Lattice QCD in magnetic fields

Gergely Endrődi

University of Regensburg

Universität Regensburg

Helmholtz International Summer School Dubna, 4. September 2014

Outline

- introduction
 - QCD phase diagram
 - strongly interacting matter exposed to magnetic fields
 - the lattice approach
- magnetic field setup: continuum, torus, lattice
- energy levels of charged particle: continuum, torus, lattice
- two recent results about magnetic fields on the lattice
 - phase diagram
 - magnetic susceptibility, equation of state

Introduction

QCD and quark-gluon plasma

- elementary particle interactions: gravitational, electromagnetic, weak, strong
 Standard Model
- strong sector: Quantum Chromodynamics
- elementary particles: quarks (~ electrons) and gluons (~ photons)
 but: they cannot be observed directly
 ⇒ confinement at low temperatures
- asymptotic freedom [Gross, Politzer, Wilczek '04]
 ⇒ heating or compressing the system leads to *deconfinement*: quark-gluon plasma is formed
- transition between the two phases characteristics: order (1st/2nd/crossover)critical temperature T_c equation of state

- why is the physics of the quark-gluon plasma interesting?
 - ► large *T*: early Universe, cosmological models
 - large ρ : neutron stars
 - ▶ large T and/or ρ : heavy-ion collisions, experiment design

- why is the physics of the quark-gluon plasma interesting?
 - ► large *T*: early Universe, cosmological models
 - large ρ : neutron stars
 - ▶ large T and/or ρ : heavy-ion collisions, experiment design

- why is the physics of the quark-gluon plasma interesting?
 - ► large *T*: early Universe, cosmological models
 - large ρ : neutron stars
 - ▶ large T and/or ρ : heavy-ion collisions, experiment design

- why is the physics of the quark-gluon plasma interesting?
 - ► large *T*: early Universe, cosmological models
 - large ρ : neutron stars
 - ▶ large T and/or ρ : heavy-ion collisions, experiment design

- why is the physics of the quark-gluon plasma interesting?
 - large T: early Universe, cosmological models
 - large ρ : neutron stars
 - ▶ large T and/or ρ : heavy-ion collisions, experiment design

- additional, relevant parameter:
 - background magnetic field B

Example 1: neutron star

[Rea et al. '13]

- possible quark core at center with high density, low temperature
- magnetars: extreme strong magnetic fields are measured at the surface
- need models to describe magnetic field configuration (field strength in the center)

Typical magnetic fields

Example 2: heavy-ion collision

[STAR collaboration, '10]

- off-central collisions generate magnetic fields: strength controlled by \sqrt{s} and impact parameter (centrality)
- strong (but very uncertain) time-dependence

Example 2: heavy-ion collision

- off-central collisions generate magnetic fields: strength controlled by \sqrt{s} and impact parameter (centrality)
- strong (but very uncertain) time-dependence

Typical magnetic fields

•	magnetic field of Earth	10^{-5} T
•	common magnet	10 ⁻³ T
•	strongest man-made field in lab	10 ² T
•	magnetar surface	10 ¹⁰ T
•	magnetar core	10 ¹⁴ T?
•	LHC Pb-Pb at 2.7 TeV, $b = 10$ fm [Skokov '09]	10 ¹⁵ T

convert: $e \cdot 10^{15} \text{ T} \approx 3m_{\pi}^2 \approx \Lambda_{\text{QCD}}^2$ \Rightarrow electromagnetic and strong interactions compete

Approaches to study QCD

- various methods in various regimes:
 - high T/B: perturbation theory
 - ▶ low T/B: chiral perturbation theory, hadronic models
 - transition region: non-perturbative methods, lattice gauge theory [Wilson, '74]
- discretize quark and gluon fields ψ and A_{μ} on a 4D space-time lattice with spacing *a*

 $\bigcup_{\mu}^{\dagger}(x+\hat{\nu})$

∪"(×)

• use
$$U_{\mu}=e^{iaA_{\mu}}$$
 instead of A_{μ}

•
$$U_{\mu}$$
: links, ψ : sites

• example: gauge action $F_{\mu\nu}F_{\mu\nu}(x) \sim \cup_{(x+\hat{\mu})}$

(remember [Müller-Preussker Lect.2 + tutorial])

Lattice simulations

• functional integral

$$\mathcal{Z} = \int \mathcal{D} \textit{U}_{\mu} \, \mathcal{D} ar{\psi} \, \mathcal{D} \psi \, \exp igg(- \int d^4 x \, \mathcal{L}_{
m QCD} igg)$$

Lattice simulations

• functional integral

$$\mathcal{Z} = \int \mathcal{D} U_{\mu} \, \exp \left(- \int \mathrm{d}^4 x \, rac{1}{2} \mathrm{Tr} F_{\mu
u} F_{\mu
u}
ight) \cdot \prod_f \det \left(D \!\!\!/ + m_f^{\mathrm{lat}}
ight)$$

Lattice simulations

functional integral

$$\mathcal{Z} = \int \mathcal{D} U_{\mu} \, \exp \left(- \int \mathrm{d}^4 x \, rac{1}{2} \mathrm{Tr} F_{\mu
u} F_{\mu
u}
ight) \cdot \prod_f \det \left(D \!\!\!/ + m_f^{\mathrm{lat}}
ight)$$

- after discretization, ${\cal Z}$ becomes a $\sim 10^9$ dimensional integral
 - importance sampling, Monte-Carlo methods
- biggest challenges are to
 - extrapolate a → 0 'continuum limit' and keep physical size fixed: # of lattice points → ∞
 - fix bare parameters of \mathcal{L} : quark masses tune m_f^{lat} such that the measured $m_{\pi}, m_{\rho}, m_{\rho}, \ldots$ are the same as in nature

• typical computational requirement $\mathcal{O}(10 \text{ Tflop/s} \times \text{year})$

Computational requirements

• typical computational requirement $\mathcal{O}(10 \text{ Tflop/s} imes \text{year})$

 $\mathcal{O}(40 \text{ mio. core hours})$

 $\mathcal{O}(100 \text{ GPU} \times \text{year})$

Magnetic field - setup

Magnetic field

- · constant and uniform electromagnetic field
- choose coordinates such that $\mathbf{B} = (0, 0, B)$
- represented by an electromagnetic vector potential $A_{\mu} = (0, \mathbf{A})$ for which $\nabla \times \mathbf{A} = \mathbf{B}$
- a possible gauge: $A_x = A_z = 0$, $A_y = Bx$
- interaction with charged particles via minimal coupling

$$\partial_{\mu} \rightarrow D_{\mu} = \partial_{\mu} + iqA_{\mu}$$

Magnetic field on the torus

torus \mathbb{T}^2 with surface area $L_x L_y$

picture from [D'Elia et al '11]

- phase factor for a charged particle transported along path C: exp(iq ∮_C dx_µA_µ)
- Stokes theorem: $\oint_{\mathcal{C}} dx_{\mu} A_{\mu} = \iint_{A} d\sigma B = B \cdot A$ but also $= - \iint_{\mathbb{T}^{2}-A} d\sigma B = -B \cdot (L_{x}L_{y} - A)$
- equality of phase factors gives quantization condition [Hashimi, Wiese '09]

$$\exp(iqBL_xL_y) = 1 \quad o \quad qBL_xL_y = 2\pi \cdot N_b, \quad N_b \in \mathbb{Z}$$

Magnetic field on the torus

- *qB* cannot be arbitrary
- what if there are several charged particles in the system?
- e.g. fermion flavors ψ_f with charge q_f (f = u, d, s, ...)
- all flavors have to obey the quantization condition:

$$q_f BL_x L_y = 2\pi N_b^{(f)}, \quad N_b^{(f)} \in \mathbb{Z}$$

- option A: charges are incommensurable q_{f1}/q_{f2} ∈ ℝ
 ⇒ bad luck
- ▶ option B (nature): charges are commensurable
 q_u = 2e/3, q_d = q_s = -e/3
 ⇒ need to set magnetic field according to *lowest* charge

$$q_d B L_x L_y = 2\pi N_b^{(d)},$$

 $N_b^{(d)} \in \mathbb{Z}, \quad N_b^{(s)} = N_b^{(d)}, \quad N_b^{(u)} = -2N_b^{(d)},$

- how to discretize A_μ on the lattice?
- ▶ as usual, work with group elements $u_{\mu} = \exp(iaA_{\mu})$
- Dirac operator at nonzero B, schematically:

$$\not \! D = \frac{1}{2} \sum_{\mu} \left[\gamma_{\mu} U_{\mu} u_{\mu} - \gamma_{\mu} U_{\mu}^{\dagger} u_{\mu}^{*} \right]$$

• 2D slice of the lattice: sites (n_x, n_y) with $n_\mu = 0 \dots N_\mu - 1$

•
$$A_y = Bx = Bn_x a$$

- simplest choice u_y = exp(iaqA_y) = exp(iφn_x), with the flux unit φ = a²qB
- periodic b.c. in the x-direction is violated \rightarrow inconvenient

• do a local U(1) gauge transformation $\psi(N_x, n_y) \rightarrow \psi(N_x, n_y) \cdot V^{n_y}$ with $V = \exp(i\phi N_x)$

- restores periodicity in the x-direction
- changes last x-links to $u_x(N_x 1, n_y) = \exp(-i\phi N_x n_y)$

• flux quantization on the lattice (finite volume)

$$q_d B \cdot a^2 = \frac{2\pi N_b}{N_x N_y}, \qquad N_b \in \mathbb{Z}$$

 \Rightarrow smallest flux is $N_b = 1$

• phase factor along a single plaquette (finite lattice spacing)

$$\exp(ia^2q_d B) = \exp\left(i\frac{2\pi N_b}{N_x N_y}\right)$$

 \Rightarrow largest flux is $N_b = N_x N_y$

• remark: $det(\not D(B) + m_f^{lat}) > 0$ so no sign problem

Energy levels of a free charged particle in magnetic field

Energy levels in the continuum

 relativistic particle with electric charge q (but no color charge), subject to the Dirac equation

$$(\not\!\!D + m)\psi = 0, \qquad D_y = \partial_y + iqBx, \quad D_\nu = \partial_\nu \quad (\nu \neq y)$$

• solutions (assuming qB > 0)

$$E_n^2 = p_z^2 + m^2 + 2qB(n+1/2 - \sigma_z)$$

in terms of the quantum numbers $n \in \mathbb{Z}_0^+$, $\sigma_z = \pm 1/2$ and p_z

- degeneracy is ∞ in an infinite volume and is $qB \cdot L_x L_y/(2\pi)$ in a finite box
- for the massless case in 2D $(p_z = 0)$ the lowest Landau levels:

$$E_0^2 = 0, \qquad E_1^2 = 2qB, \qquad E_2^2 = 4qB$$

Landau levels in 2D

- lowest Landau levels in the continuum $E_n^2 = 2n \cdot qB$
- now solve eigenvalue problem on the lattice:

 $otin \psi_n = E_n \psi_n$ for each N_b

Landau levels in 2D

- lowest Landau levels in the continuum $E_n^2 = 2n \cdot qB$
- now solve eigenvalue problem on the lattice:

 $otin \psi_n = E_n \psi_n$ for each N_b

continuum levels dissolve into discrete bands

Lattice distorted Landau levels

• zoom out to view all $N_b = 0 \dots N_x N_y$ (with $N_x = N_y = 16$)

Lattice distorted Landau levels

• zoom out to view all $N_b = 0 \dots N_x N_y$ (with $N_x = N_y = 16$)

Lattice distorted Landau levels

• zoom out to view all $N_b = 0 \dots N_x N_y$ (with $N_x = N_y = 16$)

- recursive pattern: fractality
- twofold mirror symmetry:

 $N_b \leftrightarrow N_x N_y - N_b$ (flux periodicity + parity) $E \leftrightarrow -E$ (charge conjugation)

Lattices and butterflies

- charged particle on a lattice in magnetic field: familiar setup in solid state physics
- almost the same eigenvalue problem in [Hofstadter '76] (non-relativistic case)

Lattices and butterflies

- charged particle on a lattice in magnetic field: familiar setup in solid state physics
- almost the same eigenvalue problem in [Hofstadter '76] (non-relativistic case)

'Bloch electron in magnetic field' \Rightarrow Hofstadter's butterfly $_{20\,/\,53}$

Hofstadter's butterfly [Hofstadter '76]

- true fractal structure if lattice size is infinite
- energy levels form finite bands if $a^2qB/2\pi\in\mathbb{Q}$
- ▶ energy levels isomorphic to Cantor's set if $a^2qB/2\pi \notin \mathbb{Q}$

Hofstadter's butterfly [Hofstadter '76]

- true fractal structure if lattice size is infinite
- ▶ energy levels form finite bands if $a^2qB/2\pi\in\mathbb{Q}$
- ▶ energy levels isomorphic to Cantor's set if $a^2qB/2\pi
 ot\in \mathbb{Q}$

Hofstadter's butterfly: experiments

- "catching the butterfly"
- challenge: get $a^2 \cdot qB$ of order 1 (typical *a* too small)
- solution: overlay sheets of graphene to effectively increase a

[Ponomarenko et al '13]

[Dean et al '13]

Hofstadter's butterfly: impact on QCD

Hoftadter's butterfly (solid state physics)

otin eigenvalues for free quarks (quantum field theory)

▶ lattice is a crystal in solid state physics \neq lattice is a regulator in QFT ($a \rightarrow 0$ continuum limit)

• still, the low-*N_b* lattice spectrum contains continuum information

Hofstadter's butterfly: impact on QCD

- the butterfly disappears in the continuum limit, but its wings around $a^2qB \approx 0$ contain physical information
- in contrast to electron energies, Dirac eigenvalues cannot be measured
- physical observable composed of the eigenvalues: condensate of quarks with mass *m*

$$\bar{\psi}\psi^{\rm 2D} = \sum_n \frac{m}{E_n^2 + m^2}$$

- nonzero quark mass washes out the fractal structure up to $qB \propto m^2$

 \rightarrow animation

- the lattice condensate matches the continuum curve at small a²qB
- 'butterfly carries continuum information in its low-B wings'

Hofstadter's butterfly: impact on QCD

• Dirac eigenvalues for quarks in a magnetic field in 2D

Hofstadter's butterfly: impact on QCD

 Dirac eigenvalues for quarks in a magnetic field in 2D with QCD interactions switched on (perturbation lifts degeneracy)

• QCD interactions wash out the fractal structure, but qualitative tendency remains

- QCD interactions wash out the fractal structure, but qualitative tendency remains
- more on this in [GE 1301.1307] and [Bali, Bruckmann, GE, Katz, Schäfer 1406.0269]

Magnetic fields in full 4D QCD

Magnetic field-induced effects

- QCD phase diagram
- magnetic susceptibility and equation of state in QCD

QCD phase diagram

QCD phase diagram

Temperature

- keep density=0 and explore B T plane
- what is the transition temperature $T_c(B)$?
- what is the nature of the transition at B > 0?

Approximate order parameters

- symmetries of $\mathcal{L}_{\mathrm{QCD}}$ (remember [Philipsen Lect.2])
 - chiral symmetry at m^{lat}_f = 0 order parameter: chiral condensate
 - ► center symmetry at m^{lat}_f = ∞ order parameter: Polyakov loop
- at the physical masses no exact symmetries
 → no exact order parameters
- still, there are approximate order parameters: observables that are sensitive to the transition

Observables sensitive to the transition

- chiral condensate \rightarrow chiral symmetry breaking

$$\bar{\psi}_f \psi_f = \frac{\partial \log \mathcal{Z}}{\partial m_f}$$

• chiral susceptibility \rightarrow chiral symmetry breaking

$$\chi_f = \frac{\partial^2 \log \mathcal{Z}}{\partial m_f^2}$$

• Polyakov loop \rightarrow deconfinement

$$P = rac{1}{V}\sum_{\mathbf{x}} \operatorname{Tr} \prod_{x_4} U_4(\mathbf{x}, x_4)$$

Transition characteristics

 chiral susceptibility (~ specific heat)

$$\chi = \frac{\partial^2 \log \mathcal{Z}}{\partial m^2}$$

- transition temperature: peak maximum
- ► order of transition: volume-dependence of height h(V) ∝ V^α 1st (α = 1), 2nd (0 < α < 1) or crossover (α = 0)</p>

Transition characteristics

• chiral susceptibility $(\sim \text{ specific heat})$

$$\chi = \frac{\partial^2 \log \mathcal{Z}}{\partial m^2}$$

- transition temperature: peak maximum
- ▶ order of transition: volume-dependence of height $h(V) \propto V^{\alpha}$ 1st ($\alpha = 1$), 2nd ($0 < \alpha < 1$) or crossover ($\alpha = 0$)
- bubble nucleation versus smooth transition

Transition characteristics at B = 0

- simulations with physical m_f^{lat} , continuum extrapolation
- no singular behavior as $V \rightarrow \infty$ \Rightarrow transition is analytic crossover [Aoki, GE, Fodor, Katz, Szabó '06]
- there is no unique transition temperature

Transition characteristics at B = 0

- simulations with physical m_f^{lat} , continuum extrapolation
- no singular behavior as $V \rightarrow \infty$ \Rightarrow transition is analytic crossover [Aoki, GE, Fodor, Katz, Szabó '06]

there is no unique transition temperature

 compare to the water-vapor transition at high pressures

Transition characteristics at B = 0

- simulations with physical m_f^{lat} , continuum extrapolation
- no singular behavior as $V \rightarrow \infty$ \Rightarrow transition is analytic crossover [Aoki, GE, Fodor, Katz, Szabó '06]

there is no unique transition temperature

• $T_c^{\psi\psi} pprox$ 150 MeV, $T_c^P pprox$ 175 MeV [BWc '06,'09,'10]

Condensate at B > 0: 'magnetic catalysis'

- what happens to ψψ (⟨+q↑, -q↓⟩) in magnetic field?
 ⇒ magnetic moments parallel, energetically favored state (cf. Cooper-pairs in superconductors: Meissner effect)
- dimensional reduction $3+1 \rightarrow 1+1$ in the lowest Landau level

$$E_0(B=0) = \sqrt{p_x^2 + p_y^2 + p_z^2 + m^2}$$

 $E_0(B>0) = \sqrt{p_z^2 + m^2}, \qquad \#_0 = rac{|qB| \cdot L_x L_y}{2\pi}$

• chiral condensate \leftrightarrow spectral density around 0 [Banks, Casher '80]

$$ar{\psi}\psi \propto
ho$$
(0)

- in the chiral limit, to maintain $ar{\psi}\psi>0$ (NJL [Gusynin et al '96])
 - $\begin{array}{ll} B=0 & \rho(p) \mathrm{d}p \sim p^2 \mathrm{d}p & \text{``we need a strong interaction''} \\ B\gg m^2 & \rho(p) \mathrm{d}p \sim qB \mathrm{d}p & \text{``the weakest interaction suffices''} \end{array}$

Magnetic catalysis – zero temperature

• magnetic catalysis at zero temperature is a robust concept: χ PT, NJL model, AdS-CFT, linear σ model, ... lattice QCD at physical/unphysical m_{π}

lattice QCD, physical m_{π} , continuum limit [Bali et al '12]

Magnetic catalysis – zero temperature

• magnetic catalysis at zero temperature is a robust concept: χ PT, NJL model, AdS-CFT, linear σ model, ... lattice QCD at physical/unphysical m_{π}

lattice QCD, physical m_{π} , continuum limit [Bali et al '12]

Magnetic catalysis – finite temperature

• magnetic catalysis at T > 0 seemed a robust concept, most models predicted $\bar{\psi}\psi$ to increase with *B* for any *T*: χ PT, NJL, linear σ , lattice QCD with unphysical m_{π}

PNJL model [Gatto, Ruggieri '11]

Magnetic catalysis – finite temperature

• magnetic catalysis at T > 0 seemed a robust concept, most models predicted $\bar{\psi}\psi$ to increase with *B* for any *T*: χ PT, NJL, linear σ , lattice QCD with unphysical m_{π}

lattice QCD, unphysical m_{π} , coarse lattice [D'Elia et al '10]

Inverse magnetic catalysis

• lattice QCD, physical m_{π} , continuum limit [Bali et al '11, '12]

 at T ≈ 150 MeV the condensate is reduced by B dubbed 'inverse magnetic catalysis'

Phase diagram

- inflection point of $\bar{\psi}\psi(T)$ defines T_c
- sinificant difference whether IMC is exhibited or not:

PNJL model [Gatto, Ruggieri '10]

Phase diagram

- inflection point of $\bar{\psi}\psi(T)$ defines T_c
- sinificant difference whether IMC is exhibited or not:

lattice QCD, unphysical m_{π} , coarse lattice [D'Elia et al '10]

Phase diagram

- inflection point of $\bar{\psi}\psi(T)$ defines T_c
- sinificant difference whether IMC is exhibited or not:

lattice QCD, physical m_{π} , continuum limit [Bali et al '11]

Order of transition at B > 0

• at the largest *B*, no volume-dependence is visible \Rightarrow crossover persists up to $eB \approx 1 \text{ GeV}^2$

Mechanism behind IMC

- two competing mechanisms at finite *B* [D'Elia et al '11, Bruckmann, GE, Kovács '13]
 - direct (valence) effect $B \leftrightarrow q_f$
 - indirect (sea) effect $B \leftrightarrow q_f \leftrightarrow g$

$$\langle \bar{\psi}\psi(B) \rangle \propto \int \mathcal{D}U \, e^{-S_g} \underbrace{\det(\mathcal{D}(B,U)+m)}_{\text{sea}} \underbrace{\operatorname{Tr}\left[(\mathcal{D}(B,U)+m)^{-1}\right]}_{\text{valence}}$$
Mechanism behind IMC

• two competing mechanisms at finite *B* [D'Elia et al '11, Bruckmann, GE, Kovács '13]

- direct (valence) effect $B \leftrightarrow q_f$
- indirect (sea) effect $B \leftrightarrow q_f \leftrightarrow g$

$$\left\langle \bar{\psi}\psi(B) \right\rangle \propto \int \mathcal{D}U \, e^{-S_g} \underbrace{\det(\mathcal{D}(B,U)+m)}_{\text{sea}} \underbrace{\operatorname{Tr}\left[(\mathcal{D}(B,U)+m)^{-1}\right]}_{\text{valence}}$$

Mechanism behind IMC

Phase diagram – conclusions

• valence and sea effects compete and around T_c the sea wins

Phase diagram – conclusions

- valence and sea effects compete and around T_c the sea wins
- lessons learned:
 - LL-picture not applicable to non-perturbative QCD in the transition region
 - inclusion of dynamical quarks necessary in the models to reproduce the real phase diagram

- important to improve effective theories/models
- already many attempts to reproduce IMC,
 e.g. [Fraga et al., Farias et al., Ferreira et al., Ayala et al. '14]

Magnetic susceptibility and equation of state

- paramagnets: attracted by magnetic field
- diamagnets: repel magnetic field

- paramagnets: attracted by magnetic field
- diamagnets: repel magnetic field

paramagnet: liquid oxygen [NCSU physics demonstrations]

- paramagnets: attracted by magnetic field
- diamagnets: repel magnetic field

paramagnet: liquid oxygen [NCSU physics demonstrations] diamagnet: frog [lgnobel prize '10]

- paramagnets: attracted by magnetic field
- diamagnets: repel magnetic field

paramagnet: liquid oxygen [NCSU physics demonstrations] diamagnet: frog [lgnobel prize '10]

is thermal QCD as a medium para- or diamagnetic?

Magnetic susceptibility

• free energy density in background magnetic field

$$f(B) = -\frac{T}{V} \log \mathcal{Z}(B)$$

magnetization

$$\mathcal{M} = -\frac{\partial f}{\partial (eB)}, \qquad \mathcal{M}|_{B=0} = 0$$

susceptibility

$$\chi = \left. \frac{\partial \mathcal{M}}{\partial (eB)} \right|_{B=0} = - \left. \frac{\partial^2 f}{\partial (eB)^2} \right|_{B=0}$$

- sign distinguishes between
 - paramagnets ($\chi > 0$) enjoy magnetic field
 - diamagnets ($\chi < 0$) repel magnetic field

Magnetic susceptibility at high T

- consider a free quark with charge q
- propagator in B can be calculated exactly [Schwinger '51]
- using Schwinger proper time regularization to obtain f(B), the susceptibility reads [Bali, Bruckmann, GE et al 1406.0269]

$$\chi_r^{\text{free}} = -N_c \cdot \beta_1 \cdot (q/e)^2 \int \frac{\mathrm{d}s}{s} e^{-m^2 s} \cdot \left\{ \Theta_4 \left[0, e^{-1/(4sT^2)} \right] - 1 \right\}$$
$$\xrightarrow{T \to \infty} N_c \cdot \beta_1 \cdot (q/e)^2 \log\left(\frac{T^2}{m^2}\right)$$

QED is not asymptotically free (β₁ = 1/12π² > 0) ⇒ free quarks at high *T* are paramagnetic (see also [Elmfors et al. '94])

• remark: additive renormalization to set $\chi_r(T=0)=0$

Magnetic susceptibility at low T

- low-energy regime of QCD: dominant degrees of freedom are pions ($\chi \rm PT)$
- so consider a free pion (charge $\pm e$)
- similarly as before: proper-time regularization [Bali, Bruckmann, GE et al 1406.0269]

$$\chi_r^{\text{pion}}(\mathcal{T}) = -\beta_1^{\text{scalar}} \underbrace{\int \frac{\mathrm{d}s}{s} e^{-m^2 s} \cdot \left\{\Theta_3\left[0, e^{-1/(4s\mathcal{T}^2)}\right] - 1\right\}}_{\text{finite and positive}}$$

 scalar QED β-function β₁^{scalar} = 1/48π² > 0
 ⇒ free pions are diamagnetic (see also [Elmfors et al. '94])

Expectation for the susceptibility

- $\chi_r(T=0) = 0$ due to renormalization prescription
- asymptotic freedom in QCD + no asymptotic freedom in QED $\Rightarrow \chi_r > 0$ for high temperatures
- expectation: pions are relevant at low energies $\Rightarrow \chi_r < 0$ for low temperatures

Magnetic susceptibility on the lattice

remember magnetic flux quantization

$$a^2 q B = rac{2\pi N_b}{N_x N_y}, \qquad N_b = 0, 1, \dots, N_x N_y$$

- χ as derivative is not directly accessible
- various methods to circumvent this problem [Bali et al 1303.1328] [DeTar et al 1309.1142] [Bonati et al 1307.8063] [Bali et al 1406.0269]
- here: calculate f(B) and differentiate it numerically
- lattice setup: stout smeared staggered quarks + Symanzik gauge action, physical pion mass, continuum estimate based on $N_t = 6, 8, 10$ [Bali et al 1406.0269]

Lattice method

- with conventional Monte-Carlo techniques, derivatives of log Z can be calculated, but not log Z ∝ f itself (compare [Philipsen Lect.2])
- rewrite log Z as the integral of its derivatives at constant N_b

$$\log \mathcal{Z}(\infty) - \log \mathcal{Z}(m_f^{\rm ph}) = \int_{m_f^{\rm ph}}^{\infty} \mathrm{d}m_f \ \frac{\partial \log \mathcal{Z}}{\partial m_f}$$

► take difference $\Delta \log \mathcal{Z} = \log \mathcal{Z}(N_b) - \log \mathcal{Z}(0)$

$$\Delta \log \mathcal{Z}(\infty) - \Delta \log \mathcal{Z}(m_f^{\mathrm{ph}}) = \int_{m_f^{\mathrm{ph}}}^{\infty} \mathrm{d}m_f \; rac{\partial \Delta \log \mathcal{Z}}{\partial m_f}$$

Lattice method

- with conventional Monte-Carlo techniques, derivatives of log Z can be calculated, but not log Z ∝ f itself (compare [Philipsen Lect.2])
- rewrite log Z as the integral of its derivatives at constant N_b

$$\log \mathcal{Z}(\infty) - \log \mathcal{Z}(m_f^{\rm ph}) = \int_{m_f^{\rm ph}}^{\infty} \mathrm{d}m_f \, \frac{\partial \log \mathcal{Z}}{\partial m_f}$$

► take difference $\Delta \log Z = \log Z(N_b) - \log Z(0)$

$$\underbrace{\Delta \log \mathcal{Z}(\infty)}_{0} - \Delta \log \mathcal{Z}(m_{f}^{\mathrm{ph}}) = \int_{m_{f}^{\mathrm{ph}}}^{\infty} \mathrm{d}m_{f} \underbrace{\frac{\partial \Delta \log \mathcal{Z}}{\partial m_{f}}}_{\Delta \tilde{\psi}_{f} \psi_{f}}$$

▲ log Z obtained as integral of condensates

Lattice method

- obtain $\Delta \log \mathcal{Z}$ as an integral for each B
- interpolate $\Delta \log \mathcal{Z}$ as function of B
- differentiate to obtain $\chi \propto \Delta \log Z''$

Susceptibility from the lattice

Susceptibility from the lattice

- confirms free-case expectation qualitatively transition from diamagnetism to paramagnetism slightly below T_c [Bali, Bruckmann, GE et al 1406.0269]
- comparison to Hadron Resonance Gas model (low T) and to perturbation theory (high T)

Susceptibility from the lattice

- confirms free-case expectation qualitatively transition from diamagnetism to paramagnetism slightly below T_c [Bali, Bruckmann, GE et al 1406.0269]
- comparison to Hadron Resonance Gas model (low T) and to perturbation theory (high T)

Equation of state

- using log Z(B), all thermodynamic observables can be calculated ⇒ equation of state
- energy density ϵ

entropy density s

• pressures
$$p_x = p_y, p_z$$

• interaction measure $\epsilon - 3p_z$

Equation of state

- using log Z(B), all thermodynamic observables can be calculated ⇒ equation of state
- energy density ϵ

entropy density s

• pressures $p_x = p_y, p_z$

• interaction measure $\epsilon - 3p_z$

Phase diagram

- inflection points of s and $\epsilon 3p_z$ are measures for T_c
- maximum of $\epsilon 3p_z$ is just a characteristic point

• results again show that T_c is reduced by B

Summary

 Ø eigenvalues give Hofstadter's butterfly: solid state physics ↔ QFT

 magnetic catalysis versus inverse catalysis
 ⇒ phase diagram

 magnetic susceptibility: QCD matter can either be dia- or paramagnetic

