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Towards the QCD phase diagram
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The order of the QCD thermal transition, 

chiral p.t.
restoration of global

µ = 0

deconfinement p.t.: 
breaking of global 

SU(2)L × SU(2)R × U(1)A

Z(3)

anomalous

chiral critical line

deconfinement critical line
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Very difficult!

Monte Carlo history,
plaquette near phase boundary 
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The nature of the phase transition at the physical point Fodor et al. 06

...in the staggered approximation...in the continuum...is a crossover!

The nature of the transition for phys. masses Aoki et al. 06
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How to identify the critical surface: Binder cumulant

B4(ψ̄ψ) ≡
〈(δψ̄ψ)4〉
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Observable: Binder cumulant

• Probability distribution of order parameter

- distinguishes crossover (Gaussian) vs 1rst order (2 peaks)

- 2nd order: scale-invariant distribution with known Ising exponents

- encoded in Binder cumulant
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Ph. de Forcrand INT, Aug. 2008 Controlled crit. pt.

How to identify the order of the phase transition

x− xc

parameter along  phase boundary, T = Tc(x)
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Order of p.t., arbitrary quark masses  

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  0.01  0.02  0.03  0.04

am
s

amu,d

Nf=2+1

physical point

ms
tric - C mud

2/5

deconf. p.t.

ch
ir

al
 p

.t.

physical point: crossover in the continuum                   Aoki et al 06

chiral critical line on                                                   de Forcrand, O.P. 07

consistent with tri-critical point at 

But:              chiral O(4) vs. 1st still open               Di Giacomo et al 05, Kogut, Sinclair 07
            anomaly!                                                  Chandrasekharan, Mehta 07

Nt = 4, a ∼ 0.3 fm

mu,d = 0, mtric
s ∼ 2.8T

Nf = 2
UA(1)

µ = 0

Cossu et al. 12, Aoki et al. 12
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Towards the continuum: Nt = 6, a ∼ 0.2 fm

Nt=4

mc
π(Nt = 4)

mc
π(Nt = 6)

≈ 1.77 Nf = 3 de Forcrand, Kim, O.P. 07
Endrödi et al 07 
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First order region shrinks drastically, continuum limit not yet known...

N.B.: for fixed masses in physical units the order of the p.t. depends on the cut-off!
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Lattice QCD at finite baryon density

Quark number and chemical potential:

Necessary for real world applications:        heavy ion collisions, nuclear matter, 
                                                               compact stars,...

Behaviour under charge conjugation:       
                                                              

sign flip in Q!

µ > 0 : net baryon number
µ < 0 : net anti-baryon number
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Exact symmetry of the continuum grand canonical partition function:       
                                                              

Lattice implementation, naive:       
                                                              

Introduces divergence, which is absent
at zero density: failure!

Another symmetry broken by the discretisation!

Continuum fermion number like current coupling to (imaginary) gauge field:
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Effectively part of covariant derivative, “gauged” U(1), protects against renormalisation

Lattice implementation: lattice covariant derivative with external gauge field

Wilson fermions:

)

(Discretisation not unique, only continuum limit)

Now use
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The sign problem

Dirac operators satisfy 
(continuum, Wilson, staggered,...)

With complex chemical potential:

“Sign problem” of QCD

Complex measure cannot be used for MC importance sampling

After integration over gauge fields the partition function is real!

Generic for systems with anti-particles, necessary for physics!
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 1dim. illustration
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Example:  Polyakov loop

Static quarks and anti-quarks must have different free energy at finite density!

Sign problem expresses 
property under C-conjugation!

Cluster algorithms find configs. with conjugate determinant
works for particular Hamiltonians, but not QCD

Simulation with Langevin algorithms (no importance sampling)
Only proven to work for real actions, but work for some ranges of coupling 
constants

Fixes:
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Special cases without sign problem

Two flavours, finite isospin chemical potential:

Two colours, SU(2) QCD:

real reps.

Imaginary chemical potential:

real for
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Approximate methods to evade the sign problem:
Reweighting

Based on exact relation:

I. Numerically difficult, signal exponentially suppressed with volume

II. Overlap problem, because of importance sampling

With increasing difference the most frequent configs. are
increasingly unimportant 

U

S
µ=0 finite µ

in
te

gr
an

d
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Finite density by Taylor expansion

Taylor expansion of the pressure 
around zero density:

The coefficients can be computed at zero density!

Other physical quantities follow:

No sign problem, but need small µ/T

Higher coeffs. increasingly difficult:
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QCD at imaginary chemical potential

No sign problem; general idea:

Observables have definite symmetry,
even or odd in chemical potential

Simulate left side without further systematic error

Check if fit to low order polynomial is possible 

Analytic continuation trivial (in the absence of singularities)

General considerations:

Partition function is periodic

Is this a healthy theory?

Yes! Recall

Equivalent to theory in real external field!

Z = T̂r e−
(H−iµiQ)

T

µ/T < 1
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Periodicity non-trivial:

Chemical potential can be absorbed by boundary conditions

Consider the topological gauge trafo

Measure and action are invariant, hence

Both partition fcns. related by gauge trafo, identical!

Roberge-Weiss symmetry:
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The phase diagram at imaginary chemical potential

-2!/3 -!/3 0 !/3 2!/3

T

!I/T

disordered

Tc(!=0)

ordered, k=0 ordered, k=1ordered, k=2

Z3 transitions

Phase of Polyakov loop

Analytic continuation
of chiral/deconfinement
transition, depends on
Nf, quark masses

Roberge-Weiss:     Z(3) transitions are first order for large T (perturbation theory)
                                                          crossover for small T (strong coupling limit)

Limited by singularity (phase transition)
closest to  µ = 0
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The Z(3) transition numerically
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Sectors characterised by phase of Polyakov loop: 〈L(x)〉 = |〈L(x)〉| eiϕ

Low T: crossover         High T: first order p.t.

Nf=2:  de Forcrand, O.P. 02 

Nf=4:  D’Elia, Lombardo 03 
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Test of methods: comparing Tc(µ)
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The calculable region of the phase diagram

T

µ

confined

QGP

Color superconductor

Tc
!

need

Upper region: equation of state, screening masses, quark number susceptibilities etc.
under control

µ/T <∼ 1 (µ = µB/3)
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Much harder: is there a QCD critical point?

12
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Fodor,Katz JHEP 04

abrupt change:  physics or problem of the method?                       Splittorff 05; 
                                                                                                 Han, Stephanov 08                                       

Lee-Yang zero:

Critical point from reweighting

                 physical quark masses, unimproved staggered fermionsNt = 4, Nf = 2 + 1

Approach 1a:    CEP from reweighting Fodor, Katz 04 

Splittorf 05, Stephanov 08 
caused by baryon or pion condensation?
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Approach 1b: CEP from Taylor expansion

p

T 4
=
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C.Schmidt, hotQCD 09

Hadron resonance gas

Radius of convergence necessary condition for CEP, but can it proof its existence?  

   Different definitions agree only for                 
   not n=1,2,3,... 
   control of systematics?      

n→∞
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Approach 2:  follow chiral critical line        surface

mc(µ)
mc(0)

= 1 +
∑

k=1

ck

( µ

πT

)2k

ch
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 p

.t.
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.t.

hard/easy
de Forcrand, O.P.   08,09 
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Finite density: chiral critical line        critical surface
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Curvature of the chiral critical surface

de Forcrand, O.P.   08,09 
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Nf=3:  a) fit to imaginary chemical potential
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Importance of higher order terms ? 
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On coarse lattice exotic scenario: 
no chiral critical point at small density

Weakening of p.t. with chemical potential also for:

-Heavy quarks                                                               de Forcrand, Kim, Takaishi 05

-Light quarks with finite isospin density                           Kogut, Sinclair 07

-Electroweak phase transition with finite lepton density   Gynther 03

  QCD critical point DISAPPEARED

crossover 1rst0 ∞

Real world

X

Heavy quarks

mu,d ms

µ
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Un-discovering a critical point feels like...
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Understanding the curvature from imaginary

Nf=4: D’Elia, Di Renzo, Lombardo 07    Nf=2:  D’Elia, Sanfilippo 09    Nf=3:

Strategy:  fix                    ,  measure  Im(L),  order parameter at 

              determine order of Z(3) branch/end point as function of m   

µi

T
= πµi

T
=

π

3
, π

µ

de Forcrand, O.P. 10
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T
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T /(π
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ordered

disordered

ordered

disordered
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ν = 0.33, 0.5, 0.63

for 1st order, tri-critical, 3d Ising 
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Scaling of Binder cumulant:
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Critical lines at imaginary µ
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µ = i
πT

3µ = 0

-Connection computable with standard Monte Carlo!   
-Here: heavy quarks in eff. theory
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3d, imaginary chemical potential included:
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Deconfinement critical line
Fromm, Langelage, Lottini, O.P. 11

mc

T
(µ2) =

mtric

T
+ K

[(π

3

)2
+

( µ

T

)2
]2/5

tri-critical scaling:                                                                                    exponent universal
        

Heavy quarks
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Summary Lecture IV

Thermal transition at zero density is a crossover

The sign problem is related to C-symmetry

Direct MC methods to circumvent only at small chemical potential

In the controlled region there is no evidence for a chiral critical point!

Langevin algorithms?
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New horizon: onset of cold nuclear matter 

... with very heavy quarks

continuum limit with 5-7 lattice spacings per point

consistent with physical  
nuclear density

µ

T
∼ 4000

mπ = 20 GeV, T = 10 MeV, a = 0.17 fm
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T =  20 MeV
T =  10 MeV
T =    5 MeV
T = 2.5 MeV

Complex Langevin:  no sign problem
convergence criteria satisfied
cf.  Seiler, Stamatescu; Aarts, James

Based on 3d effective action by strong coupling and hopping exp.

Frankfurt group, PRL 13
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