Edvard Musaev

Topological effects

in Double Field Theory.

Centre for Research in String Theory, School of Physics and Astronomy
Queen Mary, University of London

9 Sep 2013
JINR, Dubna

Overview

1 Introduction
2 Non-geometric backgrounds
3 Extended geometry
4 The topological term in $\mathrm{O}(\mathrm{d}, \mathrm{d})$
5 The 5_{2}^{2} exotic brane

INTRODUCTION

Dualitites in string Theory

- net of theories
- string cosmology
- moduli stabilization
- string vacuum

T-duality in Type II theories on a torus \mathbb{T}^{d}

$$
\begin{equation*}
S=\int d^{2} \sigma\left(\sqrt{-h} h^{\alpha \beta} G_{m n}-\epsilon^{\alpha \beta} B_{m n}\right) \partial_{\alpha} X^{m} \partial_{\beta} X^{n} \tag{1}
\end{equation*}
$$

Equations of motion \Longleftrightarrow Bianchi identities

$$
\partial_{\alpha} \tilde{\mathcal{G}}_{m}^{\alpha}\left(X^{m}\right)=0 \quad \epsilon^{\alpha \beta} \partial_{\alpha} \partial_{\beta} X^{m}=0
$$

Momentum \Longleftrightarrow Winding mode radius of the torus $R \Longleftrightarrow \alpha^{\prime} / R\left(\right.$ for $\left.\mathbb{T}^{1}, d=1\right)$

$$
M^{2}=\frac{n^{2}}{R^{2}}+\frac{m^{2} R^{2}}{\alpha^{\prime 2}}+2(N+\tilde{N}-2)
$$

Dual coordinates \tilde{X}_{μ}, whose Bianchi identities are EOM for X^{μ}.
$X=X_{+}+X_{-}, \tilde{X}=X_{+}-X_{-}$- independent
[A. Tseytlin, P. West, M. Duff, J. Lu]

The Buscher Rules

$$
\begin{equation*}
S=\int d^{2} \sigma\left(G_{m n}+B_{m n}\right) \partial_{+} X^{m} \partial_{-} X^{n}=\int d^{2} \sigma E_{m n} \partial_{+} X^{m} \partial_{-} X^{n} \tag{2}
\end{equation*}
$$

The Buscher rules for $\mathbb{S}^{1}, X^{m}=\left(\theta, X^{\hat{m}}\right)$:

$$
\begin{array}{ll}
G_{\theta \theta}^{\prime}=\frac{1}{G_{\theta \theta}}, & E_{\theta \hat{a}}^{\prime}=\frac{1}{G_{\theta \theta}} E_{\theta \hat{a}}, \\
E_{\hat{a} \theta}^{\prime}=-\frac{1}{G_{\theta \theta}} E_{\hat{a} \theta}, & E_{\hat{a} \hat{b}}^{\prime}=E_{\hat{a} \hat{b}}-E_{\hat{a} \theta} \frac{1}{G_{\theta \theta}} E_{\theta \hat{b}} . \tag{3}
\end{array}
$$

The Buscher rules for \mathbb{T}^{d} (non-linear):

$$
E^{\prime}=\frac{a E+b}{c E+d}, \quad\left[\begin{array}{ll}
a & b \tag{4}\\
c & d
\end{array}\right] \in O(d, d)
$$

Non-GEOMETRIC BACKGROUNDS

T-duality mixes
■ the metric $G_{m n}$ and the gauge field $B_{m n}$.

- diffeomorphisms and gauge transformations.

New class of consistent string-theory backgrounds - T-folds.

Transition functions
■ Manifold: diffeos;
■ T-fold: T-duality;
■ U-fold: U-duality;

- Mirror-fold: mirror symmetry;
schematically:

NON-GEOMETRY (A TOY-MODEL OF \mathbb{T}^{3})

Backgrounds with fluxes f and Q.

- Torsion $f_{a b c} \neq 0$ (Kaluza-Klein monopole $/ 5 \frac{1}{2}$ - brane)

$$
\begin{gathered}
d s^{2}=(d x+N z d y)^{2}+d y^{2}+d z^{2}, \quad B=0 \\
z \rightarrow z+1, \quad x \rightarrow x+N y, \quad N \in \mathbb{Z}
\end{gathered}
$$

- Non-geometric flux $Q_{a b c} \neq 0(52-$ brane $)$

NON-GEOMETRY (A TOY-MODEL OF \mathbb{T}^{3})

Backgrounds with fluxes f and Q.

- Torsion $f_{a b c} \neq 0$ (Kaluza-Klein monopole $/ 5 \frac{1}{2}$ - brane)

$$
\begin{aligned}
d s^{2} & =(d x+N z d y)^{2}+d y^{2}+d z^{2}, \quad B=0, \\
& z \rightarrow z+1, \quad x \rightarrow x+N y, \quad N \in \mathbb{Z}
\end{aligned}
$$

- Non-geometric flux $Q_{a b c} \neq 0(52$ - brane $)$

$$
\begin{gathered}
d s^{2}=\frac{1}{1+N^{2} z^{2}}\left(d x^{2}+d y^{2}+d z^{2}\right), \quad B=\frac{N z}{1+N^{2} z^{2}} d x \wedge d y . \\
z \rightarrow z+1, \quad \text { glued by T-duality }
\end{gathered}
$$

\square
Wecht (lectures) hep-th/0708.3984]

NON-GEOMETRY (A TOY-MODEL OF \mathbb{T}^{3})

Backgrounds with fluxes f and Q.

- Torsion $f_{a b c} \neq 0$ (Kaluza-Klein monopole $/ 5_{2}^{1}$ - brane)

$$
\begin{aligned}
d s^{2} & =(d x+N z d y)^{2}+d y^{2}+d z^{2}, \quad B=0, \\
& z \rightarrow z+1, \quad x \rightarrow x+N y, \quad N \in \mathbb{Z}
\end{aligned}
$$

- Non-geometric flux $Q_{a b c} \neq 0\left(5_{2}^{2}\right.$ - brane $)$

$$
\begin{gathered}
d s^{2}=\frac{1}{1+N^{2} z^{2}}\left(d x^{2}+d y^{2}+d z^{2}\right), \quad B=\frac{N z}{1+N^{2} z^{2}} d x \wedge d y . \\
z \rightarrow z+1, \quad \text { glued by T-duality }
\end{gathered}
$$

$$
\begin{equation*}
H_{x y z} \xrightarrow{T_{x}} f_{y z}^{x} \xrightarrow{T_{y}} Q^{x y}{ }_{z} \xrightarrow{T_{z}} R^{x y z} . \tag{5}
\end{equation*}
$$

[B. Wecht (lectures) hep-th/0708.3984]

Non-GEOMETRY

■ non-commutativity

$$
\left[X^{m}, X^{n}\right] \sim \oint_{C} Q^{m n}{ }_{a} d X^{a}
$$

- non-associativity

$$
\left[X^{m}, X^{n}, X^{a}\right] \sim R^{m n a}
$$

[O. Hohm, D. Lust hep-th/1204.1979]
T-fold backgrounds:

- string compactifications in the presence of fluxes
- gauged supergravities $\left(\Theta_{M}^{\alpha}\right.$ contains fluxes)
- moduli stabilization

EXTENDED GEOMETRY

Poincaré symmetry (illustration of the idea)

ISO $(3,1)$: symmetry of Maxwell equations

$$
\begin{array}{ll}
\operatorname{div} \vec{E}=\rho, & \operatorname{div} \vec{H}=0 \\
\operatorname{rot} \vec{H}=\dot{\vec{E}}+\vec{j}, & \operatorname{rot} \vec{E}=-\dot{\vec{H}} . \tag{6}
\end{array}
$$

\square Extra coordinate: time;
\square New fundamental fields $A^{\mu} \in \mathcal{R}_{v}$ of $S O(3,1)$;
$\square \vec{E} \& \vec{H}$ appear on the same footing in $F_{\mu \nu}=\partial_{[\mu} A_{\nu]}$;
! Equations become simple

$$
\begin{equation*}
\partial_{\mu} F^{\mu \nu}=j^{\nu} ; \quad \epsilon^{\alpha \beta \mu \nu} \partial_{\beta} F_{\mu \nu}=0 \tag{7}
\end{equation*}
$$

The fundamental field A_{μ} has a geometric interpretation!

Doubled (EXTENDED) GEOMETRY

Duff's procedure \Longrightarrow the dual coordinate \tilde{X}_{m}.

$$
\mathbb{X}^{M}=\left[\begin{array}{l}
X^{m} \\
\tilde{X}_{n}
\end{array}\right], \mathcal{H}_{M N}=\left[\begin{array}{cc}
G_{a b}-B_{a r} B^{r}{ }_{b} & -B_{a}{ }^{n} \\
B_{b}^{m}{ }_{b} & G^{m n}
\end{array}\right], \eta_{M N}=\left[\begin{array}{cc}
0 & \delta_{n}^{m} \\
\delta_{b}^{a} & 0
\end{array}\right] .
$$

- $G_{m n} \& B_{m n}$ are on equal footing;
- T-duality acts linearly by an $O(d, d)$ rotation;

$$
\mathbb{X}^{M}=\mathcal{O}^{M}{ }_{N} \mathbb{X}^{N}, \quad \mathcal{H}_{M N}^{\prime}=\mathcal{O}^{K}{ }_{M} \mathcal{H}_{K L} \mathcal{O}^{L}{ }_{N}
$$

- Diffeos+gauge transformations $=$ Generalised Diffeos;

$$
\mathcal{L}_{\xi} V^{M}=L_{\xi} V^{M}+\eta^{M N} \eta_{K L} \partial_{N} \xi^{K} V^{L}
$$

[C. Hull, O. Hohm, B. Zwiebach, D. Berman, M. Perry, M. Grana et al.]

LOCAL PROPERTIES

Transformation of a (generalised) vector

$$
\begin{equation*}
\delta_{\Sigma} V^{M}=\left(\hat{\mathcal{L}}_{\Sigma} V\right)^{M}=\left(L_{\Sigma} V\right)^{M}+\eta^{M N} \eta_{A B} \partial_{N} \Sigma^{A} V^{B} \tag{8}
\end{equation*}
$$

The Jacobi identities fail to satisfy

$$
\begin{equation*}
\left[\delta_{\Sigma_{1}}, \delta_{\Sigma_{2}}, \delta_{\Sigma_{3}}\right] V^{M} \neq 0 \tag{9}
\end{equation*}
$$

C-bracket (in general the algebra is not closed)

$$
\begin{align*}
& {\left[V_{1}, V_{2}\right]_{C}=\frac{1}{2}\left(\hat{\mathcal{L}}_{V_{1}} V_{2}-\hat{\mathcal{L}}_{V_{2}} V_{1}\right)} \tag{10}\\
& {\left[\hat{\mathcal{L}}_{\xi_{1}}, \hat{\mathcal{L}}_{\xi_{2}}\right]=\hat{\mathcal{L}}_{\left[\xi_{1}, \xi_{2}\right]_{C}}+F_{0}}
\end{align*}
$$

The section condition:

$$
\begin{equation*}
\eta^{A B} \partial_{A} \bullet \partial_{B} \bullet=0 \quad \Longrightarrow \quad F_{0}=0 \tag{11}
\end{equation*}
$$

The effective Action

The effective action for DFT (T-duality covariant)

$$
S=\int d X d \tilde{X} e^{-2 d}\left(\Phi[\mathcal{H}, \partial \mathcal{H}, d]+\eta^{M N} \eta_{K L} \partial_{M} E^{K}{ }_{\bar{A}} \partial_{N} E^{L}{ }_{\bar{B}} \mathcal{H}^{\bar{A} \bar{B}}\right) .
$$

Two natural choices for the vielbein $\mathcal{H}_{M N}=E_{M}{ }^{\bar{A}} E_{N}{ }^{\bar{B}} \mathcal{H}_{\bar{A} \bar{B}}$

$$
\hat{E}_{\bar{A}}^{M}=\left[\begin{array}{cc}
e_{\bar{a}}^{m} & 0 \tag{12}\\
e_{\bar{a}}^{k} B_{n k} & e_{n}^{\bar{b}}
\end{array}\right], \quad \tilde{E}_{\bar{A}}^{M}=\left[\begin{array}{cc}
e_{\bar{a}}^{m} & e_{k}^{\bar{b}} \beta^{m n} \\
0 & e_{n}^{\bar{b}}
\end{array}\right] .
$$

The 2-vector $\beta=\beta^{m n} \partial_{m} \wedge \partial_{n}$ is a sign of non-geometry.

$$
\left[X^{m}, X^{n}\right] \sim \beta^{m n}
$$

Gauged supergravities

Generalized flux

Ordinary torsion ($\left.g_{m n}=e_{m}^{\bar{a}} e_{n}^{\bar{b}} \eta_{\bar{a} \bar{b}}\right)$:

$$
\begin{equation*}
\left[e_{\bar{a}}, e_{\bar{b}}\right]=f_{\bar{a} \bar{b} \bar{c} \bar{c}}^{\bar{a}} e^{\circ} . \tag{13}
\end{equation*}
$$

Generalized "torsion" $\left(\mathcal{H}_{M N}=E^{\bar{A}}{ }_{M} E^{\bar{B}}{ }_{N} \mathcal{H}_{\bar{A} \bar{B}}\right)$

$$
\begin{equation*}
\left[E_{\bar{A}}, E_{\bar{B}}\right]_{C}=F_{\bar{A} \bar{B}}{ }^{\bar{c}} E_{\bar{C}}, \tag{14}
\end{equation*}
$$

$F_{\bar{A} \bar{B}}{ }^{\bar{C}}$ encodes all fluxes (schematically):

$$
F_{M N}{ }^{K}=\left[\begin{array}{cc}
f_{m n}{ }^{k} & H_{m n k} \tag{15}\\
Q_{m}^{n k} & R^{m n k}
\end{array}\right]
$$

The embedding tensor \Longleftrightarrow generalized flux.

$$
\begin{equation*}
X_{M N}{ }^{K}=F_{M N}{ }^{K}+Z_{M N}{ }^{K} \tag{16}
\end{equation*}
$$

BOUNDARY TERMS

The action

Boundary terms \Longrightarrow Gibbons-Hawking terms.
The full action differs from S_{G} by a full derivative

$$
S_{\text {Full }}=S_{G}+2 \oint_{\partial} \partial_{A}\left(e^{-2 d} \mathcal{H}^{A B} N_{B}\right)
$$

Non-trivial monodromy when going around one of the cycles of the torus.

Non-TRIVIAL MONODROMIES

Electrodynamics: the classical monopole

$$
\begin{equation*}
\int_{\mathbb{S}^{2}} F=\int_{\mathbb{S}^{2}} d A=\int_{U_{N}} d A_{N}+\int_{U_{S}} d A_{S}=\int_{\mathbb{S}^{1}} d \lambda \tag{17}
\end{equation*}
$$

Gauge transformation $A_{N}=A_{S}+d \lambda$.

Non-trivial topology \Longrightarrow quantization of the monopole charge.

The Result

$$
\begin{gathered}
\begin{aligned}
& \theta \rightarrow \\
& \text { Hat gauge (with } \beta \text {) }
\end{aligned} \\
\begin{array}{c}
\text { Tilde gauge (with } B) \\
S_{B}=2 v\left[\int_{\mathbb{T}_{\theta}^{d-1} \times \tilde{\mathbb{T}}^{d}} n^{a} Q^{m n}{ }_{a} B_{m n} e^{-2 \lambda}+\int_{\mathbb{T}^{d} \times \tilde{\mathbb{T}}_{\theta}^{d-1}} \tilde{n}_{b} f^{b}{ }_{m n} \beta^{m n} e^{-2 \lambda}\right]+ \\
+2 v\left[\int_{\mathbb{T}_{\theta}^{d-1} \times \tilde{\mathbb{T}}^{d}} n^{m} B_{m n} \tilde{\partial}^{n} e^{-2 \lambda}-\int_{\mathbb{T}^{d} \times \tilde{\mathbb{T}}_{\theta}^{d-1}} \tilde{n}_{m} \beta^{m n} \partial_{n} e^{-2 \lambda}\right] .
\end{array} .
\end{gathered}
$$

- Fluxes f and Q couple magnetically to the B-field and the 2-vector;
- The expression is T-duality invariant;

■ Looks like the Gibbons-Hawking term for a charged black hole

$$
S_{G H} \sim(M-Q \Phi)
$$

Exotic states: THE 52 BRANE PRIMER

	1	2	3	4	5	6	7	8	9
NS5			\times	\times	\times	\times	\times	\cdot	\cdot
KKM			\times	\times	\times	\times	\times	\odot	\cdot
5_{2}^{2}			\times	\times	\times	\times	\times	\odot	\odot

The non-geometric flux $Q^{89}{ }_{\theta}=\sigma=$ const

$$
\begin{align*}
d s^{2} & =H\left(d r^{2}+r^{2} d \theta^{2}\right)+\frac{H}{H^{2}+\sigma^{2} \theta^{2}} d s_{89}^{2}+d s_{034567}^{2}, \\
B^{(2)} & =\frac{H \sigma \theta}{H^{2}+\sigma^{2} \theta^{2}} d x^{8} \wedge d x^{9}, \quad e^{-2 \phi}=\frac{H}{H^{2}+\sigma^{2} \theta^{2}}, \tag{18}
\end{align*}
$$

The torus $\mathbb{T}_{8,9}^{2}$ is glued by a T -duality transformation when going around the brane (the cycle $\theta \rightarrow \theta+2 \pi$).

Exotic states: THE 52 BRANE PRIMER

$$
\begin{equation*}
S_{B}=\left.2 \int \sqrt{-g} d^{n} x Q^{89}{ }_{\theta} B_{89}\right|_{\theta=2 \pi} \tag{19}
\end{equation*}
$$

The contribution of the topological term for configurations with flux σ close to $|\sigma|=1$ is dominant in the partition function.

Conclusion

\square The boundary contribution to the DFT action was presented in terms of the fluxes f and Q;
\square The exotic state corresponding to the 5_{2}^{2}-brane gives non-zero contribution to the partition function;
\square For a single 5_{2}^{2}-brane contributions with the flux $\sigma=1$ dominate;

Future problems

\square Consider backgrounds with non-zero R-, f - and H-flux.
\square Formulate a Gibbons-Hawking-like thermodynamics for these objects using the calculated boundary action.
\square Consider generalised reduction with the boundary terms included.

Conclusion

\square The boundary contribution to the DFT action was presented in terms of the fluxes f and Q;
\square The exotic state corresponding to the 5_{2}^{2}-brane gives non-zero contribution to the partition function;
\square For a single 5_{2}^{2}-brane contributions with the flux $\sigma=1$ dominate;
Future problems
\square Consider backgrounds with non-zero R-, f - and H-flux.
\square Formulate a Gibbons-Hawking-like thermodynamics for these objects using the calculated boundary action.
\square Consider generalised reduction with the boundary terms included.

THANK YOU!

