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Outline

• introduction
I QCD phase diagram
I strongly interacting matter exposed to magnetic fields
I the lattice approach

• magnetic field setup: continuum, torus, lattice
• energy levels of charged particle: continuum, torus, lattice
• two recent results about magnetic fields on the lattice

I phase diagram
I magnetic susceptibility, equation of state
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Introduction



QCD and quark-gluon plasma

• elementary particle interactions:
gravitational, electromagnetic, weak, strong︸ ︷︷ ︸

Standard Model
• strong sector: Quantum Chromodynamics
• elementary particles: quarks (∼ electrons) and

gluons (∼ photons)
but: they cannot be observed directly
⇒ confinement at low temperatures
• asymptotic freedom [Gross, Politzer, Wilczek ’04]

⇒ heating or compressing the system leads to
deconfinement: quark-gluon plasma is formed
• transition between the two phases

characteristics: order (1st/2nd/crossover)
critical temperature Tc
equation of state
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QCD phase diagram

• why is the physics of the quark-gluon plasma interesting?
I large T : early Universe, cosmological models
I large ρ: neutron stars
I large T and/or ρ: heavy-ion collisions, experiment design

• additional, relevant parameter:
I background magnetic field B
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Example 1: neutron star

[Rea et al. ’13]

• possible quark core at center with high density, low
temperature
• magnetars: extreme strong magnetic fields are measured at

the surface
• need models to describe magnetic field configuration (field

strength in the center)
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Typical magnetic fields

• magnetic field of Earth 10−5 T
• common magnet 10−3 T
• strongest human-made field in lab 102 T
• magnetar surface 1010 T
• magnetar core 1014 T?
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Example 2: heavy-ion collision

[STAR collaboration, ’10]

• off-central collisions generate magnetic fields:
strength controlled by

√
s and impact parameter (centrality)

• strong (but very uncertain) time-dependence
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Typical magnetic fields

• magnetic field of Earth 10−5 T
• common magnet 10−3 T
• strongest man-made field in lab 102 T
• magnetar surface 1010 T
• magnetar core 1014 T?
• LHC Pb-Pb at 2.7 TeV, b = 10 fm [Skokov ’09] 1015 T

convert: e · 1015 T ≈ 3m2
π ≈ Λ2

QCD
⇒ electromagnetic and strong interactions compete
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Approaches to study QCD

• various methods in various regimes:
I high T/B: perturbation theory
I low T/B: chiral perturbation theory, hadronic models
I transition region: non-perturbative methods, lattice gauge

theory [Wilson, ’74]

• discretize quark and gluon fields ψ and Aµ
on a 4D space-time lattice with spacing a

I use Uµ = e iaAµ instead of Aµ

I Uµ: links, ψ: sites

• example: gauge action FµνFµν(x) ∼

(remember [Müller-Preussker Lect.2 + tutorial])
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Lattice simulations

• functional integral

Z =

∫
DUµDψ̄Dψ exp

(
−
∫

d4x LQCD

)

• after discretization, Z becomes a ∼ 109 dimensional integral
I importance sampling, Monte-Carlo methods

• biggest challenges are to
I extrapolate a→ 0 ‘continuum limit’

and keep physical size fixed: # of lattice points →∞
I fix bare parameters of L: quark masses

tune mlat
f such that the measured mπ,mp,mρ, . . . are the same

as in nature
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Computational requirements

• typical computational requirement O(10 Tflop/s× year)

O(40 mio. core hours) O(100 GPU× year)
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Magnetic field - setup



Magnetic field

• constant and uniform electromagnetic field
• choose coordinates such that B = (0, 0,B)

• represented by an electromagnetic vector potential
Aµ = (0,A) for which ∇× A = B

I a possible gauge: Ax = Az = 0, Ay = Bx
• interaction with charged particles via minimal coupling

∂µ → Dµ = ∂µ + iqAµ
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Magnetic field on the torus

torus T2 with surface area
Lx Ly

picture from [D’Elia et al ’11]

• phase factor for a charged particle transported along path C:
exp(iq

∮
C dxµAµ)

• Stokes theorem:
∮
C dxµAµ =

∫∫
A dσB = B · A

but also = −
∫∫
T2−A dσB = −B · (Lx Ly −A)

• equality of phase factors gives quantization condition
[Hashimi, Wiese ’09]

exp(iqBLx Ly ) = 1 → qBLx Ly = 2π · Nb, Nb ∈ Z
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Magnetic field on the torus

• qB cannot be arbitrary
• what if there are several charged particles in the system?
I e.g. fermion flavors ψf with charge qf (f = u, d , s, . . .)
I all flavors have to obey the quantization condition:

qf BLx Ly = 2πN(f )
b , N(f )

b ∈ Z

I option A: charges are incommensurable qf 1/qf 2 ∈ R
⇒ bad luck

I option B (nature): charges are commensurable
qu = 2e/3, qd = qs = −e/3
⇒ need to set magnetic field according to lowest charge

qd BLx Ly = 2πN(d)
b ,

N(d)
b ∈ Z, N(s)

b = N(d)
b , N(u)

b = −2N(d)
b
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Magnetic field on the lattice

• how to discretize Aµ on the lattice?
I as usual, work with group elements uµ = exp(iaAµ)

I Dirac operator at nonzero B, schematically:

/D =
1
2
∑
µ

[
γµUµuµ − γµU†µu∗µ

]
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Magnetic field on the lattice

• 2D slice of the lattice: sites (nx , ny ) with nµ = 0 . . .Nµ − 1
• Ay = Bx = Bnx a
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Magnetic field on the lattice

• simplest choice uy = exp(iaqAy ) = exp(iφnx ), with the flux
unit φ = a2qB
• periodic b.c. in the x -direction is violated → inconvenient 15 / 53



Magnetic field on the lattice

• do a local U(1) gauge transformation
ψ(Nx , ny )→ ψ(Nx , ny ) · V ny with V = exp(iφNx )
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Magnetic field on the lattice

• restores periodicity in the x -direction
• changes last x -links to ux (Nx − 1, ny ) = exp(−iφNx ny )
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Magnetic field on the lattice

• flux quantization on the lattice (finite volume)

qd B · a2 =
2πNb
Nx Ny

, Nb ∈ Z

⇒ smallest flux is Nb = 1
• phase factor along a single plaquette (finite lattice spacing)

exp(ia2qd B) = exp
(

i 2πNb
Nx Ny

)

⇒ largest flux is Nb = Nx Ny

I remark: det( /D(B) + mlat
f ) > 0 so no sign problem
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Energy levels of a free charged particle
in magnetic field



Energy levels in the continuum

• relativistic particle with electric charge q (but no color
charge), subject to the Dirac equation

( /D + m)ψ = 0, Dy = ∂y + iqBx , Dν = ∂ν (ν 6= y)

• solutions (assuming qB > 0)

E 2
n = p2

z + m2 + 2qB(n + 1/2− σz)

in terms of the quantum numbers n ∈ Z+
0 , σz = ±1/2 and pz

• degeneracy is ∞ in an infinite volume and is qB · Lx Ly/(2π)
in a finite box
• for the massless case in 2D (pz = 0) the lowest Landau levels:

E 2
0 = 0, E 2

1 = 2qB, E 2
2 = 4qB
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Landau levels in 2D

• lowest Landau levels in the continuum E 2
n = 2n · qB

• now solve eigenvalue problem on the lattice:
/Dψn = Enψn for each Nb

I continuum levels dissolve into discrete bands
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Lattice distorted Landau levels

• zoom out to view all Nb = 0 . . .Nx Ny (with Nx = Ny = 16)

I recursive pattern: fractality
I twofold mirror symmetry:

Nb ↔ Nx Ny − Nb (flux periodicity + parity)
E ↔ −E (charge conjugation)
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Lattices and butterflies

• charged particle on a lattice in magnetic field:
familiar setup in solid state physics

I almost the same eigenvalue problem in [Hofstadter ’76]

(non-relativistic case)

‘Bloch electron in magnetic field’ ⇒ Hofstadter’s butterfly
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Hofstadter’s butterfly [Hofstadter ’76]

I true fractal structure if lattice size is infinite
I energy levels form finite bands if a2qB/2π ∈ Q
I energy levels isomorphic to Cantor’s set if a2qB/2π 6∈ Q

21 / 53



Hofstadter’s butterfly [Hofstadter ’76]

I true fractal structure if lattice size is infinite
I energy levels form finite bands if a2qB/2π ∈ Q
I energy levels isomorphic to Cantor’s set if a2qB/2π 6∈ Q

21 / 53



Hofstadter’s butterfly: experiments

• “catching the butterfly”
I challenge: get a2 · qB of order 1 (typical a too small)
I solution: overlay sheets of graphene to effectively increase a

[Ponomarenko et al ’13] [Dean et al ’13]
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Hofstadter’s butterfly: impact on QCD

• Hoftadter’s butterfly (solid state physics)
=

/D eigenvalues for free quarks (quantum field theory)

I lattice is a crystal in solid state physics
6=

lattice is a regulator in QFT (a→ 0 continuum limit)

• still, the low-Nb lattice
spectrum contains
continuum information
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Hofstadter’s butterfly: impact on QCD

• the butterfly disappears in the continuum limit, but its wings
around a2qB ≈ 0 contain physical information
• in contrast to electron energies, Dirac eigenvalues cannot be

measured
• physical observable composed of the eigenvalues:

condensate of quarks with mass m

ψ̄ψ2D =
∑

n

m
E 2

n + m2

• nonzero quark mass washes out the fractal structure up to
qB ∝ m2

→ animation
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Hofstadter’s butterfly and the condensate

• the lattice condensate matches the continuum curve
at small a2qB

I ‘butterfly carries continuum information in its low-B wings’
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Hofstadter’s butterfly: impact on QCD

• Dirac eigenvalues for quarks in a magnetic field in 2D

with QCD interactions switched on
(perturbation lifts degeneracy)
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Hofstadter’s butterfly and the condensate

• QCD interactions wash out the fractal structure, but
qualitative tendency remains
• more on this in

[GE 1301.1307] and [Bali, Bruckmann, GE, Katz, Schäfer 1406.0269]
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Magnetic fields in full 4D QCD



Magnetic field-induced effects

• QCD phase diagram

• magnetic susceptibility and equation of state in QCD

28 / 53



QCD phase diagram



QCD phase diagram

• keep density=0 and explore B − T plane
I what is the transition temperature Tc(B)?
I what is the nature of the transition at B > 0?
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Approximate order parameters

• symmetries of LQCD (remember [Philipsen Lect.2])
I chiral symmetry at mlat

f = 0
order parameter: chiral condensate

I center symmetry at mlat
f =∞

order parameter: Polyakov loop
• at the physical masses no exact symmetries
→ no exact order parameters
• still, there are approximate order parameters: observables that

are sensitive to the transition

30 / 53



Observables sensitive to the transition

• chiral condensate
→ chiral symmetry breaking

ψ̄f ψf =
∂ logZ
∂mf

• chiral susceptibility
→ chiral symmetry breaking

χf =
∂2 logZ
∂m2

f

• Polyakov loop
→ deconfinement

P =
1
V
∑

x
Tr
∏
x4

U4(x, x4)
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Transition characteristics

• chiral susceptibility
(∼ specific heat)

χ =
∂2 logZ
∂m2

I transition temperature: peak maximum
I order of transition: volume-dependence of height h(V ) ∝ V α

1st (α = 1), 2nd (0 < α < 1) or crossover (α = 0)

• bubble nucleation versus smooth transition
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Transition characteristics at B = 0

• simulations with physical mlat
f ,

continuum extrapolation
• no singular behavior as V →∞
⇒ transition is analytic crossover
[Aoki, GE, Fodor, Katz, Szabó ’06]

I there is no unique transition temperature
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• compare to the
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Condensate at B > 0: ‘magnetic catalysis’

• what happens to ψ̄ψ (〈+q ↑,−q ↓〉) in magnetic field?
⇒ magnetic moments parallel, energetically favored state
(cf. Cooper-pairs in superconductors: Meissner effect)
• dimensional reduction 3 + 1→ 1 + 1 in the lowest Landau level

E0(B = 0) =
√

p2
x + p2

y + p2
z + m2

E0(B > 0) =
√

p2
z + m2, #0 =

|qB| · Lx Ly
2π

• chiral condensate ↔ spectral density around 0 [Banks, Casher ’80]

ψ̄ψ ∝ ρ(0)

• in the chiral limit, to maintain ψ̄ψ > 0 (NJL [Gusynin et al ’96])

B = 0 ρ(p)dp ∼ p2dp “we need a strong interaction”
B � m2 ρ(p)dp ∼ qBdp “the weakest interaction suffices”

34 / 53



Magnetic catalysis – zero temperature

• magnetic catalysis at zero temperature is a robust concept:
χPT, NJL model, AdS-CFT, linear σ model, . . .
lattice QCD at physical/unphysical mπ

lattice QCD, physical mπ, continuum limit [Bali et al ’12]
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Magnetic catalysis – finite temperature

• magnetic catalysis at T > 0 seemed a robust concept,
most models predicted ψ̄ψ to increase with B for any T :
χPT, NJL, linear σ, lattice QCD with unphysical mπ
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Inverse magnetic catalysis

• lattice QCD, physical mπ, continuum limit [Bali et al ’11, ’12]

• at T ≈ 150 MeV the condensate is reduced by B
dubbed ‘inverse magnetic catalysis’
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Phase diagram

• inflection point of ψ̄ψ(T ) defines Tc
• sinificant difference whether IMC is exhibited or not:
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Order of transition at B > 0

• at the largest B, no volume-dependence is visible
⇒ crossover persists up to eB ≈ 1 GeV2
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Mechanism behind IMC

• two competing mechanisms at finite B
[D’Elia et al ’11, Bruckmann, GE, Kovács ’13]

I direct (valence) effect B ↔ qf
I indirect (sea) effect B ↔ qf ↔ g〈

ψ̄ψ(B)
〉
∝
∫
DU e−Sg det( /D(B,U) + m)︸ ︷︷ ︸

sea

Tr
[
( /D(B,U) + m)−1

]
︸ ︷︷ ︸

valence
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Phase diagram – conclusions

• valence and sea effects compete and around Tc the sea wins

41 / 53



Phase diagram – conclusions

• valence and sea effects compete and around Tc the sea wins
• lessons learned:

I LL-picture not applicable to non-perturbative QCD in the
transition region

I inclusion of dynamical quarks necessary in the models to
reproduce the real phase diagram

BB

I important to improve effective theories/models
I already many attempts to reproduce IMC,

e.g. [Fraga et al., Farias et al., Ferreira et al., Ayala et al. ’14]
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Magnetic susceptibility and equation of state



Matter in magnetic fields (linear response)

• paramagnets: attracted by magnetic field
• diamagnets: repel magnetic field

paramagnet: liquid oxygen
[NCSU physics demonstrations]

I is thermal QCD as a medium para- or diamagnetic?
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Magnetic susceptibility

• free energy density in background magnetic field

f (B) = −T
V logZ(B)

• magnetization

M = − ∂f
∂(eB)

, M|B=0 = 0

• susceptibility

χ =
∂M
∂(eB)

∣∣∣∣
B=0

= − ∂2f
∂(eB)2

∣∣∣∣∣
B=0

• sign distinguishes between
I paramagnets (χ > 0) enjoy magnetic field
I diamagnets (χ < 0) repel magnetic field
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Magnetic susceptibility at high T

• consider a free quark with charge q
I propagator in B can be calculated exactly [Schwinger ’51]

• using Schwinger proper time regularization to obtain f (B),
the susceptibility reads [Bali, Bruckmann, GE et al 1406.0269]

χfree
r = −Nc · β1 · (q/e)2

∫ ds
s e−m2s ·

{
Θ4

[
0, e−1/(4sT 2)

]
− 1

}
T→∞−−−−→ Nc · β1 · (q/e)2 log

(
T 2

m2

)

• QED is not asymptotically free (β1 = 1/12π2 > 0)
⇒ free quarks at high T are paramagnetic
(see also [Elmfors et al. ’94])

I remark: additive renormalization to set χr (T = 0) = 0
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Magnetic susceptibility at low T

• low-energy regime of QCD: dominant degrees of freedom are
pions (χPT)

I so consider a free pion (charge ±e)
• similarly as before: proper-time regularization

[Bali, Bruckmann, GE et al 1406.0269]

χpion
r (T ) = −βscalar

1

∫ ds
s e−m2s ·

{
Θ3
[
0, e−1/(4sT 2)

]
− 1

}
︸ ︷︷ ︸

finite and positive

I scalar QED β-function βscalar
1 = 1/48π2 > 0

⇒ free pions are diamagnetic
(see also [Elmfors et al. ’94])
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Expectation for the susceptibility

• χr (T = 0) = 0 due to renormalization prescription
• asymptotic freedom in QCD + no asymptotic freedom in QED
⇒ χr > 0 for high temperatures
• expectation: pions are relevant at low energies
⇒ χr < 0 for low temperatures
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Magnetic susceptibility on the lattice

• remember magnetic flux quantization

a2qB =
2πNb
Nx Ny

, Nb = 0, 1, . . . ,Nx Ny

I χ as derivative is not directly accessible
• various methods to circumvent this problem

[Bali et al 1303.1328] [DeTar et al 1309.1142]
[Bonati et al 1307.8063] [Bali et al 1406.0269]

I here: calculate f (B) and differentiate it numerically
• lattice setup: stout smeared staggered quarks + Symanzik

gauge action, physical pion mass, continuum estimate based
on Nt = 6, 8, 10 [Bali et al 1406.0269]
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Lattice method

• with conventional Monte-Carlo techniques, derivatives of
logZ can be calculated, but not logZ ∝ f itself
(compare [Philipsen Lect.2])

I rewrite logZ as the integral of its derivatives at constant Nb

logZ(∞)− logZ(mph
f ) =

∫ ∞
mph

f

dmf
∂ logZ
∂mf

I take difference ∆ logZ = logZ(Nb)− logZ(0)

∆ logZ(∞)︸ ︷︷ ︸
0

−∆ logZ(mph
f ) =

∫ ∞
mph

f

dmf
∂∆ logZ
∂mf︸ ︷︷ ︸

∆ψ̄f ψf

I ∆ logZ obtained as integral of condensates
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Lattice method

I obtain ∆ logZ as an integral for each B
I interpolate ∆ logZ as function of B
I differentiate to obtain χ ∝ ∆ logZ ′′
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Susceptibility from the lattice

50 / 53



Susceptibility from the lattice

• confirms free-case expectation qualitatively
transition from diamagnetism to paramagnetism slightly below
Tc [Bali, Bruckmann, GE et al 1406.0269]

• comparison to Hadron Resonance Gas model (low T )
and to perturbation theory (high T )

50 / 53



Susceptibility from the lattice

• confirms free-case expectation qualitatively
transition from diamagnetism to paramagnetism slightly below
Tc [Bali, Bruckmann, GE et al 1406.0269]

• comparison to Hadron Resonance Gas model (low T )
and to perturbation theory (high T )

50 / 53



Equation of state

• using logZ(B), all thermodynamic observables can be
calculated ⇒ equation of state

I energy density ε
I pressures px = py , pz

I entropy density s
I interaction measure ε− 3pz
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Phase diagram

• inflection points of s and ε− 3pz are measures for Tc

• maximum of ε− 3pz is just a characteristic point

• results again show that Tc is reduced by B
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Summary

• /D eigenvalues give
Hofstadter’s butterfly:
solid state physics ↔ QFT

• magnetic catalysis versus
inverse catalysis
⇒ phase diagram

• magnetic susceptibility:
QCD matter can either be
dia- or paramagnetic
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