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Lecture 1: QCD at finite temperature and density, continuum and lattice 

Lecture II:  Applications of lattice thermodynamics

Lecture III: Generalities on the phase diagram, the finite T transition, 
                 chemical potential

Lecture IV: Towards the QCD phase diagram at finite density
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Units for these lectures

Natural units:

Einstein sum convention: 

Hopefully only in a few instances (not intentional):

Small circle approximation:

Supra-natural approximations:

! = 1, c = 1

π = 1

−1 = 1, i = 1

aibi ≡
∑

i

aibi
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Lecture I: QCD at finite temperature and density

Motivation: Why thermal QCD?

 The continuum formulation

Differences and limitations of perturbation theory compared to T=0

The lattice formulation
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Why thermal QCD?

chiral condensate , Cooper pairs
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Chiral symmetry:          broken                                        (nearly) restored
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Thermal QCD in nature

The Early Universe:

Physics of Non-Abelian

Plasmas

Energy Epoque

Quantum Gravity

1019 GeV

Grand Unified Theories

1016 GeV

Supersymmetry

Standard Model

103 GeV

Electroweak Symmetry Breaking

Quark Hadron Transition

100 MeV

Nucleosynthesis
10 MeV

Radiation Matter Decoupling
1 eV

Physics of early universe:

non-abelian plasma physics
(          )

          QCD is prototype

µB ≈ 0
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What are compact stars made of?

Radius  ~ 10-12 km
Mass    ~  1.2-2.2 x Solar Mass

ρ0 : nuclear density
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Thermal QCD in experimentThis is how experiment probes the phase transition & QGP....

heavy ion collision experiments at RHIC, LHC, GSI....

8



QCD phase diagram: theorist’s view (science fiction)
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Expectation based on simplifying models (NJL, linear sigma model, random matrix models, ...)

Check this from first principles QCD! 

Until 2001: no finite density lattice calculations, sign problem!
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The QCD phase diagram established by experiment:

B

Nuclear liquid gas transition with critical end point
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Statistical mechanics reminder

Density matrix,
Partition function:

Thermodynamics:

Densities:

System of particles in volume V with conserved number operators,
in thermal contact with heatbath at temperature T

Canonical ensemble: exchange of energy with bath, particle number fixed

Grand canonical ensemble: exchange of energy and particles with the bath

Ni, i = 1, 2, . . .
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QCD at finite temperature and density

Sg[Aµ] =

1/T
∫

0

dx0

∫

V

d3
x

1

2
Tr FµνFµν

Sf [ψ̄, ψ, Aµ] =

1/T
∫

0

dx0

∫

V

d3
x

Nf
∑

f=1

ψ̄f

(

γµDµ + mf
q − µγ0

)

ψf

Grand canonical partition function

Action

Parameters g2, mu ∼ 3MeV, md ∼ 6MeV, ms ∼ 120MeV, V, T, µ = µB/3

Z(V, T, µ; g, Nf , mf ) = Tr(e−(H−µQ)/T) =

∫
DADψ̄ Dψ e−Sg[Aµ]e−Sf [ψ̄,ψ.Aµ]

quark number Nf
q = ψ̄fγ0ψf

Nf = 2 + 1 sufficient up to T~300-400 MeV
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Difference to T=0: compact, periodic time direction!

Fourier expansion of the fields:   discrete Matsubara frequencies

Thermodynamic limit:

Modified Feynman rules:

Loop integration:Inverse (bosonic) free propagator:

∆−1 =

13



Perturbation theory at finite T

Split action into free (Gaussian) and interacting part, expand in interactions

Renormalisation:  Whatever renormalisation is necessary and sufficient at   
T=0 is also necessary and sufficient at finite temperature and density

UV behaviour:  microscopic physics, depends on details of interactions

         :  macroscopic parameters, affect IR behaviour of the theory
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Ideal gases from the Gaussian path integral

Important (sometimes unrealistic) model systems to (mis-)guide intuition

Real scalar field:

Fourier space:

S0 =
∫ 1

T

0
dτ

∫
d3x

1
2
φ(x)(−∂µ∂µ + m2)φ(x)
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Note: T-independent constants may be dropped (no contribution to thermodynamics)

For Matsubara sum:

E0 = −∂ 1
T

lnZ0 =
V

2

∫
d3p

(2π)3
ωVacuum energy, pressure: p0 = T∂V lnZ0 = −E0

V

divergent, zero point energy!
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Renormalisation:

Final result:

Fermion fields (Grassmann!):

quarks and anti-quarkstwo spin components

General one-particle (field) expression:

νi : spin and internal d.o.f

m=0:

m=0:
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Ideal gases in QCD

Free gas of quarks and gluons:  valid at infinite temperature, weak coupling limit

2 gluon spin states gluon colours quark, anti-quark, each two spin states

quark colours

Hadron resonance gas:  at this point a model;  later: strong coupling limit of full QCD

Quark-interactions “hidden” in hadrons; hadrons interact weakly

i = π, ρ,K, p, n, . . .
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IR-structure: divergences and mass scales

Inverse (bosonic) free propagator:

effective thermal mass ~T

n=0 mode: propagator of a 3d theory, 
divergent for m=0!

Corrections:

electric or Debye screening 
mass

mLO
M = 0, mM ∼ g2T from 2-loop magnetic screening 

mass
〈Ai(x)Ai(y)〉

〈A0(x)A0(y)〉

0-mode sector of 4d QCD at finite T contains 3d Yang-Mills theory with 
Confining! Doom for perturbation theory....

g2
3 ∼ g2T
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The Linde problem of finite T QCD / 3d YM

contribution from
Matsubara 0-mode:

even for weak coupling!

contribution to pressure
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Same problem for all observables!
Only the order to which it occurrs is different:

E.g. for magnetic mass already at leading order (2-loop)

Perturbation theory at finite temperature works only 
up to a finite, observable-dependent order, 
no matter how weak the coupling!
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Salvation comes as a lattice...
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The lattice formulation at zero density

Hypercubic lattice:               ,   Lattice spacing     ,     Wilson’s YM action:a

Plaquette: Lattice gauge coupling: β =
2N

g2

Periodic boundary conditions:

N
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Transfer matrix formalism

Provides connection between path integral and Hamiltonian formalism

Rewrite action as sum over time slices:

spatial plaquettes within one time slice

temporal plaquettes connecting slices

Transfer matrix: operator acting on square-integrable functions ψ[U ]

Matrix elements:
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Rewrite partition function exactly:

Translation of states by one time-slice:         |ψ[Ui(τ + 1,x)]〉 = T |ψ[Ui(τ,x)]〉

Identify:         T = e−aH

Identify:         

Thermal expectation value:

Thermodynamic limit:                 but keep T finite   

Vacuum expectation value:

H|n〉 = En|n〉

complete set of energy eigenstates    
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The space-wise transfer matrix

Hamiltonian translates in time; 
Spectrum: particle masses, from exp. decay of correlators in time

May also define a Hamiltonian translating the system in space;
Spectrum: screening masses, from exp. decay of correlators in space

:

Thermal physics:

Vacuum physics: Nx,y,z,τ →∞ spectra identicalH,Hz

Hz acts on states defined on             lattice; 

spectrum of theory on torus with one side squeezed

Finite T physics = finite size effect of the shortened time direction!

Nx,y,τ
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Adding fermions

Pick a suitable fermion action:

Full QCD partition function:

Wilson fermions:
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Fixes: pick your poison

Wilson fermions
add irrelevant ops. (going away in CL) to make doublers very massive
breaks chiral symmetry for non-zero a 

staggered (Kogut-Susskind) fermions
distribute spinor components on different sites, reduces to 4 flavours
take 4th root of determinant to get to one flavour, keeps reduced chiral symm.
non-local operation, have to take CL before chiral limit, mixing of spin, flavour

domain wall fermions
introduce 5th dimension, fermions massive in that dim. and chiral in the other
expensive

overlap fermions
non-local formulation with modified chiral symmetry even for finite a
two orders of magnitude more expensive than Wilson
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Continuum limit 

Fixed scale approach: 

 For a given lattice spacing,       controls temperature;

 Allows only discrete temperatures, too large for many applications;

 Continuum limit requires series of lattice spacings

Fixed       approach:

For a given      , vary the lattice spacing via        ;   
      

Allows continuous temperatures, but each T value has different cut-off! 

Continuum limit requires series of 

Nτ β(a)

Nτ

Nτ

Nτ
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Lines of constant physics and setting the scale

 Compute observable for series of           ,             a, Nτ

 Tune bare parameters such that for each lattice 
     spacing renormalised parameters are constant   

 More practical: keep physical quantities constant  

 Non-trivial because of cut-off effects:
     Different for different quantities and actions        

Perturbative relation for         :  only good very close to continuum limit       β(a)

ΛQCD on lattice:
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Non-perturbatively:  Express computed quantity in units of another known quantity 

E.g. for the critical temperature of a phase transition:

Compute hadron mass at the critical lattice spacing:

N.B.: Only possible when operating at physical quark masses!

For unphysical quark masses:        
(out of computational limitations or interest in certain limits, mass dependence etc.)

Take quantity that depends only weakly on quark masses: 
String tension, Sommer scale
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Requirements for and constraints from the lattice:

a ! ξ ! aL !

, ξ ∼ m−1
H

correlation length    :  lightest gauge invariant (hadronic?) mass scaleξ

scale of interest:

feasible lattices: 32
3
× 4, 16

3
× 8

T = 1
aNt

a ∼ 0.1 − 0.3fm

Tc ∼ 200MeV ∼ (1fm)−1

aL ∼ 1.5 − 3fm

low T (confined) phase: 

high T (deconfined) phase: mπ ∼ T, ξ ∼ 1/T
1

Nt

! 1 !
L

Nt

mπ
>
∼

250MeV

T <
∼

5Tc

lighter just beginning...
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Summary Lecture I

Perturbation theory of finite T QCD in continuum has infrared problems

Long wavelength modes of finite T QCD are always confining, even at high T

Finite T on the lattice is a finite size effect

For simulations with fixed Nt discretisation errors are T-dependent
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