Introduction to Lattice QCD II

Rarl Jansen

Task: compute proton mass

- need an action
- need an algorithm
- need an observable
- need a supercomputer
- the muon anomalous magnetic moment

Quantum Chromodynamics

Pathintegral

$$\mathcal{Z} = \int \mathcal{D}A_{\mu} \mathcal{D}\Psi \mathcal{D}\bar{\Psi} e^{-S_{\text{gauge}} + S_{\text{ferm}}}$$
squae action

Fermion action

 $S_{\text{ferm}} = \int d^4x \bar{\Psi}(x) \left[\gamma_{\mu} D_{\mu} + m\right] \Psi(x)$ gauge covariant derivative $D_{\mu}\Psi(x) \equiv (\partial_{\mu} - ig_0 A_{\mu}(x))\Psi(x)$ A_{μ} gauge potential g_0 coupling m quark mass o gauge action $S_{\text{gauge}} = \int d^4 x F_{\mu\nu} F_{\mu\nu} , \ F_{\mu\nu}(x) = \partial_{\mu} A_{\nu}(x) - \partial_{\nu} A_{\mu}(x) + i \left[A_{\mu}(x), A_{\nu}(x) \right]$

The actions

o fermion action

act had to be invented

asymptotic freedom	confinement	
distances << 1fm	distances 0(1fm)	
world of quarks and gluons	world of hadrons	
perturbative description	non-perturbative methods	

As Wilson said it:

Unfortunately, it is not known yet whether the quarks in quantum chromodynamics actually form the required bound states. To establish whether these bound states exist one must solve a strong coupling problem and present methods for solving field theories don't work for strong coupling. (Wilson, Cargese Lecture notes 1976)

Going to the lattice quark fields $\Psi(x)$ $\overline{\Psi}(x)$ $x = (t, \mathbf{x})$ integers discretized action $S \to a^4 \sum \bar{\Psi}(x) \left[\gamma_\mu \partial_\mu - r \, \partial_\mu^2 \, + m \right] \Psi(x)$ $\nabla^*_{\mu} \nabla_{\mu}$ $\partial_{\mu} \rightarrow \frac{1}{2} \left[\nabla^*_{\mu} + \nabla_{\mu} \right]$ $\nabla_{\mu}\Psi(x) = \frac{1}{a} \left[\Psi(x + a\hat{\mu}) - \Psi(x)\right]$

$$\nabla^*_{\mu}\Psi(x) = \frac{1}{a} \left[\Psi(x) - \Psi(x - a\hat{\mu})\right]$$

Nielsen-Ninomiya theorem

clash between chiral symmetry and fermion proliferation

for any lattice Dirac operator D

- T is local; bounded by $Ce^{-\gamma/a|x|}$
- $\tilde{D}(p) = i\gamma_{\mu}p_{\mu} + \mathcal{O}(ap^2)$
- To b is invertible for all $p \neq 0$

© chiral symmetric: $\gamma_5 D + D\gamma_5 = 0$ cannot be fulfilled simultaneously

The theorem simply states the fact that the Chern number is a cobordism invariant (Friedan)

Gauge fields

Introduce group valued fields $U(x,\mu) \in \mathrm{SU}(3)$ relation to gauge potential $U(x,\mu) = \exp(iaA^{b}_{\mu}(x)T^{b}) = 1 + iaA^{b}_{\mu}(x)T^{b} + \dots$ discretization of field strength tensor $U(x,\mu)U(x+a\mu,\nu) - U(x,\nu)U(x+a\hat{\nu},\mu) = ia^2 F_{\mu\nu}(x) + O(a^3)$ $F_{\mu\nu}(x) = \partial_{\mu}A_{\nu}(x) - \partial_{\nu}A_{\mu}(x) + i[A_{\mu}(x), A_{\nu}(x)]$ lattice action $S_{\rm w}(U) = \sum_{\square} \beta \left\{ 1 - \frac{1}{3} Re \operatorname{Tr}(U_{\square}) \right\} \ a \to 0 \ \frac{1}{2g^2} a^4 \sum_{m} \operatorname{Tr}(F_{\mu\nu}(x)^2) + O(a^6)$ $\beta = 6/q^2$

Physical observables

 $\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int_{\text{fields}} \mathcal{O}e^{-S}$

 \downarrow lattice discretization

01011100011100011110011

Monte Carlo Method

$$\langle f(x) \rangle = \int dx f(x) e^{-x^2}$$

integration points $x_i, i = 1, \cdots, N$

taken from distribution e^{-x^2}

$$\Rightarrow \langle f(x) \rangle \approx \frac{1}{N} \sum_{i} f(x_i)$$

error

 $\propto 1/\sqrt{N}$

QMC method (maybe later): $\propto 1/N$

There are dangerous animals

Another Look at the Wilson action

 $S = \underbrace{S_{\rm G}}_{{\rm O}(a^2)} + \underbrace{S_{\rm naive}}_{{\rm O}(a^2)} + \underbrace{S_{\rm wilson}}_{{\rm O}(a)}$

Linear Lattice artefacts: -> need small lattice spacings meed large volumes mant L=aN = 1fm killing O(a) effects clover-improved Wilson fermions maximally twisted mass Wilson fermions overlap/domainwall fermions exact lattice chiral symmetry

Realizing O(a)-improvement continuum action: $S = \bar{\Psi} \left[m + \gamma_{\mu} D_{\mu} \right] \Psi$ axial transformation $\Psi \to e^{i\omega\gamma_5\tau_3/2}\Psi \qquad \bar{\Psi} \to \bar{\Psi}e^{i\omega\gamma_5\tau_3/2}$ $m \to m e^{i\omega\gamma_5\tau_3} \equiv m' + i\mu\gamma_5\tau_3$ polar mass m and twist angle ω $m = \sqrt{m'^2 + \mu^2}$, $\tan \omega = \mu/m$ $\omega = 0$ standard QCD action $\omega = \pi/2: \quad S = \bar{\Psi} \left[i\mu\gamma_5\tau_3 + \gamma_\mu D_\mu \right]$

(maximal twist)

Repeat this on the lattice

$$D_{\rm tm} = m_q + i\mu\tau_3\gamma_5 + \frac{1}{2}\gamma_\mu \left[\nabla_\mu + \nabla^*_\mu\right] - ar\frac{1}{2}\nabla^*_\mu\nabla_\mu$$

difference to continuum situation: Wilson term not invariant under axial transformations free fermion propagator $\left[m_q + i\gamma_\mu \sin p_\mu a + \frac{r}{a} \sum_\mu (1 - \cos p_\mu a) + i\mu\tau_3\gamma_5\right]^{-1}$ $\propto (\sin p_\mu a)^2 + \left[m_q + \frac{r}{a} \sum_\mu (1 - \cos p_\mu a)\right]^2 + \mu^2$

A general argument

Symanzik expansion

 $\langle \mathcal{O} \rangle |_{(m_q,r)} = [\xi(r) + am_q \eta(r)] \langle \mathcal{O} \rangle |_{m_q}^{\text{cont}} + a\chi(r) \langle \mathcal{O}_1 \rangle |_{m_q}^{\text{cont}}$

 $\langle \mathcal{O} \rangle |_{(-m_q,-r)} = [\xi(-r) - am_q \eta(-r)] \langle \mathcal{O} \rangle |_{-m_q}^{\text{cont}} + a\chi(-r) \langle \mathcal{O}_1 \rangle |_{-m_q}^{\text{cont}}$ Symmetry

 $R_5 \times (r \to -r) \times (m_q \to -m_q) , R_5 = e^{i\omega\gamma_5\tau^3}$

automatic O(a) improvement through mass averaging $\frac{1}{2} \left[\langle \mathcal{O} \rangle |_{m_q,r} + \langle \mathcal{O} \rangle |_{-m_q,r} \right] = \langle \mathcal{O} \rangle |_{m_q}^{\text{cont}} + O(a^2)$ special case: $m_q = 0$ $\langle \mathcal{O} \rangle |_{m_q=0,r} = \langle \mathcal{O} \rangle |_{m_q}^{\text{cont}} + O(a^2)$

A test at tree-level

positive and negative mass

mass average

 $1/N \propto a$ a lattice spacing N lattice size $m_{\rm PS}$ "Pion Mass"

 $1/N^2 \propto a^2$

Exact Lattice chiral symmetry

Starting point: Ginsparg-Wilson relation

$$\gamma_5 D + D\gamma_5 = 2aD\gamma_5 D$$

$$\Rightarrow D^{-1}\gamma_5 + \gamma_5 D^{-1} = 2a\gamma_5$$

for any lattice Dirac operator D, satisfying the Ginsparg Wilson relation, the action

 $S = \bar{\psi} D \psi$

is invariant under

$$\delta\psi=\gamma_5(1-rac{1}{2}aD)\psi\;,\quad\deltaar{\psi}=ar{\psi}(1-rac{1}{2}aD)\gamma_5$$

one solution of GM-relation

Neuberger's overlap operator

$$D_{\rm ov} = \left[1 - A(A^{\dagger}A)^{-1/2}\right]$$

$$A = 1 + s - D_{w}(m_q = 0)$$

advantages of overlap operator

- often trivial renormalisation constants
- o index theorem fulfilled
- continuum like behaviour

dis-advantage

computationally very expensive

No free Lunch Cheorem

V, m_{π}	Overlap	Wilson TM	rel. factor
$12^4, 720 Mev$	48.8(6)	2.6(1)	18.8
$12^4, 390 Mev$	142(2)	4.0(1)	35.4
$16^4, 720 Mev$	225(2)	9.0(2)	25.0
$16^4, 390 Mev$	653(6)	17.5(6)	37.3
$16^4, 230 \mathrm{Mev}$	1949(22)	22.1(8)	88.6

o timings on PC cluster

Actions

ACTION clover improved Wilson

computationally fast

computationally fast

ADVANTAGES

twisted mass fermions

staggered

domain wall

overlap fermions

automatic improvement computationally fast improved chiral symmetry exact chiral symmetry

DISADVANTAGES

breaks chiral symmetry needs operator improvement breaks chiral symmetry violation of isospin fourth root problem complicated contraction computationally demanding needs tuning computationally expensive

All actions O(a)-improvement:

 $\langle O_{\rm phys}^{\rm latt} \rangle = \langle O_{\rm cont}^{\rm latt} \rangle + O(a^2)$

In the following: twisted mass fermions