

MPI parallel programming technology

 Laboratory of Information Technologies

 Joint Institute for Nuclear Research

All computers are multiprocessors now

 Look at the Top500 - known list of the most powerful
computational system in the world. You’ll see - there are
no machine with single processor there. All they are
clusters of hundreds and thousands processors.

 Even personal computers have now several (2-8)
independent processors (kernels).

 The typical program, Fortran- or C-written, uses single
processor and cannot use several processors
simultaneously! If we want compute faster, we will have
to parallelize our program!

 There are several technologies for parallelization.
 MPI is one of them.

Serial computing

 Traditionally, software has been written for serial computation:

 To be run on a single computer having a single Central Processing

Unit (CPU);

 A problem is broken into a discrete series of instructions.

 Instructions are executed one after another.

 Only one instruction may execute at any moment in time.

Parallel computing

Parallel computing is the simultaneous use of multiple compute

resources to solve a computational problem:

 To be run using multiple CPUs.

 A problem is broken into discrete parts that can be solved

concurrently.

 Each part is further broken down to a series of instructions.

 Instructions from each part execute simultaneously on different CPU.

Message Passing Interface (1992)

 Fundamentals

 SPMD-model of

programming

 MPI vocabulary

 The basic operations.
“Point-to-point”

exchanges

 Collective operations

 Simple program

examples

www.netlib.org/utk/people/JackDongarra/

 MPI – what is it ?
The goal of the Message Passing Interface is to establish a

portable, efficient, and flexible standard for writing message

passing programs.

MPI is not an IEEE or ISO standard, but has in fact, become the

"industry standard" for writing message passing programs on

HPC platforms.

It is a great set communicative and auxiliary operations for
programming with usage Fortran and C languages, arranged
as a library.

It works practically in any computational systems, even
heterogeneous.

Its 2 fundamentals are: process and message.

Process - the program together with its own data, being
executed by processor.

Processes communicate exclusively through messages.

Single Program - Multiple Data (SPMD)

 Programming Model

 The behavior of all processes is described by the same program.

Processes may use different data.

 The group of NP processes is created for task execution.

 Needed interprocess communications in the group are programmed

with usage of MPI-library, which dictates the standard for

programming.

 Group is identified by integer-type descriptor (communicator).

 Inside the group processes are numerated from 0 to NP-1. Each

process knows its own number myProc and total number of

processes NP.

 Quasi-simultaneous launch of all NP processes does the OS :

 mpirun –np <NP> <executable file>

 NP is given by user but not by the number of processors available!

Modification of sequential code to make it
effective for parallelization

Example: Summation of n numbers. Sequential code.

 s = 0

 Do i = 1, n

 s = s + a(i)

 EndDo

Modification: summation process is splitted; we obtain two independent branches
that can be parallelized.

 s = 0

 s1 = 0

 n2 = n/2

 Do i = 1, n2

 s = s + a(i)

 EndDo

 Do i = n2+1, n

 s1 = s1 + a(i)

 EndDo

 s = s+s1

This idea can be generalized for more processors.

All NP processes execute the same program asynchronous.

Each process knows its own number myProc and total

number of processes NP.

Parallel program can consist of such fragments:

 If (myProc.eq.1) then

 < work 1 >

 else if (myProc.eq.2) then

 < work 2 >

 . . .

 else

 <work N >

 endif

 MPI vocabulary

Fortran - mpif.h , C - mpi.h - required for all

programs that make MPI library calls.

MPI_Comm_World – predefined group of all

processes being running.

MPI_Integer, MPI_Real, MPI_Byte …- data types

MPI_Any_Source, MPI_Any_Tag - jokers
(somewhat like *.* in file-systems).

MPI_Source, MPI_Tag, MPI_Error - separate

fields of status for message being received.

 ………….

The basic MPI operations
 MPI_Init(ierr), MPI_Finalize(ierr) – «brackets» of parallel part of the

code. All MPI procedures can be called between these operators.

 MPI_Abort(comm) - finish for all processes in group while an error

occurs.

 MPI_Comm_Size(comm,NProc,ierr) – how many processes are in

the group ?

 MPI_Comm_Rank(comm,myProc,ierr) – what is my number in the

group ?

o C-format:

 rc = MPI_Xxxxx(parameter, ...)

 Fortran-format:

 CALL MPI_XXXXX(parameter,..., ierr)

call mpi_xxxxx(parameter,..., ierr)

C example:

#include <stdio.h>

#include <mpi.h>

int main(int argc, char *argv[])

{

MPI_Init(&argc, &argv);

 printf ("Hello\n"); // Parallel section

MPI_Finalize();

 return 0;

}

Word “Hello” is printed by each processor of the group. In case we have 5

processes in the group we have to obtain “Hello” to be displayed 5 times.

Fortran example:

 program example

 include ’mpif.h’

 integer ierr

 call MPI_INIT(ierr)

 print *,’Parallel section’ ! Parallel section

 call MPI_FINALIZE(ierr)

 end

“Parallel section” is printed by each process of the group. In case of 5

processes we should obtain “Parallel section” to be displayed 5 times.

Fortran example:

 Program Hello
 Include 'mpif.h‘
 call MPI_Init(ierr)
 call MPI_Comm_Size(MPI_Comm_World, NProc)
 call MPI_Comm_Rank(MPI_Comm_World, myProc)
 write(*,*) ' Hello, I am ',myProc,
& ' process of ',Nproc

& ' in a group ',MPI_COMM_WORLD

 call MPI_Finalize(ierr)

 End

 Outcome for 3 processes:

 Hello, I am 0 process of 3 in a group 91

 Hello, I am 2 process of 3 in a group 91

 Hello, I am 1 process of 3 in a group 91

More Fortran Example. “IF” in parallel computing

 program example

 include ’mpif.h’

 integer ierr, size, rank

c

c start parallel section

 call MPI_INIT(ierr)

 call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)

 call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)

 print *,’my rank is’, rank

 if (rank.eq.0) print *,’size of our group is’, size

 call MPI_FINALIZE(ierr)

c finish parallel section

 end

 Each process prints its rank; zero rank process prints the group size:

’my rank is’, rank

’my rank is’, rank

’my rank is’, rank

’size of our group is’, size

#include <stdio.h> Example in C

#include <mpi.h>

int main(int argc, char *argv[])
{
 int size; // quantity of processes in the group

 int num; // number of process

MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &size);

 MPI_Comm_rank(MPI_COMM_WORLD ,&num);

 printf ("My Rank is %d\n",num);

{ if (num == 0) printf (“Size %d\n",size); }

MPI_Finalize();

 return 0;

}

Outcome for 5 processes:

My Rank is 0

My Rank is 1

My Rank is 2

My Rank is 3

My Rank is 4

Size 5

“Point-to-Point” MPI operations

MPI_Send(Buf,Cnt,Type,Whom,Tag,comm,ierr)

MPI_Recv(Buf,Cnt,Type,From,Tag,comm,status,ierr)

 Current process myProc sends to process Whom

 (receives from process From) Cnt items of data of type Type

 into buffer Buf with tag Tag.

 Instead of From and Tag may be jokers:

 MPI_Any_Source, MPI_Any_Tag.

 !!! When the process From is sending the data BUF via MPI_Send

subroutine to the Whom process – the Whom process should call the

corresponding MPI_Recv procedure of receiving the data BUF from the

process From.

 Program exampleA

 C 0-process sends value a to another processes; prints rank and value a

 C Another processes receive b from the 0-process; print rank and value b

 include 'mpif.h'

 integer ierr, size, rank, size_minus_1

 real a,b

 integer status(MPI_STATUS_SIZE)

 call MPI_INIT(ierr)

 call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)

 call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)

 if(rank .eq. 0) then

 a = 10.0

 size_minus_1 = size-1

 do i=1,size_minus_1

 call MPI_SEND(a, 1, MPI_REAL, i, 5, MPI_COMM_WORLD, ierr)

 enddo

 print *, 'process ', rank,' a = ', a

 else

 call MPI_RECV(b, 1, MPI_REAL, 0, 5, MPI_COMM_WORLD, status, ierr)

 print *, 'process ', rank,' b = ', b

 end if

 call MPI_FINALIZE(ierr)

 end

“MPI MINIMUM”

MPI_Init

MPI_Finalize

MPI_Comm_size

MPI_Comm_rank

+

MPI_Send

MPI_Recv

 These six MPI-procedures are enough to practically
arrange parallelism.

 All another procedures optimize exchange and simplify
the code.

The collective MPI-operations

 MPI_Barrier(comm,ierr)

 MPI_Bcast(Buf,Cnt,Type,root,comm,ierr)

 MPI_Gather(Sbuf,Scnt,Styp,Rbuf,Rcnt,Rtyp,root,comm,ierr)

 MPI_Scatter(Sbuf,Scnt,Styp,Rbuf,Rcnt,Rtyp,root,comm,ierr)

 MPI_Reduce(Sbuf,Rbuf,Cnt,Type,Op,root,comm,ierr)

 MPI_AllReduce(Sbuf,Rbuf,Cnt,Type,Op,comm,ierr)

 Here root-process initiates the operation, and the others

 works according the operation semantics.

 Op = (MPI_Min, MPI_Max, MPI_Sum, MPI_Prod ...)

MPI_BCAST(BUF, COUNT, DATATYPE, ROOT, COMM, IERR)

• This procedure should be called by all processes in the group.

• COUNT elements of BUF are sent by the ROOT process to all processes in

the group COMM.

• Result: All processes in the group COMM have the BUF of the COUNT

elements.

Vertical: processes;

Horizontal: elements of BUF.

elements of BUF elements of BUF

p
ro

ce
ss

es

p
ro

ce
ss

es

MPI_SCATTER(SBUF, SCOUNT, STYPE, RBUF, RCOUNT, RTYPE, ROOT,

 COMM, IERR)

• This procedure should be called by all processes in the group.

• SBUF is split on equal portions of the length SCOUNT.

• These portions of SCOUNT elements of SBUF are sent from the ROOT

process to the RBUF of the RCOUNT length to all processes in the group

COMM

Order is determined the process ranks.

Result: Each process in the group have own portion of SBUF of the SCOUNT

elements.

 Vertical: processes;

 Horizontal: elements of BUF.

p
ro

ce
ss

es

p
ro

ce
ss

es

elements of BUF elements of BUF

MPI_GATHER(SBUF, SCOUNT, STYPE, RBUF, RCOUNT, RTYPE, ROOT,

 COMM, IERR)

• This procedure should be called by all processes in the group.

• Each process of group COMM sends SCOUNT elements of its SBUF to the

ROOT process, to the RBUF of the RCOUNT length.

• Result: In the ROOT process, the RBUF contains SIZE portions of

SCOUNT elements sent by each process.

• Portions are placed in RBUF in accordance to the RANK of processes.

 Vertical: processes;

 Horizontal: elements of BUF.

p
ro

ce
ss

es

p
ro

ce
ss

es

elements of BUF elements of BUF

MPI_REDUCE(SBUF, RBUF, COUNT, DATATYPE, OP, ROOT,

 COMM, IERR)

• This procedure should be called by all processes in the group.

• The global operation OP is performed under COUNT elements of the RBUF

of all processes in the group COMM.

• Result of operation OP is placed to the RBUF of the ROOT process.

Examples of global operations:

MPI_MAX, MPI_MIN, MPI_SUM, MPI_PROD

MPI_MINLOC, MPI_MAXLOC

MPI_LAND, MPI_LOR

MPI_ALLREDUCE(SBUF, RBUF, COUNT, DATATYPE, OP, COMM,

 IERR)

Result of operation OP is placed to the RBUF to all processes in the group

COMM.

 Program exampleA (REPEAT from previous presentation)

 C 0-process sends value a to another processes; prints rank and value a

 C Another processes receive b from the 0-process; print rank and value b

 include 'mpif.h'

 integer ierr, size, rank, size_minus_1

 real a,b

 integer status(MPI_STATUS_SIZE)

 call MPI_INIT(ierr)

 call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)

 call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)

 if(rank .eq. 0) then

 a = 10.0

 size_minus_1 = size-1

 do i=1,size_minus_1

 call MPI_SEND(a, 1, MPI_REAL, i, 5, MPI_COMM_WORLD, ierr)

 enddo

 print *, 'process ', rank,' a = ', a

 else

 call MPI_RECV(b, 1, MPI_REAL, 0, 5, MPI_COMM_WORLD, status, ierr)

 print *, 'process ', rank,' b = ', b

 end if

 call MPI_FINALIZE(ierr)

 end

 Program exampleB (Modification of exampleA)

C 0-process sends value a to all processes; prints rank and value a

C All other processes receive a from the 0-process; print rank and value a

 include 'mpif.h'

 integer ierr, size, rank

 real a,b

 integer status(MPI_STATUS_SIZE)

 call MPI_INIT(ierr)

 call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)

 call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)

 if (rank .eq. 0) a = 10.0

 MPI_BCAST(a, 1, MPI_REAL, 0, MPI_COMM_WORLD, IERR)

 print *, 'process ', rank,' a = ', a

 call MPI_FINALIZE(ierr)

 end

Example : collective integrating for function

F(x) of 1 variable on (A,B) interval

 Include ‘mpif.h’

 external F ! Function being integrated

 data A/0/, B/1/ ! Limits of integrating

 call MPI_Init(ierr)

 call MPI_Comm_Size(MPI_Comm_World, NProc,ierr) ! How many of us?

 call MPI_Comm_Rank(MPI_Comm_World, myProc,ierr) ! Who am I ?

 dx=(B-A)/Nproc ! Divide the interval equally

 a1=A+myProc*dx ! вetween all processes

 b1=a1+dx

 s1=Common_Integration(F, a1, b1) ! – the general librarian program

 call MPI_AllReduce(s1,S,1,MPI_Real, MPI_Sum, MPI_Comm_World,ierr)

 call MPI_Finalize(ierr)

 End

There are different ways to partition data

 One of the first steps in designing a parallel program is to break the

problem into discrete parts of work that can be distributed to

multiple tasks.

The way for distribution N columns of matrix

between NProc processes.

It’s a way N1 (divide onto contiguous pieces - ”block”)

 nc=N/NProc ! columns distribution for processes (we assume N>NProc)

 nrest=mod(N,NProc) ! =0 if N has been entirely divided onto NProc

 if(myProc.lt.nrest) then

 nc1=1+(nc+1)*myProc ! almost equally

 nc2=nc1+nc ! 1-st and last columns for myProc

 else

 nc1=1+(nc+1)*nrest+nc*(myProc-nrest)

 nc2=nc1+nc-1 ! Some processes got a bit less jobs!

 endif

 if(nc1.le.nc2) then

 write(*,*) ' Process',myProc, ' started for columns from',nc1,' to',nc2

 else

 write(*,*) ' Process',myProc,' does nothing!'

 endif

 It looks complicate, but it works, and the results will be convenient for sending to
master

The way N2: cyclic

 Let NProc processes do N units of collective job, working together.
Then instead of the complete loop

 do job=1,N

 each process performs a reduced loop:

 do job=1+myProc,N,NProc

 One unit of job is performed ...

 enddo

 It is clear and convenient: we need not take care in direct division N
by NProc ! The difficulties while sending results to master are
possible! It is the simplest way to divide the whole job between
several workers.

Directing Р at the infinity, we have a limit: A<1/S.

Particularly, if S>0.1, then A < 10 during any P.

But if S=0 (that is an absolutely unreal case in reality), then A = P.

So, decide by yourself, corresponds your efforts while parallelization to
future profit, or not! Efforts expected to be rather big .

So – even if we take a lot of processors we cannot infinitely accelerate
execution of our code because S cannot be zero in actuality.

Beside, we should also account the time of exchange between processors.

The Amdahl’s law Gene Amdahl, 1967

Describes a limit of achievement progress while program parallelization.

Let 0 <= S <= 1 – the part of computational operations in our program,
which must be performed strongly sequentially. Than, trying to use P
processes simultaneously instead of one, we can reach an acceleration A not
more than in

Run MPI-program

 Add a module to environment:

 module add openmpi/1.6.5

 Compilation (f77 -> mpif77, cc -> mpicc) :

 mpif77 example.f mpicc example.c

 Run 3 processes (interactive mode):

 mpirun -n 3 a.out

 Launch batch jobs:

 sbatch <script_mpi >

 script_mpi:

 #!/bin/sh

 #SBATCH -n 5

 mpiexec ./a.out

References:

 http://www.mpi-forum.org/ - Message Passing Interface Forum.

 http://www.netlib.org/utk/papers/mpi-book/mpi-book.html

 MPI: The complete Reference. MIT Press, Cambridge, Massachusetts, 1997.

 Authors: Marc Snir, Steve Otto, Steve Huss-Lederman, David Walker, Jack

Dongarra.

 http://www.open-mpi.org/ - The Open MPI Project is an open source

Message Passing Interface implementation that is developed and

maintained by a consortium of academic, research, and industry partners.

 http://www.parallel.ru , http://parallel.ru/docs/mpich/html/

 https://computing.llnl.gov/tutorials/parallel_comp/ - Introduction to Parallel

Computing.

 https://computing.llnl.gov/tutorials/mpi/ - Message Passing Interface (MPI).

 http://www.lam-mpi.org/tutorials/bindings/ - C, C++, and Fortran

bindings for MPI-1.2

http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.netlib.org/utk/papers/mpi-book/mpi-book.html
http://www.netlib.org/utk/papers/mpi-book/mpi-book.html
http://www.netlib.org/utk/papers/mpi-book/mpi-book.html
http://www.netlib.org/utk/papers/mpi-book/mpi-book.html
http://www.netlib.org/utk/papers/mpi-book/mpi-book.html
http://www.open-mpi.org/
http://www.open-mpi.org/
http://www.open-mpi.org/
http://www.parallel.ru/
http://parallel.ru/docs/mpich/html/
https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/mpi/
http://www.lam-mpi.org/tutorials/bindings/
http://www.lam-mpi.org/tutorials/bindings/
http://www.lam-mpi.org/tutorials/bindings/

