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Introduction to Lattice QCD II

• Task: compute proton mass

✤ need an action

✤ need a supercomputer

✤ need an observable

✤ need an algorithm

• the muon anomalous magnetic moment



Quantum Chromodynamics
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The actions
fermion action
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QCD had to be invented

asymptotic freedom

world of quarks 
and gluons

distances << 1fm

perturbative 
 description

confinement

distances O(1fm)

world of hadrons

non-perturbative 
 methods



As Wilson said it: 

Unfortunately, it is not known yet whether the quarks in  
quantum chromodynamics actually form the required bound states.  
To establish whether these bound states exist one must solve a  
strong coupling problem and present methods for solving field  
theories don't work for strong coupling. 
(Wilson, Cargese Lecture notes 1976) 



Going to the lattice
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Nielsen-Ninomiya theorem

The theorem simply states the fact that the Chern number 
is a cobordism invariant 
(Friedan) 

clash between chiral symmetry  
and fermion proliferation 

for any lattice Dirac operator D 

• D is local; bounded by 
•   

Ce��/a|x|

D̃(p) = i�µpµ +O(ap2)

• D is invertible for all p 6= 0

• chiral symmetric: �5D +D�5 = 0

cannot be fulfilled simultaneously



Introduce group valued fields

Gauge fields
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relation to gauge potential
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discretization of field strength tensor

lattice action



Physical observables
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Monte Carlo Method
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QMC method (maybe later): / 1/N



There are dangerous animals



Another look at the Wilson action
S = SG|{z}

O(a2)

+Snaive| {z }
O(a2)

+Swilson| {z }
O(a)

linear lattice artefacts:
need small lattice spacings
need large volumes 

want L=aN = 1fm

clover-improved Wilson fermions

maximally twisted mass Wilson fermions

overlap/domainwall fermions
exact lattice chiral symmetry

killing O(a) effects



S =  ̄ [m+ �µDµ] 

 ! ei!�5⌧3/2  ̄!  ̄ei!�5⌧3/2

m ! mei!�5⌧3 ⌘ m0 + iµ�5⌧3

m =
p
m02 + µ2 , tan! = µ/m

! = 0

! = ⇡/2 : S =  ̄ [iµ�5⌧3 + �µDµ]

Realizing O(a)-improvement
continuum action:

axial transformation

polar mass m and twist angle !

standard QCD action

(maximal twist)



Repeat this on the lattice
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free fermion propagator



hOi|
(mq,r)
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A general argument

Symanzik expansion

Symmetry

special case: mq = 0

automatic O(a) improvement 
through mass averaging



A test at tree-level
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Exact lattice chiral symmetry

Starting point: Ginsparg-Wilson relation

�5D +D�5 = 2aD�5D

) D�1�5 + �5D
�1 = 2a�5

for any lattice Dirac operator D, satisfying the  
Ginsparg Wilson relation, the action
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one solution of GW-relation

D
ov

=
⇥
1�A(A†A)�1/2

⇤

Neuberger’s overlap operator

A = 1 + s�Dw(mq = 0)

advantages of overlap operator

index theorem fulfilled

often trivial renormalisation constants

continuum like behaviour
dis-advantage

computationally very expensive



timings on PC cluster

No free lunch theorem

V,m⇡ Overlap Wilson TM rel. factor
124, 720Mev 48.8(6) 2.6(1) 18.8
124, 390Mev 142(2) 4.0(1) 35.4
164, 720Mev 225(2) 9.0(2) 25.0
164, 390Mev 653(6) 17.5(6) 37.3
164, 230Mev 1949(22) 22.1(8) 88.6



Actions
ACTION ADVANTAGES DISADVANTAGES

clover improved Wilson computationally fast breaks chiral symmetry
needs operator improvement

twisted mass fermions computationally fast breaks chiral symmetry
automatic improvement violation of isospin

staggered computationally fast fourth root problem
complicated contraction

domain wall improved chiral symmetry computationally demanding
needs tuning

overlap fermions exact chiral symmetry computationally expensive

All actions O(a)-improvement: 

hOlatt

phys

i = hOlatt

cont

i+O(a2)

In the following: twisted mass fermions


