ROTATING QCD MATTER

Dubna International Advanced School of Theoretical Physics

Helmholtz International Summer School Lattice QCD, Hadron Structure and Hadronic Matter

JINR, Dubna, August 25, 2014

Oleg Teryaev JINR, Dubna

Lecture 1

Rotation in heavy-ion collisions

From rotation to polarization: Axial anomaly

Anomaly in nucleon and hadronic matter: vorticity vs gluon polarization

Exploration of Spin effects at JINR

Lecture 2

Rotation and gravity

Gravitational formfactors

Equivalence principle and its extenstion

Rotation and lattice

Rotation in HIC and related quantities

- Non-central collisions orbital angular momentum
- L=Σ r x p
- Differential pseudovector characteristics – vorticity
- Pseudoscalar helicity
- H= (v curl v)

Model calculations@BLTP Baznat, Gudima, Sorin, OT PHYSICAL REVIEW C 88,061901(R) (2013)

 Kinetic model (Quark-Gluon String Model) – output - particle momenta

• Velocity
$$\vec{v}(x, y, z, t) = \frac{\sum_i \sum_j \vec{P}_{ij}}{\sum_i \sum_j E_{ij}}$$

i – particles, j – (1-10000) events

Distribution of velocity ("Small Bang")

3D/2D projection

z-beams direction

x-impact paramater

Distribution of vorticity ("small galaxies")

Layer patterns –

(preliminary)

- Science 22 August 2014: Vol. 345 no. 6199 pp. 906-909 DOI: 10.1126/science.1252395
- REPORT
- Shapes and vorticities of superfluid helium nanodroplets
- Cf "femtodroplets" in HIC

Helicity separation

- Total helicity integrates to zero BUT
- Mirror helicities below and above the reaction plane

What is the relative orientation of velocity and vorticity?

- Measure Cauchy-Schwarz inequality
- Small but non-negligible correlation

Similar results:

UrQMD model

HSD model (poster presentation of R. Usubov)

How to observe this effect?

Coupling of HD helicity to quark axial current via axial anomaly

May lead to POLARIZATION of hyperons

Symmetries and conserved operators

- (Global) Symmetry -> conserved current ($\partial^{\mu}J_{\mu} = 0$)
- Exact:
- U(1) symmetry charge conservation electromagnetic (vector) current
- Translational symmetry energy momentum tensor $\partial^{\mu}T_{\mu\nu} = 0$

Massless fermions (quarks) – approximate symmetries

- Chiral symmetry (mass flips the helicity) $\partial^{\mu}J^{5}{}_{\mu} = 0$
- Dilatational invariance (mass introduce dimensional scale – c.f. energymomentum tensor of electromagnetic radiation)

$$T_{\mu\mu} = 0$$

Quantum theory

- Currents -> operators
- Not all the classical symmetries can be preserved -> anomalies
- Enter in pairs (triples?...)
- Vector current conservation <-> chiral invariance
- Translational invariance <-> dilatational invariance

Calculation of anomalies

- Many various ways (VVA diagram)
- All lead to the same operator equation

$$\partial^{\mu} j^{(0)}_{5\mu} = 2i \sum_{q} m_{q} \overline{q} \gamma_{5} q - \left(\frac{N_{f} \alpha_{s}}{4\pi}\right) G^{a}_{\mu\nu} \tilde{G}^{\mu\nu,a}$$

 UV vs IR languagesunderstood in physical picture (Gribov, Feynman, Nielsen and Ninomiya) of Landau levels flow (E||H)

(b)

(a l

Counting the Chirality

- Degeneracy rate of Landau levels
- "Transverse" HS/(1/e) (Flux/flux quantum)
- "Longitudinal" Ldp= eE dt L (dp=eEdt)
- Anomaly coefficient in front of 4-dimensional volume - e² EH

Anomaly and nucleon spin structure

- Transmits (leading twist) circular polarization of gluons to that of light quarks
- Transmits (high twist) quark-gluon correlations to polarization of heavy (strange may be considered heavy sometimes!) quarks

Gluon Anomaly and spin structure

Gluon contribution to DIS

- Taking the 1st moment (integral over x): box
 triangle
- Gluon polarization numerically small

Massive quarks

- One way of calculation finite limit of regulator fermion contribution (to TRIANGLE diagram) in the infinite mass limit
- The same (up to a sign) as contribution of REAL quarks
- For HEAVY quarks cancellation!
- Anomaly violates classical symmetry for massless quarks but restores it for heavy quarks

Heavy quarks polarisation

Non-complete cancellation of mass and anomaly terms (97)

$$\partial^{\mu} j_{5\mu}^{c} = \frac{\alpha_{s}}{48\pi m_{c}^{2}} \partial^{\mu} R_{\mu} , \qquad \langle N(p,\lambda) | j_{5\mu}^{(c)}(0) | N(p,\lambda) \rangle \\ = \frac{\alpha_{s}}{12\pi m_{c}^{2}} \langle N(p,\lambda) | g \sum_{f=u,d,s} \overline{\psi}_{f} \gamma_{\nu} \tilde{G}_{\mu}^{-\nu} \psi_{f} | N(p,\lambda) \rangle$$

$$R_{\mu} = \partial_{\mu} (G^{a}_{\rho\nu} \tilde{G}^{\rho\nu,a}) - 4 (D_{\alpha} G^{\nu\alpha})^{a} \tilde{G}^{a}_{\mu\nu} = \frac{\alpha_{s}}{12\pi m_{c}^{2}} 2m_{N}^{3} s_{\mu} f_{S}^{(2)}.$$

- Gluons correlation with nucleon spin twist 4 operator NOT directly related to twist 2 gluons helicity BUT related by QCD EOM to singlet twist 4 correction (colour polarisability) f2 to g1
- "Anomaly mediated" polarisation of heavy quarks

Small (intrinsic) charm polarisation

$$\overline{G}_{A}^{o}(0) = -\frac{\alpha_{s}}{12\pi} f_{S}^{(2)} \left(\frac{m_{N}}{m_{o}}\right)^{2} \approx -5 \times 10^{-45}$$

 Consider STRANGE as heavy! – CURRENT strange mass squared is 100 times larger – -5% - reasonable compatibility to the data! (But problem with DIS and SIDIS) Anomaly in medium – new external lines in VVA graph

- Gauge field -> velocity
 - CME -> CV(ortical)E
 - Kharzeev,
 Zhitnitsky (07) –
 EM current

θ

Baryon charge with neutrons – (Generalized) Chiral Vortical Effect

(Anomalous transport on the lattice –M. Polikarpov and collaborators; lectures of P. Buividovich)

- Coupling: $e_j A_\alpha J^\alpha \Rightarrow \mu_j V_\alpha J^\alpha$
- Current: $J_e^{\gamma} = \frac{N_c}{4\pi^2 N_f} \varepsilon^{\gamma\beta\alpha\rho} \partial_{\alpha} V_{\rho} \partial_{\beta} (\theta \sum_j e_j \mu_j)$
- Uniform chemical potentials: $J_i^{\nu} = \frac{\sum_j g_{i(j)} \mu_j}{\sum_i e_i \mu_i} J_e^{\nu}$
- Rapidly (and similarly) changing chemical potentials:

$$J_i^0 = \frac{\left|\vec{\nabla}\sum_j g_{i(j)}\mu_j\right|}{\left|\vec{\nabla}\sum_j e_j\mu_j\right|} \ J_e^0$$

Single Spin Asymmetries (vector polarisation) Simplest example - (non-relativistic) elastic pion-nucleon scattering $\pi \vec{N} \to \pi N$ Left UpDown Right $M = a + ib(\vec{\sigma}\vec{n}) \vec{n}$ is the normal to the scattering plane. Density matrix: $\rho = \frac{1}{2}(1 + \vec{\sigma}\vec{P}),$ Differential cross-section: $d\sigma \sim 1 + A(\vec{P}\vec{n}), A = \frac{2Im(ab^*)}{|\sigma|^2 + |b|^2}$

Polarization of hyperons in HIC

- Hyperons (in particular, Λ) polarization (self-analyzing in weak decay)
- Normal to scattering plane smearing in HIC-rotation in reaction plane
- Searched at RHIC (S. Voloshin et al.) oriented plane (slow neutrons) - no signal observed

Why polarization is not seen?

- Possible origin distributed orbital angular momentum and local spin-orbit coupling
- Only small amount of collective OAM is coupled to polarization

New source of Λ polarization: coupling to rotation

- Bilinear effect of vorticity generates quark axial current (Son, Surowka'09)
- Strange quarks should lead to Λ polarization (Rogachevsky,Sorin,OT'10)
- Proportional to square of chemical potential – small at high energies (RHIC) – may be probed at moderate ones (FAIR & NICA)
- Also maximal helicity!

How large is the polarization?

Induced current $j_A^{\mu} \sim \mu^2 \left(1 - \frac{2 \mu n}{3 (\epsilon + P)}\right) \epsilon^{\mu\nu\lambda\rho} V_{\nu} \partial_{\lambda} V_{\rho}$

• Axial charge $Q_5^s = \frac{N_c}{2\pi^2} \int d^3x \mu^2(x) \epsilon^{ijk} u_i \partial_j u_k = \frac{\langle \mu^2 \rangle N_c H}{2\pi^2}$,

Polarization $\langle P_{\Lambda} \rangle \sim \frac{\langle \mu^2 \rangle N_c H}{2\pi^2 \langle N_{\Lambda} \rangle} \sim 1\%$

Where to study it? – NICA -(lectures of G. Trubnikov, O.Rogachevsky, excursion 3.09)

 A-hyperons polarization – MPD and BM@N detectors

 Gluon polarization in nucleon and other spin (and transverse momentum) dependent distribution – SPD detector

Conclusions/Discussion - I

- Vorticity emerges in collisions of heavy ions
- May be transmitted to quark polarization analogously to case of gluon polarization in nucleon
- New source of hyperon polarization in heavy ions collisions
- Quark masses may (partially) screen anomaly effects