Introduction to Lattice QCD II A dedicated project

Karl Jansen

- motivation
- describe the computation
- new method for the lattice
- results

A success of Quantum Field Theories: Electromagnetic Interaction

Quantum Electrodynamics (QED)

coupling of the electromagnetic interaction is small \Rightarrow perturbation theory 4-loop calculation

magnetic moment of the electron

$$\vec{\mu} = g_e \frac{e\hbar}{2m_e c} \vec{S}$$

 \vec{S} spin vector

deviation from $g_e = 2$: $a_e = (g_e - 2)/2$

 $a_e(\text{theory}) = 1159652201.1(2.1)(27.1) \cdot 10^{-12}$ $a_e(\text{experiment}) = 1159652188.4(4.3) \cdot 10^{-12}$

The question of the muon

magnetic moment of the muon

$$\vec{\mu} = g_{\mu} \frac{e\hbar}{2m_{\mu}c} \vec{S}$$

deviation from $g_{\mu}=2$: $a_{\mu}=(g_{\mu}-2)/2$

 $a_{\mu}(\text{theory}) = 1.16591790(65) \cdot 10^{-3}$ $a_{\mu}(\text{experiment}) = 1.16592080(63) \cdot 10^{-3}$

 \rightarrow there is a 3.2σ discrepancy

 $a_{\mu}(\text{experiment}) - a_{\mu}(\text{theory}) = 2.90(91) \cdot 10^{-9}$

The storagering at BNL

BNL Muon g-2 Experiment

 a, is proportional to the difference between the spin precession and the rotation rate

$$\Delta \omega = \omega_a = \left(\frac{g-2}{2}\right) \frac{eB}{mc}$$

Motivation

E821 achieved ± 0.54 ppm. The $e^+\!e^-$ based theory is at the ~0.4 ppm level. Difference is ~3.6 σ

 $a_{\mu}^{exp} = 116592089(63) \times 10^{-11} (0.54 \text{ ppm})$ $\Delta a_{\mu} \equiv a_{\mu}^{exp} - a_{\mu}^{SM} = (287 \pm 80) \times 10^{-11}$

Theory: arXiv:1010.4180v1 [hep-ph] Davier, Hoecker, Malaescu, and Zhang, Tau2010

Why is this interesting?

 \rightarrow new proposed experiments at Fermilab (USA) and JPARC (Japan) ≈ 2015 brings down error

 $\sigma_{\rm ex} = 6.3 \cdot 10^{-10} \rightarrow 1.6 \cdot 10^{-10}$

challenge: bring down theoretical error to same level

 \Rightarrow possibility

 $a_{\mu}(\text{experiment}) - a_{\mu}(\text{theory}) > 5\sigma$

• possible breakdown of standard model?

• $a_{\mu} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{weak}} + a_{\mu}^{\text{QCD}} + a_{\mu}^{\text{NP}}$

 $a_{\mu}^{NP} \propto m_{\rm lepton}^2/m_{\rm new}^2$

 \rightarrow muon ideal to discover new physics

for au experimental results too imprecise

Is the lattice important?

(Snowmass report, T. Blum et.al.)

 \rightarrow size of various contributions to a_{μ}

	Value ($\times 10^{-11}$) units
$QED\;(\gamma+\ell)$	$116584718.951\pm0.009\pm0.019\pm0.007\pm0.077_{\alpha}$
HVP(lo) (Davier11)	6923 ± 42
HVP(lo) (Hagiwara11)	6949 ± 43
HVP(ho) (Hagiwara:2011)	-98.4 ± 0.7
HLbL	105 ± 26
EW	154 ± 1
Total SM (Davier11)	$116591802 \pm 42_{\text{H-LO}} \pm 26_{\text{H-HO}} \pm 2_{\text{other}}(\pm 49_{\text{tot}})$
Total SM (Hagiwara:2011)	$116591828\pm43_{ ext{H-LO}}\pm26_{ ext{H-HO}}\pm2_{ ext{other}}(\pm50_{ ext{tot}})$

 \Rightarrow non-perturbative hadronic contributions are most important

Most recent experimental determination: **E821 collaboration**

 $a_{\mu}^{\text{E821}} = (116\,592\,089\pm63) \times 10^{-11} \quad (0.54\,\text{ppm})$

comparison

 $\Delta a_{\mu}(\text{E821} - \text{SM}) = (287 \pm 80) \times 10^{-11} \text{ (Davier11)}$ $\Delta a_{\mu}(\text{E821} - \text{SM}) = (261 \pm 78) \times 10^{-11} \text{ (Hagiwara11)}$

 \Rightarrow larger than $3 - \sigma$ discrepancy

First principle calculation of leading order hadronic contribution, $a_{\mu}^{\rm had}$

- a_{μ}^{had} contributes almost 60% of theoretical error
- needs to be computed non-perturbatively
- computation of vacuum polarization tensor

 $\Pi_{\mu\nu}(q) = (q_{\mu}q_{\nu} - q^2g_{\mu\nu})\Pi(q^2)$

The contributions to $g_{\mu}-2$

The vertex

- p, p' incoming and outgoing momenta
- q = p p' photon momentum
 - put muon in magnetic field \vec{B} interaction Hamiltonian $H = \vec{\mu}\vec{B}$
 - measure interaction of muon with photon (magnetic field)

The simplest, QED contribution to $g_l - 2$

Schwinger, 1948

$$\mu \gamma \mu \Rightarrow a_{\mu}^{\text{QED}(1)} = \frac{\alpha}{2\pi} ,$$

 α QED fine structure constant

- Schwinger's calculation: $g_e = 2.00232$
- experimental result: $g_e = 2.00238(10)$ (Foley, 1948)

First success of quantum field theory

- a_{μ}^{had} contributes almost 60% of theoretical error
- needs to be computed non-perturbatively
- computation of vacuum polarization tensor

$$\Pi_{\mu\nu}(q) = (q_{\mu}q_{\nu} - q^2g_{\mu\nu})\Pi(q^2)$$

Relation to experimental extraction

connection between real and imaginary part of $\Pi(q^2)$

$$\Pi(q^2) - \Pi(0) = \frac{q^2}{\pi} \int_0^\infty ds \frac{\mathrm{Im}\Pi(s)}{s(s-q^2)}$$

 $Im\Pi(s)$ related to experimental data of total cross section in e^+e^- annihilation

 $\mathrm{Im}\Pi(s) = \frac{\alpha}{3}R(s)$

important contributions

•
$$\rho, \omega \ (N_f = 2)$$

•
$$\Phi$$
 ($N_f = 2 + 1$)

•
$$J/\Psi$$
 ($N_f = 2 + 1 + 1$)

How the data really look like

• demanding analysis of O(1000) channels Jegerlehner, Nyffeler, Phys.Rep.

Euclidean expression for hadronic contribution

$$a_{\mu}^{\text{had}} = \alpha^2 \int_0^\infty \frac{dQ^2}{Q^2} F\left(\frac{Q^2}{m_{\mu}^2}\right) \left(\Pi(Q^2) - \Pi(0)\right)$$

with $F\left(\frac{Q^2}{m_{\mu}^2}\right)$ a known function T. Blum

 \rightarrow need to compute vacuum polaization function

Continuum:

$$\Pi_{\mu\nu}(Q) = i \int d^4x e^{iQ \cdot (x-y)} \langle 0|T J_{\mu}(x) J_{\nu}(y)|0\rangle$$

 J_{μ} hadronic electromagnetic current

$$J_{\mu}(x) = \sum_{f} e_f \bar{\psi}_f(x) \gamma_{\mu} \psi_f(x) = \frac{2}{3} \bar{u}(x) \gamma_{\mu} u(x) - \frac{1}{3} \bar{d}(x) \gamma_{\mu} d(x) + \cdots$$

local vector current given is conserved

$$\partial_{\mu}J_{\mu}(x) = 0 \qquad \Rightarrow \quad Q_{\mu}\Pi(Q)_{\mu\nu} = 0$$

eliminating the factor $Q_{\mu}Q_{\nu}-Q^2\delta_{\mu
u}$

 \Rightarrow obtain $\Pi(Q^2)$

• work with $N_f = 2$ twisted mass fermions

$$\mathcal{S}_{tm} = \sum_{x} \bar{\chi}(x) \left[D_W + m_0 + i\mu\gamma_5\tau_3 \right] \chi(x)$$

• use the conserved lattice current

Exercize: derive conserved current

use vector transformation

 $\delta_V \chi(x) = i\epsilon_V(x)\tau\chi(x) , \quad \delta_V \bar{\chi}(x) = -i\bar{\chi}(x)\tau\epsilon_V(x)$ $\tau = \begin{pmatrix} 2/3 & 0\\ 0 & -1/3 \end{pmatrix} = \frac{1}{6}\mathbf{1} + \frac{1}{2}\tau^3$

Can we also use the local current?

Conserved lattice current

 $J_{\mu}^{tm}(x) = \frac{1}{2} \left(\bar{\chi}(x) \tau(\gamma_{\mu} - r) U_{\mu}(x) \chi(x + \hat{\mu}) + \bar{\chi}(x + \hat{\mu}) \tau(\gamma_{\mu} + r) U_{\mu}^{\dagger}(x) \chi(x) \right)$

satisfying

$$\partial_{\mu}^* J_{\mu}^{tm}(x) = 0$$

with ∂^*_{μ} backward lattice derivative

Lattice vacuum polarization tensor

Fourier transformation of conserved vector current:

$$J^{tm}_{\mu}(\hat{Q}) = \sum_{x} e^{iQ \cdot (x+\hat{\mu}/2)} J^{tm}_{\mu}(x) , \quad \hat{Q}_{\mu} = 2\sin\left(\frac{Q_{\mu}}{2}\right)$$

leading to

$$\Pi_{\mu\nu}(\hat{Q}) = \frac{1}{V} \sum_{x,y} e^{iQ \cdot (x + \hat{\mu}/2 - y - \hat{\nu}/2)} \langle J^{tm}_{\mu}(x) J^{tm}_{\nu}(y) \rangle$$

from which we extract the vacuum polarization function

$$\Pi_{\mu\nu}(\hat{Q}) = (\hat{Q}_{\mu}\hat{Q}_{\nu} - \hat{Q}^{2}\delta_{\mu\nu})\Pi(\hat{Q}^{2})$$

Fit to vacuum polarization function

Fit function

$$\Pi_{M,N}(Q^2) = -\frac{5}{9} \sum_{i=1}^{M} \frac{m_i^2}{Q^2 + m_i^2} + \sum_{n=0}^{N} a_n (Q^2)^n$$

typically i = 1, 2, 3, n = 0, 1, 2, 3 (systematic error)

Do we control hadronic vacuum polarisation?

(Xu Feng, Dru Renner, Marcus Petschlies, K.J.; Lattice 2010)

- experiment: $a_{\mu,N_f=2}^{\text{hvp,exp}} = 5.66(05)10^{-8}$
- lattice: $a_{\mu,N_f=2}^{\text{hvp,old}} = 2.95(45)10^{-8}$
- \rightarrow misses the experimental value \rightarrow order of magnitude larger error

- have used different volumes
- have used different values of lattice spacing

Dis-connected contribution

a graph representing dis-conected contributions

 \rightarrow has been basically always be neglected

Can it be the dis-connected contribution?

(Xu Feng, Dru Renner, Marcus Petschlies, K.J.)

- dedicated effort
- have included dis-connected contributions for first time
- smallness consistent with chiral perturbation theory (Della Morte, Jüttner)

lattice: simulations at unphysical quark masses, demand only

$$\lim_{m_{\rm PS}\to m_{\pi}} a_l^{\rm hvp, latt} = a_l^{\rm hvp, phys}$$

 \Rightarrow flexibility to define $a_l^{\text{hvp,latt}}$

standard definitions in the continuum

$$a_l^{\text{hvp}} = \alpha^2 \int_0^\infty dQ^2 \frac{1}{Q^2} \omega(r) \Pi_R(Q^2)$$
$$\Pi_R(Q^2) = \Pi(Q^2) - \Pi(0)$$
$$\omega(r) = \frac{64}{r^2 \left(1 + \sqrt{1 + 4/r}\right)^4 \sqrt{1 + 4/r}}$$

with $r = Q^2/m_l^2$

Redefinition of $a_l^{hvp,latt}$

redefinition of r for lattice computations

$$r_{\text{latt}} = Q^2 \cdot \frac{H^{\text{phys}}}{H}$$

choices

- r_1 : H = 1; $H^{\text{phys}} = 1/m_l^2$
- r_2 : $H = m_V^2(m_{\rm PS})$; $H^{\rm phys} = m_\rho^2/m_l^2$
- r_3 : $H = f_V^2(m_{\rm PS})$; $H^{\rm phys} = f_\rho^2/m_l^2$

each definition of r will show a different dependence on $m_{\rm PS}$ but agree by construction at the physical point

remark: strategy often used in continuum limit extrapolations, e.g. charm quark mass determination

comparison using r_1, r_2, r_3

A new result from the lattice

- experimental value: $a_{\mu,N_f=2}^{\text{hvp,exp}} = 5.66(05)10^{-8}$
- from our old analysis: $a_{\mu,N_f=2}^{\mathrm{hvp,old}} = 2.95(45)10^{-8}$
- \rightarrow misses the experimental value
- $\rightarrow~$ order of magnitude larger error
- from our new analysis: $a_{\mu,N_f=2}^{\text{hvp,new}} = 5.66(11)10^{-8}$
- → error (including systematics) almost matching experiment

anomalous magnetic moment of muon

- have used different volumes
- have used different values of lattice spacing
- have included dis-connected contributions
- \Rightarrow can control systematic effects

Why it works: fitting the Q^2 dependence

Fit function

$$\Pi_{M,N}(Q^2) = -\frac{5}{9} \sum_{i=1}^{M} \frac{m_i^2}{Q^2 + m_i^2} + \sum_{n=0}^{N} a_n (Q^2)^n$$

 $i = 1: \rho$ -meson \rightarrow dominant contribution $\propto 5.010^{-8}$

Why it works

•
$$a_{\mu}^{\text{hvp}} \approx \frac{4}{3} \alpha^2 g_V^2 \frac{m_{\mu}^2}{m_V^2}, \ \frac{m_{\mu}^2}{m_V^2} \ll 1$$

- m_V consistent with resonance analysis (Feng, Renner, K.J.)
- \bullet strong dependence on $m_{\rm PS}$

Extension to the first two quark families

(F. Burger, X. Feng, G. Hotzel, M. Petschlies, D. Renner, K.J.)

- previous work: only mass-degenerate up and down quarks
- new extension: including strange <u>and</u> charm:
 - no ambiguity to disentangle flavour contributions
 - charm contribution $a_{\mu,c}^{had} \propto O(140 \cdot 10^{-11})$
 - \Rightarrow same order of magnitude as light-by-light contribution $(105 \cdot 10^{-11})$

charm

strange

 $N_{f}=2+1+1$

down

• first calculation with 4 flavours of active quarks

The light quark contribution with active sea strange and charm quarks

$$a_{\mu,\mathrm{ud}}^{\mathrm{hvp}} = 5.67(11) \cdot 10^{-8} \quad (N_f = 2 + 1 + 1)$$

 $a_{\mu,\mathrm{ud}}^{\mathrm{hvp}} = 5.72(16) \cdot 10^{-8} \quad (N_f = 2),$

- improved method works als here
- light quark contribution: no visible effect of strange and charm

Comparison to phenomenological analyses

- lattice can provide 4-flavour result
- accuracy does not (yet) match phenomenological results
- still first principle result from purely QCD
- no model assumptions, no experimental input

Muon anomalous magnetic moment at the physical point

- first results by **ETMC** at the physical pion mass
- light quark contribution to a_{μ}^{had} \rightarrow confirms extrapolation of improved method
- computations ongoing
 - \rightarrow increasing statistics

Open questions

- Fit function: do we really have small momentum region under control?
- how can we handle the instable ρ-meson (analytical continuation? moment method?)
- generalized boundary conditions:
- when do the dis-connected contributions become important?

Next steps

Fit function

$$\Pi_{M,N}(Q^2) = -\frac{5}{9} \sum_{i=1}^{M} \frac{m_i^2}{Q^2 + m_i^2} + \sum_{n=0}^{N} a_n (Q^2)^n$$

add i = 4: J/Ψ , $i = 5 \dots$

- simulations with dynamical
 up, down, strange and charm quarks
 → unique opportunity
- avoids ambiguity with experiment comparison (what counts for $N_f = 2$?)
- generalized boundary conditions: $\Psi(L + a\hat{\mu}) = e^{i\theta}\Psi(x)$
 - $\rightarrow \theta$ continuous momentum
 - \rightarrow allows to realize arbitrary momenta on the lattice

The transport to FermiLab

Fermilab E989: Approved January 2011

- Re-locate the (g 2) storage ring to Fermilab
- Use the many proton storage rings to form the ideal proton beam
- Use one of the antiproton rings as a 900 m decay line to produce a pure muon beam
- Accumulate 21 times the statistics
- Improve the systematic errors
- Final goal: At least a factor of 4 more precise over E821

The accuracy question

We need a precision < 1%

- include explicit isospin breaking
- include electromagnetism
- need computation of light-by-light contribution
- reach small quark mass \rightarrow physical point

Much ado for young people

termed: *light-by-light scattering*

involves 4-point function

 $\Pi_{\mu\nu\alpha\beta}(q_1, q_2, q_3) = \int_{xyz} e^{iq_1 \cdot x + iq_2 \cdot y + iq_3 \cdot z} \left\langle j_\mu(0) j_\nu(x) j_\alpha(y) j_\beta(z) \right\rangle$

 j_{μ} electromagnetic quark current

$$j_{\mu} = \frac{2}{3}\bar{u}\gamma_{\mu}u - \frac{1}{3}\bar{d}\gamma_{\mu}d - \frac{1}{3}\bar{s}\gamma_{\mu}s + \frac{2}{3}\bar{c}\gamma_{\mu}c$$

Importance of light-by-light contribution

QED	11658471.8951(9)(19)(7)(77)	_
EW	15.4 (2)	- }
QCD	LO HVP	
	692.3 (4.2)	
	694.91 (3.72) (2.10)	QCD
	701.5 (4.7)	
NLO HVP	-9.79 (9)	5 5 5
HLbL	10.5 (2.6)	⊳ .≩≽§≽§.⊳.

units 10^{-10}

One idea: reduce to difference of 3-point functions (T. Blum, S. Chowdhury, M. Hayakawa, T. Izubuchi) quark (quark QCD+q-QED = --->--6 q-QED QCD+q-QED (quark) QCD+q-QED $+3 \times$ q-QED+•••.

First promising results

- seem to get a signal
- not so far from model calculations
- need further tests

Summary

- lattice calculation of muon anomalous magnetic moment
- looked hopeless first order of magnitude larger error than experiment
- introduced new method \rightarrow start to match experimental accuracy
- outlook
 - include first two quark generations
 - include isospin breaking and electromagnetism
 - attack light-by-light scattering