QCD Thermodynamics

Owe Philipsen

- Lecture I: QCD at finite temperature and density, continuum and lattice
- Lecture II: Applications of lattice thermodynamics
- Lecture III: Generalities on the phase diagram, the finite T transition, chemical potential
- Lecture IV:Towards the QCD phase diagram at finite density

Literature

- O.P., "Lattice QCD at non-zero temperature and density", Les Houches lecture notes 2009, arxiv: 1009.4089
- O.P., "The QCD equation of state from the lattice" Prog. Part. Nucl. Phys. 70 (2013) 55, arxiv: 1207.5999

Proper references to covered material in those articles

Textbooks:

- Gale, Kapusta, "Finite temperature field theory: principles and applications"
- Montvay, Münster, "Quantum fields on a lattice"
- Gattringer, Lang, "Quantum chromodynamics on the lattice"

Units for these lectures

Lecture I: QCD at finite temperature and density

- Motivation: Why thermal QCD?
- The continuum formulation
- Differences and limitations of perturbation theory compared to T=0
 - The lattice formulation

Why thermal QCD?

Thermal QCD in nature

What are compact stars made of?

Radius ~ 10-12 km Mass ~ 1.2-2.2 x Solar Mass

 ρ_0 : nuclear density

Thermal QCD in experiment

heavy ion collision experiments at RHIC, LHC, GSI....

QCD phase diagram: theorist's view (science fiction)

Until 2001: no finite density lattice calculations, sign problem!

Expectation based on simplifying models (NJL, linear sigma model, random matrix models, ...)

Check this from first principles QCD!

The QCD phase diagram established by experiment:

Nuclear liquid gas transition with critical end point

Statistical mechanics reminder

System of particles in volume V with conserved number operators, N_i , i = 1, 2, ... in thermal contact with heatbath at temperature T

Canonical ensemble: exchange of energy with bath, particle number fixed

Grand canonical ensemble: exchange of energy and particles with the bath

Donsity matrix

Density matrix,
Partition function:
$$\rho = e^{-\frac{1}{T}(H-\mu_i N_i)}$$
,
 $Z = \hat{T}r\rho$,
 $\hat{T}r(...) = \sum_n \langle n | (...) | n \rangle$ Thermodynamics: $F = -T \ln Z$,
 $p = \frac{\partial (T \ln Z)}{\partial V}$,
 $S = \frac{\partial (T \ln Z)}{\partial V}$,
 $S = \frac{\partial (T \ln Z)}{\partial T}$, $\bar{N}_i = \frac{\partial (T \ln Z)}{\partial \mu_i}$,
 $E = -pV + TS + \mu_i \bar{N}_i$ Densities: $f = \frac{F}{V}$,
 $P = -f$,
 $S = \frac{S}{V}$,
 $n_i = \frac{\bar{N}_i}{V}$,
 $\epsilon = \frac{E}{V}$

QCD at finite temperature and density

Grand canonical partition function

$$Z(V,T,\mu;g,N_f,m_f) = \operatorname{Tr}(\mathrm{e}^{-(\mathrm{H}-\mu\mathrm{Q})/\mathrm{T}}) = \int \mathrm{DA}\,\mathrm{D}\bar{\psi}\,\mathrm{D}\psi\,\mathrm{e}^{-\mathrm{S}_{\mathrm{g}}[\mathrm{A}_{\mu}]}\mathrm{e}^{-\mathrm{S}_{\mathrm{f}}[\bar{\psi},\psi,\mathrm{A}_{\mu}]}$$

Action

$$S_{g}[A_{\mu}] = \int_{0}^{1/T} d\tau \int_{V} d^{3}x \, \frac{1}{2} \text{Tr} \, F_{\mu\nu}(x) F_{\mu\nu}(x),$$
$$S_{f}[\bar{\psi}, \psi, A_{\mu}] = \int_{0}^{1/T} d\tau \int_{V} d^{3}x \, \sum_{f=1}^{N_{f}} \bar{\psi}_{f}(x) \left(\gamma_{\mu} D_{\mu} + m_{f} - \mu_{f} \gamma_{0}\right) \psi_{f}(x)$$

 $A_{\mu}(\tau, \mathbf{x}) = A_{\mu}(\tau + \frac{1}{T}, \mathbf{x}), \qquad \psi_f(\tau, \mathbf{x}) = -\psi_f(\tau + \frac{1}{T}, \mathbf{x}) \qquad \text{quark number} \qquad N_q^f = \bar{\psi}_f \gamma_0 \psi_f$

Parameters

$$g^2, m_u \sim 3 \text{MeV}, m_d \sim 6 \text{MeV}, m_s \sim 120 \text{MeV}, V, T, \mu = \mu_B/3$$

 $N_f = 2 + 1$ sufficient up to T~300-400 MeV

Difference to T=0: compact, periodic time direction!

Fourier expansion of the fields: discrete Matsubara frequencies

$$A_{\mu}(\tau, \mathbf{x}) = \frac{1}{\sqrt{VT}} \sum_{n=-\infty}^{\infty} \sum_{\mathbf{p}} e^{i(\omega_n \tau + \mathbf{p} \cdot \mathbf{x})} A_{\mu,n}(p) , \quad \omega_n = 2n\pi T , \qquad p_i = (2\pi n_i)/L$$
$$\psi(\tau, \mathbf{x}) = \frac{1}{\sqrt{V}} \sum_{n=-\infty}^{\infty} \sum_{\mathbf{p}} e^{i(\omega_n \tau + \mathbf{p} \cdot \mathbf{x})} \psi_n(p) , \quad \omega_n = (2n+1)\pi T$$

Thermodynamic limit:
$$\frac{1}{V} \sum_{n_1, n_2, n_3} \stackrel{V \to \infty}{\longrightarrow} \int \frac{d^3 p}{(2\pi)^3}$$

Modified Feynman rules:

Inverse (bosonic) free propagator:

$$\Delta^{-1} = p^2 + m^2 = \omega_n^2 + \mathbf{p}^2 + m^2 = (2n\pi T)^2 + \mathbf{p}^2 + m^2$$

Loop integration:

$$\sum_{n=-\infty}^{\infty} \int \frac{d^3p}{(2\pi)^3}$$

Perturbation theory at finite T

Split action into free (Gaussian) and interacting part, expand in interactions

$$Z = N \int D\phi \, \mathrm{e}^{-(S_0 + S_i)} = N \int D\phi \, \mathrm{e}^{-S_0} \sum_{l=0}^{\infty} \frac{(-1)^l}{l!} S_i^l$$

$$\ln Z = \ln Z_0 + \ln Z_i = \ln \left(N \int D\phi \, \mathrm{e}^{-S_0} \right) + \ln \left(1 + \sum_{l=1}^{\infty} \frac{(-1)^l}{l!} \frac{\int D\phi \, \mathrm{e}^{-S_0} S_i^l}{\int D\phi \, \mathrm{e}^{-S_0}} \right)$$

Renormalisation: Whatever renormalisation is necessary and sufficient at T=0 is also necessary and sufficient at finite temperature and density

UV behaviour: microscopic physics, depends on details of interactions

 T, μ : macroscopic parameters, affect IR behaviour of the theory

Ideal gases from the Gaussian path integral

Important (sometimes unrealistic) model systems to (mis-)guide intuition

$$\begin{aligned} \text{Real scalar field:} \qquad S_0 &= \int_0^{\frac{1}{T}} d\tau \int d^3x \ \frac{1}{2} \phi(x) (-\partial_\mu \partial_\mu + m^2) \phi(x) \\ \text{Fourier space:} \qquad S_0 &= \frac{1}{2T^2} \sum_{n=-\infty}^{\infty} \sum_{\mathbf{p}} (\omega_n^2 + \omega^2) \phi_n(p) \phi_n^*(p) \\ & \omega &= \sqrt{\mathbf{p}^2 + m^2} \qquad \phi_n^*(p) = \phi_{-n}(-p) \end{aligned}$$

$$\begin{aligned} Z_0 &= N \prod_{\mathbf{p}} \int d\phi_0 \exp\left[-\frac{1}{2T^2} (\omega_0^2 + \omega^2) \phi_0^2(p) \right] \\ & \times \prod_{n>0} \int d\phi_n \ d\phi_n^* \ \exp\left[-\frac{1}{2T^2} (\omega_n^2 + \omega^2) \phi_n(p) \phi_n^*(p) \right] \\ &= N \prod_{\mathbf{p}} (2\pi)^{1/2} \left(\frac{\omega_0^2 + \omega^2}{T^2} \right)^{-\frac{1}{2}} \prod_{n>0} \int d|\phi_n| \ |\phi_n| \exp\left[-\frac{1}{2T^2} (\omega_n^2 + \omega^2) |\phi_n|^2 \right] \\ &= N \prod_{\mathbf{p}} (2\pi)^{1/2} \left(\frac{\omega_0^2 + \omega^2}{T^2} \right)^{-\frac{1}{2}} \prod_{n>0} \left(\frac{\omega_n^2 + \omega^2}{T^2} \right)^{-1} = N' \prod_{n=-\infty}^{\infty} \prod_{\mathbf{p}} \left(\frac{\omega_n^2 + \omega^2}{T^2} \right)^{-\frac{1}{2}} = N' (\det \Delta^{-1})^{-1/2} \end{aligned}$$

Note: T-independent constants may be dropped (no contribution to thermodynamics)

$$\ln Z_0 = -\frac{1}{2} \sum_{n=-\infty}^{\infty} \sum_{\mathbf{p}} \ln \frac{\omega_n^2 + \omega^2}{T^2}$$

For Matsubara sum:

$$\ln\left[(2\pi n)^2 + \frac{\omega^2}{T^2}\right] = \int_1^{\omega^2/T^2} \frac{d\theta^2}{\theta^2 + (2\pi n)^2} + \ln(1 + (2\pi n)^2)$$
$$\sum_{n=1}^{\infty} \frac{1}{1} = \frac{2\pi^2}{2\pi^2} \left(1 + \frac{2}{1}\right)$$

$$\sum_{n=-\infty}^{\infty} \frac{1}{n^2 + (\frac{\theta}{2\pi})^2} = \frac{2\pi^2}{\theta} \left(1 + \frac{2}{e^{\theta} - 1} \right)$$

$$\ln Z_0 = -\sum_{\mathbf{p}} \int_1^{\omega/T} d\theta \left(\frac{1}{2} + \frac{1}{\mathbf{e}^{\theta} - 1}\right) + \text{T-indep.}$$
$$\stackrel{V \to \infty}{\longrightarrow} V \int \frac{d^3 p}{(2\pi)^3} \left[\frac{-\omega}{2T} - \ln\left(1 - \mathbf{e}^{-\frac{\omega}{T}}\right)\right] \,.$$

Vacuum energy, pressure:

$$E_0 = -\partial_{\frac{1}{T}} \ln Z_0 = \frac{V}{2} \int \frac{d^3 p}{(2\pi)^3} \omega \qquad p_0 = T \partial_V \ln Z_0 = -\frac{E_0}{V}$$

divergent, zero point energy!

Renormalisation:

$$p_{\rm phys}(T) = p(T) - p(T = 0)$$

Final result:

ln
$$Z_0 = -V \int \frac{d^3 p}{(2\pi)^3} \ln \left(1 - e^{-\frac{\omega}{T}}\right)$$

m=0: $p = \frac{\pi^2}{90}T^4$

Fermion fields (Grassmann!):

$$\ln Z_0 = 2V \int \frac{d^3 p}{(2\pi)^3} \left[\ln \left(1 + e^{-\frac{\omega-\mu}{T}} \right) + \ln \left(1 + e^{-\frac{\omega+\mu}{T}} \right) \right]$$

two spin components

quarks and anti-quarks

m=0:
$$p = \frac{7}{8} \frac{\pi^2}{90} T^4$$

General one-particle (field) expression:

$$\ln Z_i^1(V,T) = \eta V \nu_i \int \frac{d^3 p}{(2\pi)^3} \,\ln(1+\eta \,\mathrm{e}^{-(\omega_i - \mu_i)/T})$$

 $\eta = -1$ for bosons ν_i : spin and internal d.o.f $\eta = 1$ for fermions

Ideal gases in QCD

Free gas of quarks and gluons: valid at infinite temperature, weak coupling limit

Hadron resonance gas: at this point a model; later: strong coupling limit of full QCD

Quark-interactions "hidden" in hadrons; hadrons interact weakly

$$\ln Z(V,T) \approx \sum_{i} \ln Z_{i}^{1}(V,T) \qquad i = \pi, \rho, K, p, n, \dots$$

IR-structure: divergences and mass scales

Inverse (bosonic) free propagator:

$$p^{2} + m^{2} = \omega_{n}^{2} + p^{2} + m^{2} = (2n\pi T)^{2} + p^{2} + m^{2}$$

$$n=0 \text{ mode: propagator of a 3d theory, divergent for m=0!$$

$$n=0 \text{ mode: propagator of a 3d theory, divergent for m=0!}$$

$$m_{E}^{LO} = \left(\frac{N}{3} + \frac{N_{f}}{6}\right)^{1/2} gT$$

$$electric \text{ or Debye screening} \langle A_{0}(\mathbf{x})A_{0}(\mathbf{y}) \rangle$$

$$mass$$

 $m_M^{LO} = 0, m_M \sim g^2 T$ from 2-loop magnetic screening $\langle A_i(\mathbf{x}) A_i(\mathbf{y}) \rangle$ mass

0-mode sector of 4d QCD at finite T contains 3d Yang-Mills theory with $g_3^2 \sim g^2 T$ Confining! Doom for perturbation theory....

The Linde problem of finite T QCD / 3d YM

(l+1)-loop diagram contribution to pressure

contribution from Matsubara 0-mode:

$$P \sim g^{2l} \left(T \int d^3 p\right)^{l+1} p^{2l} (p^2 + m^2)^{-3l}$$

$$g^{2l}$$
 for $l = 1, 2$
 $g^{6}T^{4}\ln(T/m)$ for $l = 3$
 $g^{6}T^{4}(g^{2}T/m)^{l-3}$ for $l > 3$

magnetic mass $m_{mag} \sim g^2 T \Rightarrow$ all loops (l > 3) contribute to g^6

even for weak coupling!

Same problem for all observables! Only the order to which it occurrs is different:

E.g. for magnetic mass already at leading order (2-loop)

Perturbation theory at finite temperature works only up to a finite, observable-dependent order, no matter how weak the coupling!

Salvation comes as a lattice...

The lattice formulation at zero density

Hypercubic lattice: $N_s^3 \times N_{\tau}$, Lattice spacing *a*, Wilson's YM action:

$$S_g[U] = \sum_x \sum_{1 \le \mu < \nu \le 4} \beta \left(1 - \frac{1}{N} \operatorname{ReTr} U_p \right)$$

Plaquette: $U_p = U_\mu(x)U_\nu(x+a\hat{\mu})U^{\dagger}_\mu(x+a\hat{\nu})U^{\dagger}_\nu(x)$ Lattice gas

e gauge coupling:
$$\beta = rac{2N}{g^2}$$

Periodic boundary conditions: $U_{\mu}(\tau, \mathbf{x}) = U_{\mu}(\tau + N_{\tau}, \mathbf{x}), U_{\mu}(\tau, \mathbf{x}) = U_{\mu}(\tau, \mathbf{x} + N_s)$

Transfer matrix formalism

Provides connection between path integral and Hamiltonian formalism

Rewrite action as sum over time slices:

$$S_g = \sum_{\tau} L[U_i(\tau+1), U_0(\tau), U_i(\tau)],$$
$$L[U_i(\tau+1), U_0(\tau), U_i(\tau)] = \frac{1}{2} L_1[U_i(\tau+1)] + \frac{1}{2} L_1[U_i(\tau)] + L_2[U_i(\tau+1), U_0(\tau), U_i(\tau)]$$

$$L_1[U_i(\tau)] = -\frac{\beta}{N} \sum_{p(\tau)} \operatorname{ReTr} U_p,$$
$$L_2[U_i(\tau+1), U_0(\tau), U_i(\tau)] = -\frac{\beta}{N} \sum_{p(\tau, \tau+1)} \operatorname{ReTr} U_p,$$

spatial plaquettes within one time slice

temporal plaquettes connecting slices

Transfer matrix: operator acting on square-integrable functions $\psi[U]$

Matrix elements:
$$T[U_i(\tau+1), U_i(\tau)] = \int DU_0(\tau) \exp -L[U_i(\tau+1), U_0(\tau), U_i(\tau)]$$

Translation of states by one time-slice: $|\psi[U_i(\tau+1,\mathbf{x})]\rangle = T |\psi[U_i(\tau,\mathbf{x})]\rangle$

Identify: $T = e^{-aH}$

Rewrite partition function exactly:

Identify:

$$Z = \int \prod_{\tau} \left(DU_i(\tau, \mathbf{x}) T[U_i(\tau+1), U_i(\tau)] \right) = \hat{T}r(T^{N_{\tau}}) = \hat{T}r(e^{-N_{\tau}aH})$$
$$\frac{1}{T} \equiv aN_{\tau} \qquad \qquad H|n\rangle = E_n|n\rangle$$

complete set of energy eigenstates

Thermal expectation value: $\langle O \rangle = Z^{-1} \hat{\mathrm{Tr}}(\mathrm{e}^{-\frac{H}{T}}O) = Z^{-1} \sum_{n} \langle n | T^{N_{\tau}}O | n \rangle = \frac{\sum_{n} \langle n | O | n \rangle \,\mathrm{e}^{-aN_{\tau}E_{n}}}{\sum_{n} \mathrm{e}^{-aN_{\tau}E_{n}}}$

Thermodynamic limit: $N_s \rightarrow \infty$ but keep T finite

Vacuum expectation value: $\langle 0|O|0\rangle = \lim_{N_{\tau}\to\infty} \frac{\sum_{n} \langle n|O|n\rangle e^{-aN_{\tau}(E_n - E_0)}}{\sum_{n} e^{-aN_{\tau}(E_n - E_0)}}$

The space-wise transfer matrix

- Hamiltonian translates in time; Spectrum: particle masses, from exp. decay of correlators in time
- May also define a Hamiltonian translating the system in space; Spectrum: screening masses, from exp. decay of correlators in space

$$T[U(z+1), U(z)] \equiv e^{-aH_z}, \quad Z = Tr(e^{-aN_zH_z}) \qquad \qquad U(z) : \{U_\mu(z)|\mu \neq 3\}$$

Vacuum physics:
$$N_{x,y,z,\tau} \to \infty$$
 H, H_z spectra identical

Thermal physics: $N_{x,y,z} \to \infty$ and keep N_{τ}

 H_z acts on states defined on $N_{x,y,\tau}$ lattice;

spectrum of theory on torus with one side squeezed

Finite T physics = finite size effect of the shortened time direction!

Adding fermions

Wilson fermions:

$$S_f^W = \frac{1}{2a} \sum_{x,\mu,f} a^4 \,\bar{\psi}_f(x) [(\gamma_\mu - r) U_\mu(x) \psi_f(x + \hat{\mu}) - (\gamma_\mu + r) U_\mu^\dagger(x - \hat{\mu}) \psi_f(x - \hat{\mu})]$$

$$+\left(m+4\frac{r}{a}\right)\sum_{x,f}a^{4}\,\bar{\psi}_{f}(x)\psi_{f}(x)$$

pick your poison

Wilson fermions

add irrelevant ops. (going away in CL) to make doublers very massive breaks chiral symmetry for non-zero a

staggered (Kogut-Susskind) fermions

distribute spinor components on different sites, reduces to 4 flavours take 4th root of determinant to get to one flavour, keeps reduced chiral symm. non-local operation, have to take CL before chiral limit, mixing of spin, flavour

domain wall fermions

introduce 5th dimension, fermions massive in that dim. and chiral in the other expensive

overlap fermions

non-local formulation with modified chiral symmetry even for finite a order: of magnitude more expensive than Wilson

Continuum limit

$$\frac{1}{T} \equiv aN_{\tau}$$

Fixed scale approach:

 \blacksquare For a given lattice spacing, $N_{ au}$ controls temperature;

Allows only discrete temperatures, too large for many applications;

Continuum limit requires series of lattice spacings

Fixed N_{τ} approach:

For a given $N_{ au}$, vary the lattice spacing via eta(a);

Allows continuous temperatures, but each T value has different cut-off!

Continuum limit requires series of $N_{ au}$

Lines of constant physics and setting the scale

Compute observable for series of $a, N_{ au}$,

Tune bare parameters such that for each lattice spacing renormalised parameters are constant

More practical: keep physical quantities constant

Non-trivial because of cut-off effects: Different for different quantities and actions $\langle O \rangle (\beta, m_f)$

 $m_f^R(am_{u,d}(\beta), am_s(\beta), \beta) = \text{const} .$ $O_i^{\text{phys}}(am_{u,d}(\beta), am_s(\beta), \beta) = \text{const}$ $O^{\text{phys}}(a) = O^{\text{phys}} + c_1 a + c_2 a^2 + \dots$

Perturbative relation for $\beta(a)$: only good very close to continuum limit

$$\Lambda_{QCD} \text{ on lattice:} \quad a\Lambda_L = \left(\frac{6b_0}{\beta}\right)^{-b_1/2b_0^2} e^{-\frac{\beta}{12b_0}},$$
$$b_0 = \frac{1}{16\pi^2} \left(11 - \frac{2}{3}N_f\right), \quad b_1 = \left(\frac{1}{16\pi^2}\right)^2 \left[102 - \left(10 + \frac{2}{3}\right)N_f\right]$$

Non-perturbatively: Express computed quantity in units of another known quantity

E.g. for the critical temperature of a phase transition:

$$\frac{T_c}{m_H} = \frac{1}{a_c m_H N_\tau} = \frac{1}{a(\beta_c) m_H N_\tau}$$

Compute hadron mass at the critical lattice spacing:

 $a^{-1} = \frac{m_H [\text{MeV}]}{(am_H)(\beta_c)}$

N.B.: Only possible when operating at physical quark masses!

For unphysical quark masses:

(out of computational limitations or interest in certain limits, mass dependence etc.)

Take quantity that depends only weakly on quark masses: String tension, Sommer scale

$$\frac{T}{\sqrt{\sigma}} = \frac{1}{a\sqrt{\sigma}N_{\tau}}, \quad \sigma \approx 425 \text{ MeV}; \quad Tr_0 = \frac{r_0}{aN_{\tau}}, \quad r^2 \frac{dV(r)}{dr} = 1.65$$

Requirements for and constraints from the lattice:

correlation length ξ : lightest gauge invariant (hadronic?) mass scale

scale of interest: $T_c \sim 200 \mathrm{MeV} \sim (1 \mathrm{fm})^{-1}$ feasible lattices: $32^3 \times 4, 16^3 \times 8$ $T = \frac{1}{aN_t}$ $N_{\tau} = 4, 8, 12$ implies $a \approx 0.25, 0.125, 0.083$ fm $aL \sim 1.5 - 3 \mathrm{fm}$

 $a \ll \xi \ll aL!$

low T (confined) phase: $m_{\pi} \gtrsim 250 \text{MeV}$ lighter just beginning...high T (deconfined) phase: $m_{\pi} \sim T, \xi \sim 1/T$ \checkmark $\frac{1}{N_t} \ll 1 \ll \frac{L}{N_t}$ $T \lesssim 5T_c$

Summary Lecture I

- Perturbation theory of finite T QCD in continuum has infrared problems
- Long wavelength modes of finite T QCD are always confining, even at high T
- Finite T on the lattice is a finite size effect
- For simulations with fixed Nt discretisation errors are T-dependent