
OpenMP: Open specifications for
Multi-Processing

 What is OpenMP?

 Join\Fork model

 Variables

 Explicit parallelism

 High level parallelism

 Resume

What is OpenMP

 OpenMP (Open specifications for Multi-Processing) – one of the most popular
parallel computing technologies for multi-processor/core computers with the
shared memory architecture.

 OpenMP is based on traditional programming languages. OpenMP standard
is developed for Fortran, C and C++ languages. All basic constructions for
these languages are similar. Also, there are known cases of OpenMP
implementation for MATLAB and MATHEMATICA.

 The OpenMP-based computer program contains a number of threads
interacting via shared memory. OpenMP provides a number of special
directives for a compiler, library functions and environment variables.

 Compiler directives are used for indicating segments of a code with the
possibility for parallel processing.

 Utilizing OpenMP constructs (compiler directives, procedures, environment
variables), a user can organize parallelism in their serial code.

 “Partial parallelization” is available by “step-by-step” adding OpenMP-
directives. OpenMP-directives are ignored by standard compiler. So, the code
stays workable on both single- and multi-processor platform.

OpenMP:
Structure of the code

The program code consists of linear and parallel fragments. Only the master
thread starts the execution of the code. Only Master thread executes all parts of
the code.

Paralleizm is based on the Fork\Join model:

– On entry into the parallel section, a team of parallel threads is generated
(Fork). After being generated, each of them gets its peculiar number; the master
thread is always numbered as “0”. All threads execute the same code that
corresponds to the parallel block.

– On exit from the parallel section, the master thread is waiting for the termination
of other threads, and the further work is executed only by the master thread (Join).

– In C\C++, compiler directives beginning with #pragma OMP are used. All
environment variables and functions referring to OpenMP begin with prefix OMP_.

– In Fortran, all OpenMP directives are situated in comments and begin with one
of the following combinations: !OMP, COMP or *$OMP (it is to be recalled that a
line beginning with one of the symbols ‘!’, ‘C, or ‘*’is considered as a comment).

OpenMP:
Classes of variables

 There are two main classes of variables: shared and private ones.

 The shared variable always exists only in a single instance for the whole
program and is available for all threads under the same name.

 The declaration of the private variable causes generation of its own instance
of the given variable for each thread. Change of a value of a thread’s private
variable does not influence the change of this local variable value in other
threads.

 There are also “intermediate” types that provide interconnection between
parallel and consistent sections.

 Thus, if a variable that is a part of a consistent code preceding a parallel
section, is declared Firstprivate, then in the parallel section this value is
assigned to private variables under the same name for each thread.

 Likewise, a variable of Lastprivate type after termination of a parallel block
saves the value obtained in the latest completed parallel thread.

Compiler command: gcc –fopenmp text.c

OpenMP:
Construct PARALLEL

 Fortran: !$OMP PARALLEL
 < parallel block of the code>
 !$OMP END PARALLEL

 C\C++: #pragma OMP parallel [declaration of variables]

 { <program’s parallel block> }

 For the parallel block execution, the team of OMP_NUM_THREADS-1 threads is
generated additionally to the master-thread. The number of threads is determined by
the environment variable OMP_NUM_THREADS, or by means of special functions.

 Each thread has got a number from 0 to OMP_NUM_THREADS-1. A process
(master thread) initiating generation of parallel section always gets number ‘0’.

 All threads execute the code in a parallel section. In general, there is no
synchronization, and it is impossible to predict thread termination. At the end of a
parallel block, implicit synchronization of all threads is carried out automatically; and
as soon as all threads reach that point, master-thread continues execution of the
following part of the program; other threads are destroyed.

 The necessity to generate a parallel region can be defined dynamically by means of
an option IF in the directive. If the condition is not fulfilled, the parallel block is not
activated and execution is continued in serial mode.

OpenMP functions.
Explicit (low level) parallelism

 Function OMP_GET_THREAD_NUM returns number of the thread.

 Function OMP_GET_NUM_THREADS returns quantity of parallel threads in
the team.

 Function OMP_SET_NUM_THREAD sets quantity of parallel threads in the
team.

EXAMPLE. Explicit parallelism:

distribution of calculations in dependence on the thread number

 #pragma omp parallel

 {

 myid = omp_get_thread_num ();

 If (myid == 0)

 do_something ();

 else

 do_something_else ();

 }

EXAMPLE:
Creation of parallel block

#include <stdio.h>

int main(int argc, char *argv[])

{

printf(“Only master thread is working \n");

#pragma omp parallel

{ printf(“Hello world from parallel block! \n"); }

printf(“Again, only master thread is working \n");

}

Result of executing:

 Master-thread displays the text Only master thread is working

 Then pragma parallel generates new threads; each thread displays
«Hello world from parallel block!»

 So this writing will be diaplayed OMP_NUM_THREADS times.

 Then the join occurs and only master-thread displays «Again, only
master thread is working».

Example: quantity of threads
function omp_set_num_threads();

option num_threads

#include <stdio.h>

#include <omp.h>

int main(int argc, char *argv[])

{

omp_set_num_threads(2);

#pragma omp parallel num_threads(3)

{

printf(“Parallel block 1 \n");

}

#pragma omp parallel

{

printf(“Parallel block 2 \n");

}

}

• Before 1st parallel section,
function
omp_set_num_threads(2) sets
number of parallel threads 2.

• BUT! Option num_threads(3),
inspires three parallel threads in
the 1st parallel block. Hence
writing "Parallel block 1" is
displayed 3 times.

• No options in the 2nd parallel
block. Therefore the setting of
fuction
omp_set_num_threads(2) is
actual.

• So, writing " Parallel block 2 " will
be displayed by 2 threads.

EXAMPLE:

option reduction

Calculation of quantity of
threads in the parallel block.

#include <stdio.h>
int main(int argc, char *argv[])
{
int count = 0;
#pragma omp parallel reduction (+: count)
{
count++;
printf(“current value of count: %d\n",count);
}
printf(“Number of threads: %d\n", count);
}

 In parallel block, each thread
inspires a local variable count
= 0.

 Then, each thread increases
its count by 1 and displays
this value.

 Hence, writing “current value
of count: 1” is displayed
OMP_NUM_THREADS times.

 In exit of parallel section, all
local variables count
summarize.

 The resulting value is equal
number of threads. It is
written to count in the serial
part of the code and is
displayed only one time.

High level parallelism:
directive SECTIONS

Low level parallelism: the work is distributed between threads by means
functions OMP_GET_THREAD_NUM (returns number of thread) and
OMP_GET_NUM_THREADS (returns quantity of parallel threads).

EXAMPLE: if(OMP_GET_THREAD_NUM() ==3)
 < code for the thread number 3 >;
 else
 < code for all another threads >;

EXAMPLE of high level parallelism (parallel independent sections):
#pragma omp sections […[parameters…]]
{
#pragma omp section
 < block 1>
#pragma omp section
 < block 2>
}

In case two blocks are independent we
can arrange parallel executing of
sections.

Each of Block 1 and Block 2 in this
example will be carried out by one of
parallel treads .

High level parallelism:
parallel loops

For distribution of iteration cycle between various threads it is
necessary to use directives !$OMP DO (Fortran) and
#pragma omp for (C\C++) which refer to the following loop.

EXAMPLE:

 #pragma omp parallel shared (a,b) private (j)

 {

 #pragma omp for

 for (j=0; j<N; j++)

 а[j] = a[j]+b[j]

 }

Automatically at the end of cycle, barrier synchronization that
can be canceled by means of nowait option is carried out.

Example: pragma omp parallel for

#include <stdio.h>
#include <omp.h>
int main()
{
 int idx = 100;
 int main_var = 2120;
 #pragma omp parallel for private(idx)
 for (idx = 0; idx < 120; ++idx)
 {
 main_var = idx * idx;
 printf("In the thead number %d: idx = %d, main_var = %d\n",
 omp_get_thread_num(), idx, main_var);
 }
 printf("After the parallel loop finish: main_var = %d\n", main_var);
return 0;
}

Open MP:
synchronization constructs (1)

OpenMP holds a wide class of directives (pragma) for synchronization
of threads in parallel block

SINGLE: is used for a single execution of a part of the code if in a parallel

section some part of the code must be executed only once.
 #pragma omp single{ <single block> }

<Single block> of the code will be carried out (only once) by a thread that
reaches a particular program point first.

BARRIER: #pragma omp barrier
All threads reaching that directive stop and wait till other threads reach that

point; after that all threads continue the work.

MASTER indicates a part of the code that must be executed only by the

master-thread.
 #pragma omp master

 { <fragment for master-thread> }
Other threads ignore this fragment.

Open MP:
synchronization constructs (2)

Critical section

 #pragma omp critical [name]

 { <critical block> }

At any time a critical section may contain only one thread. If the critical section is
being executed by a thread, all other threads that have been executing a
directive for the section with this name, will be blocked till the indicated thread
terminates the execution of the given critical section. As soon as the thread
terminates the execution of a critical section, one of the blocked threads
enters the section. If on entering the critical section there were several
threads, one of them is chosen at random; other blocked threads continue
waiting.

Atomic refers to the following operator. This directive is working like the above
critical but critical block consists of only one operator.

 Example.

 Each thread sequentially increases value of Expr.

 #pragma omp atomic

 Expr++;.

Example: pragma omp critical
#include <stdio.h>
#include <omp.h>
int main()
{
 int sum = 0;
 int expr = 0;
 #pragma omp parallel num_threads(3) private(expr) shared(sum)
 {
 expr =omp_get_thread_num()+1;
 printf("in thread number %d expr = %d \n", omp_get_thread_num(),expr);
 #pragma omp critical
 {
 sum = sum+expr;
 }
 printf("after critical section\n");
 printf("In thead number %d: expr = %d, sum = %d\n",
 omp_get_thread_num(), expr, sum);
 }
 printf("After the parallel section closing: sum = %d\n", sum);
return 0;
}

Open MP:
 synchronization constructs (3)

FLUSH. Synchronization of this type is used for the update of private variables.
The FLUSH directive identifies a synchronization point at which the
implementation must provide a consistent view of memory. Thread-visible
variables are written back to memory at this point.

Because of a complex structure and memory hierarchy in modern parallel
computing systems, a user should have guarantees that at any required time
each thread will detect united consisted memory image.

 #pragma omp flush (var1, [var2,…])

Its execution presupposes that all variables’ values temporally stored in
registers, will be feed into the main memory; all changes of variables carried
out by the threads during their operation, will be identified by other threads, if
there is some information is stored in output buffers, the buffers will be reset
and so on. Thus, after execution of a given directive, all variables in it have
the same value for all parallel threads. Execution of the directive in full may
cause serious cost overalls.

OpenMP:
Concluding remarks

 OpenMP is designed in the way so that a user can work with a universal text for
parallel and sequential programs because a standard compiler on a sequential
machine ignores OpenMP-directives.

 Another advantage of OpenMP is the possibility of a gradual parallelization of a code.
Basing on serial code, a user step by step adds new constructs that describe new
parallel sections. There is no need to write a parallel program at once; parallel
optimization is carried out gradually and that makes easier the process of coding and
debugging.

 On the other side, it is important to take into account that after termination of parallel
threads, the control is delegated to the master-thread. In this case there may appear
a problem of correctness of data transfer from parallel threads to the master thread.
In solving this problem, an synchronization of parallel threads plays important role.
However, it can lead to a delaying and hence to a loss of efficiency.

 Synchronization and initialization operations of parallel threads are equivalent to the
labor efficiency of execution of 1000 arithmetic operations. Therefore, in the process
of selection of parallel sections, the labor efficiency should be not less than 2000
operations.

 It is important to avoid the use of shared variables without necessity and to monitor
memory consistent in order to avoid computations’ ambiguity (so called data race).

OpenMP:
Example of data racing

Race condition.

The result in this fragment depends on the sequence of the parallel threads’
execution. As soon as there is no synchronization, every time a different
result is available. Note, the compiler cannot not provide with any diagnostic
operation. Here, А,В,С are assumed to be shared variables.

#pragma omp sections

{

pragma omp section

{… C=A+B;

 …}

#pragma omp section

{… B=C+A;

…}

#pragma omp section

{… A=B+C;

…}

}

