Lecture II:

- The ideal gas on the lattice
- QCD in the static and chiral limit
- The strong coupling expansion at finite temperature
- The equation of state

The ideal gas on the lattice

Starting point: propagator of a free scalar field

$$\ln Z_0 = -\frac{1}{2} \ln \det \Delta = \frac{1}{2} \operatorname{Tr} \ln \Delta^{-1}$$

$$= V \sum_{n=-N_\tau/2}^{N_\tau/2-1} \int_{\frac{\pi}{a}}^{\frac{\pi}{a}} \frac{d^3 p}{(2\pi)^3} \ln(\hat{p}^2 + (am)^2)$$

$$= V \sum_{n=-N_\tau/2}^{N_\tau/2-1} \int_{\frac{\pi}{a}}^{\frac{\pi}{a}} \frac{d^3 p}{(2\pi)^3} \ln\left(4\sin^2(\frac{a\omega_n}{2}) + 4\hat{\omega}^2\right)$$

Lattice momenta:

$$\hat{p}^2 = 4\sin^2\left(\frac{a\omega_n}{2}\right) + 4\sum_{j=1}^3\sin^2\left(\frac{ap_j}{2}\right) \qquad 4\hat{\omega}^2 = 4\sum_{j=1}^3\sin^2\left(\frac{ap_j}{2}\right) + (am)^2$$

Matsubara sum by analytic continuation, use:

$$\frac{1}{N_{\tau}} \sum_{n=-N_{\tau}/2}^{N_{\tau}/2-1} g(e^{i\omega_n}) = -\sum_{z_i} \frac{\operatorname{Res}(\frac{g(z_i)}{z_i})}{z_i^{N_{\tau}} - 1}$$

Substitution: $\hat{\omega} = \sinh(aE/2)$ $\ln Z_0 = -V \int_{-\frac{\pi}{a}}^{\frac{\pi}{a}} \frac{d^3p}{(2\pi)^3} \ln(1 - e^{-N_\tau aE})$

Expand in small lattice spacing about continuum limit:

$$I(a) = \int_{\frac{\pi}{a}}^{\infty} \frac{d^3 p}{(2\pi)^3} \ln(1 - e^{-N_{\tau} aE}) = I(0) + \frac{dI}{da} a \qquad I(0) = 0 \qquad I'(a) \propto \exp{-N_{\tau} aE}$$

So we may put a=0 in the integration limits! Now expand the dispersion relation

$$\sinh^2(\frac{aE}{2}) = \sum_{j=1}^3 \sin^2(\frac{ap_j}{2}) + \frac{(am)^2}{4}$$

 $E(\mathbf{p}) = E^{(0)}(\mathbf{p}) + aE^{(1)}(\mathbf{p}) + a^2 E^{(2)}(\mathbf{p}) + \dots, \qquad E^{(0)}(\mathbf{p}) = \sqrt{\mathbf{p}^2 + m^2}$

$$\frac{(aE)^2}{4} + \frac{(aE)^4}{48} = \sum_{j=1}^3 \left(\frac{(ap_j)^2}{4} - \frac{(ap_j)^4}{48}\right) + \frac{(am)^2}{4} + O(a^6)$$

$$E^{(2)}(\mathbf{p}) =$$

 $-\frac{1}{24E^{(0)}(\mathbf{p})}\left(\sum_{j=1}^{3}p_{j}^{4}+E^{(0)4}(\mathbf{p})\right)$

breaks rotation invariance

The bosonic dispersion relation has leading $O(a^2)$ cut-off effects Improvement: subtracting these, the dispersion relation is "p4-improved"

Expansion of the pressure now simple: expand down $e^{-aEN_{\tau}}$, then expand log

Use dimensionless variables:

$$x = p/T, \varepsilon = E/T$$

$$\frac{p}{T^4} = \left(\frac{p}{T^4}\right)_{\text{cont}} - a^2 \int \frac{d^3x}{(2\pi)^3} \frac{\varepsilon^{(2)}(x)}{\mathrm{e}^{\varepsilon^{(0)}(x)} - 1} + \dots$$

$$\frac{p}{p_{\rm cont}} = 1 + \frac{8\pi^2}{21} \frac{1}{N_{\tau}^2} + O\left(\frac{1}{N_{\tau}^4}\right)$$

Free boson gas has leading $O(a^2)$ cut-off effects!

Free fermion gas on the lattice

Analogous calculation, massless case starts also at $O(a^2)$

For Wilson fermions with finite mass, the leading correction is O(a), staggered $O(a^2)$

Note: $N_{\tau} \geq 10$ required for leading cut-off effects to dominate!

Quenched limit of QCD and Z(N) symmetry

Infinite quark masses (omitting flavour index) $m \to \infty$

Static quark propagator:
$$\langle \psi^a_{\alpha}(\tau, \mathbf{x}) \bar{\psi}^b_{\beta}(0, \mathbf{x}) \rangle = \delta_{\alpha\beta} e^{-m\tau} \left(T e^{i \int_0^{\tau} d\tau A_0(\tau, \mathbf{x})} \right)_{ab}$$

On the finite T lattice:

Polyakov loop

$$\mathsf{pp} \qquad L(\mathbf{x}) = \prod_{x_0}^{N_\tau} U_0(x)$$

Static QCD: (one flavour)

$$S_{\text{static}}[U] = S_g[U] + \sum_{\mathbf{x}} \left(e^{-mN_{\tau}} \operatorname{Tr} L(\mathbf{x}) + e^{-mN_{\tau}} \operatorname{Tr} L^{\dagger}(\mathbf{x}) \right)$$
$$\stackrel{m \to \infty}{\longrightarrow} S_g[U]$$

Gauge transformations:

Periodic b.c.:

$$U^{g}_{\mu}(x) = g(x)U_{\mu}(x)g^{-1}(x+\hat{\mu}), \quad g(x) \in SU(N)$$
$$U_{\mu}(\tau, \mathbf{x}) = U_{\mu}(\tau+N_{\tau}, \mathbf{x}), \quad g(\tau, \mathbf{x}) = g(\tau+N_{\tau}, \mathbf{x})$$

Action gauge invariant:

 $S_g[U^g] = S_g[U]$ $L^g(\mathbf{x}) = g(x)L(\mathbf{x})g^{-1}(x)$ $\mathrm{Tr}L^g = \mathrm{Tr}L$

Topologically non-trivial gauge transformations:

Modified b.c. for trafo matrix: $g'(\tau + N_{\tau}, \mathbf{x}) = hg'(\tau, \mathbf{x}), \quad h \in SU(N)$ f global "twist"

 $U^{g'}_{\mu}(\tau + N_{\tau}, \mathbf{x}) = h U^{g'}_{\mu}(N_{\tau}, \mathbf{x}) h^{-1}$ needs to be periodic for correct finite T physics!

$$h = z\mathbf{1} \in Z(N), \quad z = \exp i \frac{2\pi n}{N}, \quad n \in \{0, 1, 2, \dots N - 1\}$$
 Centre of SU(N)

 $S_g[U^{g'}] = S_g[U]$ invariant: centre symmetry of pure gauge action

Note: this is not a symmetry of H , but of H_z !

Requires compact time direction with periodic b.c.; finite T!

$$L^{g'}(\mathbf{x}) = g'(1, \mathbf{x})L(\mathbf{x})g'^{-1}(1 + N_{\tau}, \mathbf{x}) = g'(1, \mathbf{x})L(\mathbf{x})g'^{-1}(1, \mathbf{x})h^{-1}$$

 $\text{Tr}L^{g'} = z^* \text{Tr}L$ Polyakov loop picks up a phase under centre transformations

Partition function in the presence of one static quark: $Z_Q = \int DU \operatorname{Tr} L(\mathbf{x}) e^{-S_g[U]}$

$$\langle \mathrm{Tr}L \rangle = \frac{1}{Z} \int DU \,\mathrm{Tr}L \,\mathrm{e}^{-S_g} = \frac{Z_Q}{Z} = \mathrm{e}^{-(F_Q - F_0)/T}$$

gives free energy difference of thermal YM-system with and without a static quark

Deconfinement phase transition in YM: spontaneous breaking of Z(N) symmetry

Now add dynamical quarks:

$$\psi^{g}(x) = g(x)\psi(x), \quad \psi(\tau + N_{\tau}, \mathbf{x}) = -\psi(\tau, \mathbf{x}), \quad \psi^{g'}(\tau + N_{\tau}, \mathbf{x}) = -h\psi(\tau, \mathbf{x})$$

needs to be anti-periodic for correct finite T physics! h = 1 only

Centre symmetry explicitly broken by dynamical quarks!

 $\langle \text{Tr}L \rangle \neq 0$ for all T!

Confined and deconfined region analytically connected (only one phase!) No need for a phase transition!

Massless QCD and chiral symmetry (continuum)

massless quarks:

 S_f invariant under global chiral transformations $U_A(1) \times SU(N_f)_L \times SU(N_f)_R$

spontaneous symmetry breaking: $SU(N_f)_L \times SU(N_f)_R \rightarrow SU(N_f)_V$

 $\sim N_f^2 - 1$ massless Goldstone bosons, pions

order parameter: chiral condensate $\langle \bar{\psi}\psi \rangle = \frac{1}{L^3 N_t} \frac{\partial}{\partial m_q} \ln Z$

$$\langle \bar{\psi}\psi \rangle \begin{cases} > 0 \Leftrightarrow \text{symmetry broken phase,} & T < T_c \\ = 0 \Leftrightarrow \text{symmetric phase,} & T > T_c \end{cases}$$

chiral transition: spontaneous restoration of global $SU(N_f)_L \times SU(N_f)_R$ at high T

Chiral symmetry explicitly broken by dynamical quarks, no need for phase transition!

Physical QCD

.....breaks both chiral and Z(3) symmetry explicitly

.....but displays confinement and very light pions

no order parameter parameter no phase transition necessary!

if there is a p.t.: are there two distinct transitions?

- if there is just one p.t.: is it related to chiral or Z(3) dynamics?
- if there is no phase transition: how do the properties of matter change?

Strong coupling expansion (pure gauge)

Wilson action:
$$S_g[U] = \sum_x \sum_{1 \le \mu < \nu \le 4} \beta \left(1 - \frac{1}{3} \operatorname{ReTr} U_p \right) \equiv \sum_p S_p$$
 Plaquette action
Character of rep. r: $\chi_r(U) = \operatorname{Tr} D_r(U)$
group element representation matrix of group element

Character expansion:
$$\exp -S_p = c_0(\beta) [1 + \sum_{r \neq 0} d_r c_r(\beta) \chi_r(U_p)]$$
,

dimension of rep. matrix

Expansion coefficients: combinations of modified Bessel fcns. for SU(N)

 $c_f \equiv u = rac{eta}{18} + O(eta^2)$ all others can be expressed by fundamental one

$$f(N_{\tau}, u) = -\frac{3}{N_{\tau}} u^{4N_{\tau}} c^{N_{\tau}} \left[1 + 12N_{\tau} u^4 + 42N_{\tau} u^5 - \frac{115343}{2048} N_{\tau} u^6 - \frac{597663}{2048} N_{\tau} u^7 \right] -\frac{3}{N_{\tau}} u^{4N_{\tau}} b^{N_{\tau}} \left[1 + 12N_{\tau} u^4 + 30N_{\tau} u^5 - \frac{17191}{256} N_{\tau} u^6 - 180N_{\tau} u^7 \right]$$

Remarkable result:

$$f(N_{\tau}, u) = -\frac{1}{N_{\tau}} \left[e^{-m(A_1^{++})N_{\tau}} + 2e^{-m(E^{++})N_{\tau}} + 3e^{-m(T_1^{+-})N_{\tau}} \right] \left(1 + O(u^4) \right)$$

Glueball masses in SCE: (plaquette correlators)

$$m(A_1^{++}) = -4 \ln u - 3u + 9u^2 \dots$$
$$m(E^{++}) = -4 \ln u - 3u + 9u^2 \dots$$
$$m(T_1^{+-}) = -4 \ln u + 3u + \frac{9}{2}u^3 \dots$$

At strong coupling the QCD partition function is that of a free hadron resonance gas!

Equation of state: ideal (non-interacting) gases

partition fcn. for one relativistic bosonic/fermionic d.o.f.:

$$\ln Z = V \int \frac{d^3 p}{(2\pi)^3} \ln \left(1 \pm e^{-(E(p) - \mu)/T} \right)^{\pm 1}, \qquad E(p) = \sqrt{\mathbf{p}^2 + m^2}$$

equation of state for g d.o.f., two relevant limits:

Stefan-Boltzmann

Relativistic Boson, $m \ll T$ × (Fermion) Non-relativistic, $m \gg T$ $p_r = g \frac{\pi^2}{90} T^4$ $(\frac{7}{8})$ $p_{nr} = gT \left(\frac{mT}{2\pi}\right)^{\frac{3}{2}} \exp(-m/T)$ $\epsilon_r = g \frac{\pi^2}{30} T^4$ $(\frac{7}{8})$ $\epsilon_{nr} = \frac{m}{T} p_{nr} \gg p_{nr}$

$$p_r = \epsilon_r / 3, \qquad p_{nr} \simeq 0$$

The QCD equation of state

Task: compute free energy density or pressure

$$f = -\frac{T}{V} \ln Z(T, V)$$

all bulk thermodynamic properties follow:

$$p = -f,$$
 $\frac{\epsilon - 3p}{T^4} = T \frac{\mathrm{d}}{\mathrm{d}T} \left(\frac{p}{T^4}\right),$ $\frac{s}{T^3} = \frac{\epsilon + p}{T^4},$ $c_s^2 = \frac{\mathrm{d}p}{\mathrm{d}\epsilon}$

Technical problem: partition function in Monte Carlo normalized to 1.

Z, p, f not directly calculable, only $\langle O \rangle = Z^{-1} \operatorname{Tr}(\rho O)$

Integral method:

$$\frac{f}{T^4}\Big|_{T_o}^T = -\frac{1}{V} \int_{T_o}^T \mathrm{d}x \, \frac{\partial x^{-3} \ln Z(x,V)}{\partial x}$$

modify for lattice action: Integration along line of constant physics!

$$\frac{f}{T^4}\Big|_{(\beta_o,m_{f0})}^{(\beta,m_f)} = -\frac{N_{\tau}^3}{N_s^3} \int_{\beta_o,m_{f0}}^{\beta,m_f} \left(\mathrm{d}\beta' \left[\left\langle \frac{\partial \ln Z}{\partial \beta'} \right\rangle - \left\langle \frac{\partial \ln Z}{\partial \beta'} \right\rangle_{T=0} \right] \right. \\ \left. + \sum_f \mathrm{d}m'_f \left[\left\langle \frac{\partial \ln Z}{\partial m'_f} \right\rangle - \left\langle \frac{\partial \ln Z}{\partial m'_f} \right\rangle_{T=0} \right] \right)$$

N.B.: lower integration constant not rigorously defined, but exponentially suppressed

$$\frac{f}{T^4}(\beta_0) \sim \mathrm{e}^{-\mathrm{m}} \, \mathrm{Hadron}^{/\mathrm{T}} \approx 0$$

cut-off effects in the high temperature, ideal gas limit: momenta $\sim T \sim \frac{1}{2}$

$$\frac{p}{T^4}\Big|_{N\tau} = \frac{p}{T^4}\Big|_{\infty} + \frac{c}{N_{\tau}^2} + \mathcal{O}(N_{\tau}^{-4}) \qquad \text{(staggered)}$$

Quantities to be calculated:

$$\frac{1}{N_{\tau}N_{s}^{3}}\frac{\partial \ln Z}{\partial \beta} = \frac{1}{N_{\tau}N_{s}^{3}}\left\langle\sum_{p}U_{p}\right\rangle = \langle-s_{g}\rangle$$
$$\frac{1}{N_{\tau}N_{s}^{3}}\frac{\partial \ln Z}{\partial m_{f}} = \frac{1}{N_{\tau}N_{s}^{3}}\left\langle\sum_{x}\bar{\psi}_{f}(x)\psi_{f}(x)\right\rangle$$

For the numerical integration along lines of constant physics, need beta-functions!

Directly accessible before integration: trace anomaly

$$I(T) \equiv T^{\mu\mu}(T) = T^5 \frac{\partial}{\partial T} \frac{p(T)}{T^4} = \epsilon - 3p$$

$$\begin{aligned} \frac{I(T)}{T^4} \frac{dT}{T} &= N_{\tau}^4 \left(d\beta \langle -s_g \rangle^{\mathrm{sub}} + \sum_f dm_f \langle \bar{\psi}_f \psi_f \rangle^{\mathrm{sub}} \right) \,, \\ \frac{I(T)}{T^4} &= -N_{\tau}^4 \left(a \frac{d\beta}{da} \langle -s_g \rangle^{\mathrm{sub}} + \sum_f a \frac{dm_f}{da} \langle \bar{\psi}_f \psi_f \rangle^{\mathrm{sub}} \right) \end{aligned}$$

Numerical results, pure gauge

Boyd et al., NPB 469 (1996)

Ideal gas behaviour at high and low T

Continuum extrapolation using Nt=6,8

$$\left(\frac{p}{T^4}\right)_a = \left(\frac{p}{T^4}\right)_0 + \frac{c(T)}{N_\tau^2}$$

Flavour dependence of the equation of state

staggered p4-improved,
$$N_{ au}=4$$

Karsch et al., PLB 478 (2000) 5 p/T⁴ p_{SB}/T^4 4 compare with ideal gas: **Pions** 3 $\frac{\epsilon_{SB}}{T^4} = \frac{3p_{SB}}{T^4} = \begin{cases} 3\frac{\pi^2}{30} & , \ T < T_c \\ (16 + \frac{21}{2}N_f)\frac{\pi^2}{30} & , \ T > T_c \end{cases}$ 3 flavour 2 2+1 flavour 2 flavour pure gauge 1 Gluons and Quarks T [MeV] 0 200 100 300 400 500 600

 $T > T_c$: more degrees of freedom, but significant interaction!

sQGP or `almost ideal' gas....?

Bielefeld

Deconfinement:

Free the Quarks!!!

Beware of cut-off effects!

Different versions of improved staggered actions:

Taste splittings of staggered actions give different contributions to pressure

Equation of state for physical quark masses, continuum

Karsch et al., PLB 478 (2000)

Figure 10: The pressure normalized by T^4 as a function of the temperature on $N_t = 6, 8$ and 10 lattices. The Stefan-Boltzmann limit $p_{SB}(T) \approx 5.209 \cdot T^4$ is indicated by an arrow. For our highest temperature T = 1000 MeV the pressure is almost 20% below this limit.

Hadron resonance gas model **____** N,=6 ----- N,=8 3 I(T)/T⁴ 2 150 100 200 250 300 N.=10 N,=12 600 200 400 800 1000 T[MeV]

Figure 9: The trace anomaly $I = \epsilon - 3p$ normalized by T^4 as a function of the temperature $N_t = 6, 8, 10$ and 12 lattices.

Budapest-Marseille-Wuppertal

Symanzik-improved gauge action, staggered quarks with stout links

Summary Lecture II

- Perturbation theory allows assessment of cut-off effects, but only at high T
- In the strong coupling limit QCD reduces to hadron resonance gas
- Equation of state accessible at physical masses in the continuum limit