Introduction to Lattice QCD II

Tarl Jansen

- Task: compute proton mass
* need an action
\& need an algorithm
\& need an observable
\% need a supercomputer
- the muon anomalous magnetic moment

Quantum Chromodynamics

Pathintegral

Fermion action

The actions

- fermion action

$$
S_{\mathrm{ferm}}=\int d^{4} x \bar{\Psi}(x)\left[\gamma_{\mu} D_{\mu}+m\right] \Psi(x)
$$

gauge covariant derivative

$$
D_{\mu} \Psi(x) \equiv\left(\partial_{\mu}-i g_{0} A_{\mu}(x)\right) \Psi(x)
$$

A_{μ} gauge potential
g_{0} coupling m quark mass

- gauge action
$S_{\text {gauge }}=\int d^{4} x F_{\mu \nu} F_{\mu \nu}, F_{\mu \nu}(x)=\partial_{\mu} A_{\nu}(x)-\partial_{\nu} A_{\mu}(x)+i\left[A_{\mu}(x), A_{\nu}(x)\right]$

QCD had to be invented

asymplotic freedom	confinement
dislances $<1 \mathrm{fm}$	dislances 0(1fm)
world of quarks and gluons	world of hadrons
perkurbakive description	non-perturbative methods

As Wilson said it:

Unfortunately, it is not known yet whether the quarks in quantum chromodynamics actually form the required bound states. To establish whether these bound states exist one must solve a strong coupling problem and present methods for solving field theories don't work for strong coupling.
(Wilson, Cargese Lecture notes 1976)

Going to the lattice

quark fields

$$
\Psi(x) \quad \bar{\Psi}(x) \quad x=(t, \mathbf{x}) \text { integers }
$$

discrebized action

$$
\begin{aligned}
& \quad S \rightarrow a^{4} \sum_{x} \bar{\Psi}(x)[\gamma_{\mu} \partial_{\mu}-r \underbrace{\partial_{\mu}^{2}}_{\nabla_{\mu}^{*} \nabla_{\mu}}+m] \Psi(x) \\
& \partial_{\mu} \rightarrow \frac{1}{2}\left[\nabla_{\mu}^{*}+\nabla_{\mu}\right] \\
& \nabla_{\mu} \Psi(x)=\frac{1}{a}[\Psi(x+a \hat{\mu})-\Psi(x)] \\
& \nabla_{\mu}^{*} \Psi(x)=\frac{1}{a}[\Psi(x)-\Psi(x-a \hat{\mu})]
\end{aligned}
$$

Nielsen-Ninomiya theorem

clash between chiral symmetry and fermion proliferation

for any lattice Dirac operator D
(2) is Local; bounded by $C e^{-r / a|x|}$ - $\tilde{D}(p)=i \gamma_{\mu} p_{\mu}+\mathrm{O}\left(a p^{2}\right)$

- D is invertible for all $p \neq 0$
- chiral symmetric: $\gamma_{5} D+D \gamma_{5}=0$
cannot be fulfilled simultaneously
The theorem simply states the fact that the Chern number
is a cobordism invariant
(Friedan)

Gauge fields

Introduce group valued fields $U(x, \mu) \in \mathrm{SU}(3)$
relation to gauge potenkial
$U(x, \mu)=\exp \left(i a A_{\mu}^{b}(x) T^{b}\right)=1+i a A_{\mu}^{b}(x) T^{b}+\ldots$
discretization of field strength tensor
$U(x, \mu) U(x+a \mu, \nu)-U(x, \nu) U(x+a \hat{\nu}, \mu)=i a^{2} F_{\mu \nu}(x)+O\left(a^{3}\right)$
$F_{\mu \nu}(x)=\partial_{\mu} A_{\nu}(x)-\partial_{\nu} A_{\mu}(x)+i\left[A_{\mu}(x), A_{\nu}(x)\right.$
Lattice action

$$
\begin{gathered}
S_{w}(U)=\sum_{\square} \beta\left\{1-\frac{1}{3} \operatorname{ReTr} \operatorname{Tr}\left(U_{\square}\right)\right\} a \rightarrow 0 \frac{1}{2 g^{a^{4}}} \sum_{x} \operatorname{Tr}\left(F_{\mu \nu}(x)^{2}\right)+O\left(a^{6}\right) \\
\beta=6 / g^{2}
\end{gathered}
$$

Physical observables

$\underbrace{\langle\mathcal{O}\rangle=\frac{1}{\mathcal{Z}} \int_{\text {fields }} \mathcal{O} e^{-S}}$
\downarrow lattice discretization
01011100011100011110011
\downarrow

Monte Carlo Method

$$
\langle f(x)\rangle=\int d x f(x) e^{-x^{2}}
$$

integration poinks $\quad x_{i}, i=1, \cdots, N$
taken from distribution $e^{-x^{2}}$

$$
\Rightarrow\langle f(x)\rangle \approx \frac{1}{N} \sum_{i} f\left(x_{i}\right)
$$

error $\quad \propto 1 / \sqrt{N}$
QMC method (maybe later): $\propto 1 / N$

There are dangerous animals

Another look at the Wilson action

$$
S=\underbrace{S_{\mathrm{G}}}_{\mathrm{O}\left(a^{2}\right)}+\underbrace{S_{\text {naive }}}_{\mathrm{O}\left(a^{2}\right)}+\underbrace{S_{\text {wilson }}}_{\mathrm{O}(a)}
$$

Linear Lattice artefacts:
\Rightarrow need small lattice spacings
\Rightarrow need large volumes \leftrightarrow wank $L=a N=1 f m$
killing $O(a)$ effects clover-improved Wilson fermions maximally twisted mass Wilson fermions overlap/domainwall fermions \Rightarrow exact lattice chiral symmetry

Realizing $O(a)$-improvement
continuum action: $S=\bar{\Psi}\left[m+\gamma_{\mu} D_{\mu}\right] \Psi$ axial transformation

$$
\begin{aligned}
& \Psi \rightarrow e^{i \omega \gamma_{5} \tau_{3} / 2} \Psi \quad \bar{\Psi} \rightarrow \bar{\Psi} e^{i \omega \gamma_{5} \tau_{3} / 2} \\
& m \rightarrow m e^{i \omega \gamma_{5} \tau_{3}} \equiv m^{\prime}+i \mu \gamma_{5} \tau_{3}
\end{aligned}
$$

polar mass m and kwist angle ω

$$
m=\sqrt{m^{\prime 2}+\mu^{2}}, \quad \tan \omega=\mu / m
$$

$\omega=0$ standard QCD ackion

$$
\omega=\pi / 2: \quad S=\bar{\Psi}\left[i \mu \gamma_{5} \tau_{3}+\gamma_{\mu} D_{\mu}\right]
$$

(maximal Ewise)

Repeat chis on the lattice

$$
D_{\mathrm{tm}}=m_{q}+i \mu \tau_{3} \gamma_{5}+\frac{1}{2} \gamma_{\mu}\left[\nabla_{\mu}+\nabla_{\mu}^{*}\right]-\operatorname{ar} \frac{1}{2} \nabla_{\mu}^{*} \nabla_{\mu}
$$

difference to continuum situation:
wilson term not invariant under axial transformations free fermion propagator

$$
\begin{aligned}
& {\left[m_{q}+i \gamma_{\mu} \sin p_{\mu} a+\frac{r}{a} \sum_{\mu}\left(1-\cos p_{\mu} a\right)+i \mu \tau_{3} \gamma_{5}\right]^{-1}} \\
& \propto\left(\sin p_{\mu} a\right)^{2}+\left[m_{q}+\frac{r}{a} \sum_{\mu}\left(1-\cos p_{\mu} a\right)\right]^{2}+\mu^{2} \\
& \lim _{a \rightarrow 0}: p_{\mu}^{2}+m_{q}^{2}+\mu^{2}+\underbrace{a m_{q} \sum_{\mu} p_{\mu}}_{\text {O }(a)} \\
& m_{q}=0 \quad(\omega=\pi / 2) \text { kills } 0(a) \text { effects }
\end{aligned}
$$

A general argument

Symanzik expansion

$$
\begin{aligned}
& \left.\langle\mathcal{O}\rangle\right|_{\left(m_{q}, r\right)}=\left.\left[\xi(r)+a m_{q} \eta(r)\right]\langle\mathcal{O}\rangle\right|_{m_{q}} ^{\mathrm{cont}}+\left.a \chi(r)\left\langle\mathcal{O}_{1}\right\rangle\right|_{m_{q}} ^{\mathrm{cont}} \\
& \left\langle\left.\mathcal{O}\right|_{\left(-m_{q},-r\right)} ^{\mathrm{c}}=\left[\xi(-r)-a m_{q} \eta(-r)\right]\langle\mathcal{O}\rangle_{-m_{q}}^{\mathrm{cont}}+\left.a \chi(-r)\left\langle\mathcal{O}_{1}\right\rangle\right|_{-m_{q}} ^{\mathrm{cont}}\right.
\end{aligned}
$$

symmelry

$$
R_{5} \times(r \rightarrow-r) \times\left(m_{q} \rightarrow-m_{q}\right), R_{5}=e^{i \omega \gamma_{5} \tau^{3}}
$$

automatic $O(a)$ improvement through mass averaging

$$
\frac{1}{2}\left[\left.\langle\mathcal{O}\rangle\right|_{m_{q}, r}+\left.\langle\mathcal{O}\rangle\right|_{-m_{q}, r}\right]=\left.\langle\mathcal{O}\rangle\right|_{m_{q}} ^{\mathrm{cont}}+O\left(a^{2}\right)
$$ special case: $m_{q}=0$

$\left.\langle\mathcal{O}\rangle\right|_{m_{q}=0, r}=\left.\langle\mathcal{O}\rangle\right|_{m_{q}} ^{\mathrm{cont}}+O\left(a^{2}\right)$

A test at tree-level

positive and negative mass

$$
1 / N \propto a
$$

a lattice spacing
N lattice size
m_{PS} "Pion Mass"

$1 / N^{2} \propto a^{2}$

Exact lattice chiral symmetry

Starting point: Ginsparg-Wilson relation

$$
\begin{aligned}
& \gamma_{5} D+D \gamma_{5}=2 a D \gamma_{5} D \\
& \Rightarrow D^{-1} \gamma_{5}+\gamma_{5} D^{-1}=2 a \gamma_{5}
\end{aligned}
$$

for any Lattice Dirac operator D, satisfying the cinsparg Wilson relation, the action

$$
S=\bar{\psi} D \psi
$$

is invariant under

$$
\delta \psi=\gamma_{5}\left(1-\frac{1}{2} a D\right) \psi, \quad \delta \bar{\psi}=\bar{\psi}\left(1-\frac{1}{2} a D\right) \gamma_{5}
$$

One solution of cW-relacion

Neuberger's overlap operator

$$
D_{\mathrm{ov}}=\left[1-A\left(A^{\dagger} A\right)^{-1 / 2}\right]
$$

$A=1+s-D_{\mathrm{w}}\left(m_{q}=0\right)$
advantages of overlap operator

- often trivial renormalisation constants
- index theorem fulfilled
- continuum like behaviour dis-advantage
- computationally very expensive

No free lunch theorem

V, m_{π}	Overlap	Wilson TM	rel. factor
$12^{4}, 720 \mathrm{Mev}$	$48.8(6)$	$2.6(1)$	18.8
$12^{4}, 390 \mathrm{Mev}$	$142(2)$	$4.0(1)$	35.4
$16^{4}, 720 \mathrm{Mev}$	$225(2)$	$9.0(2)$	25.0
$16^{4}, 390 \mathrm{Mev}$	$653(6)$	$17.5(6)$	37.3
$16^{4}, 230 \mathrm{Mev}$	$1949(22)$	$22.1(8)$	88.6
- Eimings on PC cluster			

Actions

ACTION

clover improved Wilson twisted mass fermions
staggered
domain wall
overlap fermions

ADVANTAGES
computationally fast
computationally fast automatic improvement computationally fast
improved chiral symmetry
exact chiral symmetry

DISADVANTAGES

breaks chiral symmetry needs operator improvement breaks chiral symmetry violation of isospin fourth root problem complicated contraction computationally demanding needs tuning
computationally expensive

All actions $O(a)$-improvement:

$$
\left\langle O_{\text {phys }}^{\text {latt }}\right\rangle=\left\langle O_{\text {cont }}^{\text {latt }}\right\rangle+O\left(a^{2}\right)
$$

In the following: twisted mass fermions

