ROTATING QCD MATTER

Dubna International Advanced School of Theoretical Physics

Helmholtz International Summer School Lattice QCD, Hadron Structure and Hadronic Matter

JINR, Dubna, August 25, 2014

Oleg Teryaev JINR, Dubna

Lecture 2

- Rotation and gravity
- Gravity and matrix elements
- Equivalence Principle and Spin
- Extension of Equivalence Principle (validity separately for quarks and gluons)
- EP for Spin-1 hadrons
- Rotation and lattice

Rotation and gravity

- Rotation non-inertial frame
- May be described by deviation of metric from Minkowski
- Non-diagonal component of metric relevant $g_{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & y\Omega \\ 0 & 1 & 0 & -x\Omega \\ 0 & 0 & 1 & 0 \\ y\Omega & -x\Omega & 0 & 1 + r^2\Omega^2 \end{pmatrix}$
- Used to derive lattice action in rotating frame (Yamamotom Hirono)

PRL 111, 081601 (2013)

Interactions with gravity (inertia) and matrix elements

- Link between hadronic physics and gravity matrix element of quark/gluon energy momentum tensors
- Smallness is only in the size of Newton constant – matrix element is not suppressed
- Low momentum transfer limit complementary way to describe the interaction with external classical field

Electromagnetism vs Gravity

- Interaction field vs metric deviation $M = \langle P'|J_q^{\mu}|P\rangle A_{\mu}(q)$ $M = \frac{1}{2}\sum_{r=0}^{\infty} \langle P'|T_{q,G}^{\mu\nu}|P\rangle h_{\mu\nu}(q)$
- Static limit

 $\langle P|J^{\mu}_{q}|P\rangle = 2e_{q}P^{\mu}$

$$\sum_{q,G} \langle P | T_i^{\mu\nu} | P \rangle = 2P^{\mu}P^{\nu}$$
$$h_{00} = 2\phi(x)$$

 $M_0 = \langle P | J_q^{\mu} | P \rangle A_{\mu} = 2e_q M \phi(q) \qquad M_0 = \frac{1}{2} \sum_{q,G} \langle P | T_i^{\mu\nu} | P \rangle h_{\mu\nu} = 2M \cdot M \phi(q)$

Mass as charge – equivalence principle

Equivalence principle

- Newtonian "Falling elevator" well known and checked (also for elementary particles)
- Post-Newtonian gravity action on SPIN known since 1962 (Kobzarev and Okun'); rederived from conservation laws - Kobzarev and Zakharov
- Anomalous gravitomagnetic (and electric-CP-odd) moment iz ZERO or
- Classical and QUANTUM rotators behave in the SAME way
- not checked on purpose but in fact checked in atomic spins experiments at % level (Silenko,OT'07)
- Spin unique probe of generic non-Riemannian gravity (Puetzfeld, Obukhov'09) – violation of PNEP

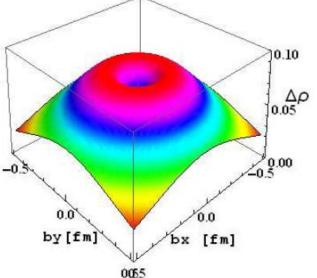
Gravitational Formfactors (second moments of GPDs)

 $\langle p'|T^{\mu\nu}_{q,g}|p\rangle = \bar{u}(p') \Big[A_{q,g}(\Delta^2) \gamma^{(\mu} p^{\nu)} + B_{q,g}(\Delta^2) P^{(\mu} i \sigma^{\nu)\alpha} \Delta_{\alpha}/2M] u(p)$

Conservation laws (Ji SR) - zero Anomalous Gravitomagnetic Moment : $\mu_G = J$ (g=2)

 $P_{q,g} = A_{q,g}(0) \qquad A_q(0) + A_g(0) = 1$

 $J_{q,g} = \frac{1}{2} \left[A_{q,g}(0) + B_{q,g}(0) \right] \qquad A_q(0) + B_q(0) + A_g(0) + B_g(0) = 1$


- May be extracted from high-energy experiments/NPQCD calculations
- Describe the partition of angular momentum between quarks and gluons
- Describe interaction with both classical and TeV gravity

Generalized Parton Diistributions (related to matrix elements of non local operators) – models for both EM and Gravitational Formfactors (Selyugin,OT '09)

Smaller mass square radius "attraction vs repulsion" – "Regge" t-dependence from small x

$$\rho(b) = \sum_{q} e_{q} \int dx q(x, b) = \int d^{2}q F_{1}(Q^{2} = q^{2})e^{iq}$$

$$= \int_0^\infty \frac{q dq}{2\pi} J_0(qb) \frac{G_E(q^2) + \tau G_M(q^2)}{1 + \tau}$$

$$\rho_0^{\rm Gr}(b) = \frac{1}{2\pi} \int_\infty^0 dq q J_0(qb) A(q^2)$$

FIG. 17: Difference in the forms of charge density F_1^P and "matter" density (A)

Gravitomagnetism (rotating frames and sources)

- Gravitomagnetic field (weak, except in gravity waves) – action on spin from $M = \frac{1}{2} \sum_{q,G} \langle P' | T_{q,G}^{\mu\nu} | P \rangle h_{\mu\nu}(q)$ $\vec{H}_J = \frac{1}{2} rot \vec{g}; \ \vec{g}_i \equiv g_{0i}$ spin dragging twice
 - smaller than EM
- Lorentz force similar to EM case: factor $\frac{1}{2}$ cancelled with 2 from $h_{00} = 2\phi(x)$ Larmor frequency same as EM $\omega_J = \frac{\mu_G}{I}H_J = \frac{H_L}{2} = \omega_L \vec{H}_L = rot\vec{g}$
- Orbital and Spin momenta dragging the same -Equivalence principle

Experimental test of PNEP

Reinterpretation of the data on G(EDM) search
Reinterpretation of the data on G(EDM)

VOLUME 68 13 JANUARY 1992

Search for a Coupling of the Earth's Gravitational Field to Nuclear Spins in Atomic Mercury

NUMBER 2

B. J. Venema, P. K. Majumder, S. K. Lamoreaux, B. R. Heckel, and E. N. Fortson Physics Department, FM-15, University of Washington, Seattle, Washington 98105 (Received 25 September 1991)

 If (CP-odd!) GEDM=0 -> constraint for AGM (Silenko, OT'07) from Earth rotation – was considered as obvious background

 $\mathcal{H} = -g\mu_N \boldsymbol{B} \cdot \boldsymbol{S} - \zeta \hbar \boldsymbol{\omega} \cdot \boldsymbol{S}, \quad \zeta = 1 + \chi$

 $|\chi(^{201}\text{Hg}) + 0.369\chi(^{199}\text{Hg})| < 0.042$ (95%C.L.)

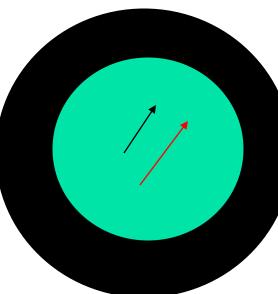
Equivalence principle for moving particles

- Compare gravity and acceleration: gravity provides EXTRA space components of metrics h_{zz} = h_{xx} = h_{yy} = h₀₀
- Matrix elements DIFFER

 $\mathcal{M}_g = (\epsilon^2 + p^2) h_{00}(q), \qquad \mathcal{M}_a = \epsilon^2 h_{00}(q)$

- Ratio of accelerations: $R = \frac{\epsilon^2 + p^2}{\epsilon^2}$ confirmed by explicit solution of Dirac equation (Silenko, OT, '05)
- Non-stationary (weak approximation to Kerr) – Obukhov, Silenko, OT '09,11,13

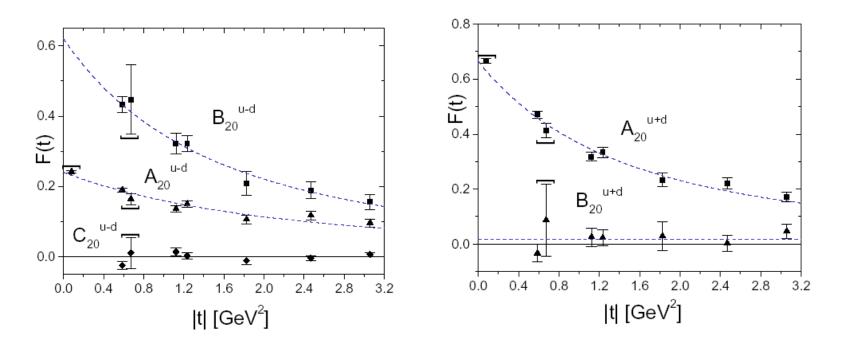
Gravity vs accelerated frame for spin and helicity


- Spin precession well known factor 3 (Probe B; spin at satellite probe of PNEP!) smallness of relativistic correction (~P²) is compensated by 1/ P² in the momentum direction precession frequency
- Helicity flip the same!
- No helicity flip in gravitomagnetic field another formulation of PNEP (OT'99)

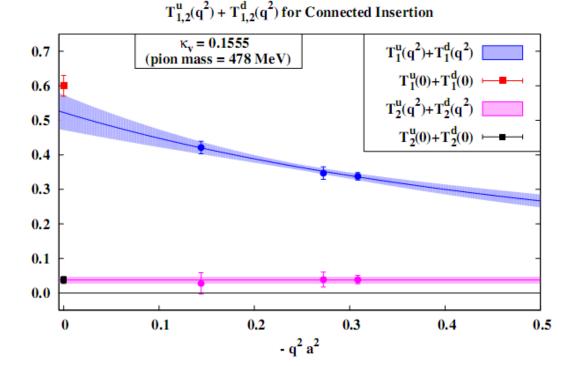
Gyromagnetic and Gravigyromagnetic ratios

- Free particles coincide
- <P+q|T^{mn} |P-q> = P^{{m}<P+q|Jⁿ}|P-q>/e up to the terms linear in q
- Special role of g=2 for any spin (asymptotic freedom for vector bosons6cancellation of leading divergencies,...)
- Should Einstein know about PNEP, the outcome of his and de Haas experiment would not be so surprising
- Recall also g=2 for Black Holes. Indication of "quantum" nature?!

Cosmological implications of PNEP


- Necessary condition for Mach's Principle (in the spirit of Weinberg's textbook) -
- Lense-Thirring inside massive rotating empty shell (=model of Universe)
- For flat "Universe" precession frequency equal to that of shell rotation
- Simple observation-Must be the same for classical and quantum rotators PNEP!

More elaborate models - Tests for cosmology ?!


Generalization of Equivalence principle

Various arguments: AGM ≈ 0 separately for quarks and gluons – most clear from the lattice (LHPC/SESAM)

Recent lattice study (M. Deka et al. arXiv:1312.4816)

Sum of u and d for Dirac (T1) and Pauli (T2) FFs

Extended Equivalence Principle=Exact EquiPartition

- In pQCD violated
- Reason in the case of ExEP- no smooth transition for zero fermion mass limit (Milton, 73)
- Conjecture (O.T., 2001 prior to lattice data) – valid in NP QCD – zero quark mass limit is safe due to chiral symmetry breaking
- Supported by generic smallness of E (isoscalar AMM)

Vector mesons and ExEP

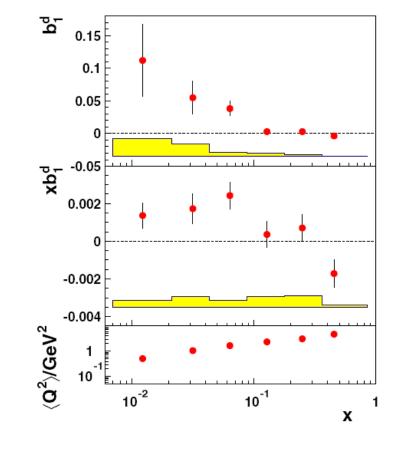
- J=1/2 -> J=1. QCD SR (Samsonov) calculation of Rho's AMM gives g close to 2.
- Maybe because of similarity of moments
- $g-2 = \langle E(x) \rangle; B = \langle xE(x) \rangle$
- Directly for charged Rho (combinations like p+n for nucleons unnecessary!). Not reduced to non-extended EP: Gluons momentum fraction sizable

ExEP and AdS/QCD

- Recent development calculation of Rho formfactors in Holographic QCD (Grigoryan, Radyushkin)
- Provides g=2 identically!
- Experimental test at time –like region possible

Another (new!) manifestation of post-Newtonian (E)EP for spin 1 hadrons

- Tensor polarization coupling of gravity to spin in forward matrix elements inclusive processes
- Second moments of tensor distributions should sum to zero


 $\langle P, S | \bar{\psi}(0) \gamma^{\nu} D^{\nu_1} \dots D^{\nu_n} \psi(0) | P, S \rangle_{\mu^2} = i^{-n} M^2 S^{\nu\nu_1} P^{\nu_2} \dots P_{\nu_n} \int_0^1 C_q^T(x) x^n dx$ $\sum \langle P, S | T_i^{\mu\nu} | P, S \rangle_{\mu^2} = 2P^{\mu} P^{\nu} (1 - \delta(\mu^2)) + 2M^2 S^{\mu\nu} \delta_1(\mu^2)$

$$\langle P, S | T_g^{\mu\nu} | P, S \rangle_{\mu^2} = 2 P^{\mu} P^{\nu} \delta(\mu^2) - 2 M^2 S^{\mu\nu} \delta_1(\mu^2)$$

$$\sum_{q} \int_{0}^{1} C_{i}^{T}(x) x dx = \delta_{1}(\mu^{2}) = 0 \text{ for EEP}$$

HERMES – data on tensor spin structure function PRL 95, 242001 (2005)

- Isoscalar target proportional to the sum of u and d quarks – combination required by EEP
- Second moments compatible to zero better than the first one (collective glue << sea) – for valence: $\int_{-1}^{1} C_{i}^{T}(x) dx = 0$

EP and Sivers function

- Qualitatively similar to OAM and Anomalous Magnetic Moment (Brodsky, Burkardt, Schmidt)
- Quantification : weighted TM moment of Sivers PROPORTIONAL to GPD E (OT'07, hep-ph/0612205): f_T⁽¹⁾(x)~ xE(x)
- Burkardt SR for Sivers functions is then related to Ji's SR for E and, in turn, to Equivalence Principle
- Broken by lensing function: imposing the relation -constraints for it?!

ExEP and Sivers function for deuteron

- ExEP smallness of deuteron Sivers function
- Cancellation of Sivers functions separately for quarks (before inclusion gluons)
- Equipartition + small gluon spin large longitudinal orbital momenta (cf small transverse ones –Brodsky, Gardner)

Another relation of Gravitational FF and NP QCD (first reported at 1992: hep-ph/9303228)

- BELINFANTE (relocalization) invariance :
 decreasing in coordinate $M^{\mu,\nu\rho} = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} J_{S\sigma}^5 + x^{\nu} T^{\mu\rho} x^{\rho} T^{\mu\nu}$ smoothness in momentum space $M^{\mu,\nu\rho} = x^{\nu} T_B^{\mu\rho} x^{\rho} T_B^{\mu\nu}$
- Leads to absence of massless pole in singlet channel – U_A(1)
- Delicate effect of NP QCD $(g_{\rho\nu}g_{\alpha\mu} g_{\rho\mu}g_{\alpha\nu})\partial^{\rho}(J_{5S}^{\alpha}x^{\nu}) = 0$

 $\epsilon_{\mu\nu\rho\alpha}M^{\mu,\nu\rho} = 0.$

• Equipartition – deeply $q^2 \frac{\partial}{\partial q^{\alpha}} \langle P|J_{5S}^{\alpha}|P+q \rangle = (q^{\beta} \frac{\partial}{\partial q^{\beta}} - 1)q_{\gamma} \langle P|J_{5S}^{\gamma}|P+q \rangle$ related to relocalization $\langle P,S|J_{\mu}^{5}(0)|P+q,S \rangle = 2MS_{\mu}G_{1} + q_{\mu}(Sq)G_{2},$ $q^{2}G_{2}|_{0} = 0$ invariance by QCD evolution

Relocalization and EEP (OT'98)

- Evolution of orbital and TOTAL angular momentum (at LO) – related due to non-trivial relations between DGLAP kernels
- $\frac{d}{dt} \begin{pmatrix} J_q \\ J_G \end{pmatrix} = \frac{\alpha(t)}{2\pi} \begin{pmatrix} \int_0^1 dx(x-1)P_{qq}(x) & 2n_f \int_0^1 dxx P_{qG}(x) \\ \int_0^1 dxx P_{Gq}(x) & -2n_f \int_0^1 dxx P_{qG}(x) \end{pmatrix} \begin{pmatrix} J_q \\ J_G \end{pmatrix}$ $\blacksquare \mathsf{RI:} \quad P_{ij}^{JJ(1)} = P_{ij}^{LL(1)} \qquad \int_0^1 dxx \Delta P_{Gq}(x) = \frac{1}{2} \int_0^1 dxx P_{Gq}(x)$
- **EEP:** $P^{LL(1)} = P^{TT(2)}$

CONCLUSIONS -II

- Rotation may be studies as a specific gravity field
- Gravity coupling to spin manifested in hadron structure
- Some of evidences for validity of EP for quarks and gluons separately
- Lattice studies on the way