (2014) 094501.