# BPS branes in 10 and 11 dimensional supergravity arXiv:1301.2139, arXiv:1107.4089

A. A. Golubtsova $^{1,a,b}$  in collaboration with V.D. Ivashchuk $^{,a,c}$ 

(a) PFUR IGC, (b) The Paris Observatory, (c) VNIIMS

DIAS Summer School, Dubna 2013

Introduction

<sup>1</sup>siedhe@gmail.com

# Outline

- Introduction
  - ullet 10D and 11D Supergravity
  - P-brane Solution
  - The Supersymmerty Algebra and BPS Bound
- Preserved Supersymmetries
  - Generalization to curved manifolds
  - Multiple Configurations
  - Configurations on Ricci-flat factor spaces
  - Killing Spinor Equations
  - The supersymmetry conditions
- How does it work?
  - Pure electric background
  - Pure magnetic background
  - The intersection of two electric and one magnetic branes
  - The intersection of one electric and two magnetic branes
- Conclusions

Table: The correspondence between the string theories, M-theory and the supergravity theories

| Quantum theory                           | Effective theory                                     |
|------------------------------------------|------------------------------------------------------|
| M-theory                                 | $D=11$ , $\mathcal{N}=1$ supergravity                |
| Type IIA string theory                   | Non-chiral $D=10$ , $\mathcal{N}=2$ IIA supergravity |
| Type IIB string theory                   | Chiral $D=10$ , $\mathcal{N}=2$ IIB supergravity     |
| Type I string theory                     | $D=10$ , $\mathcal{N}=1$ supergravity + Yang Mills   |
|                                          | with $SO(32)$ gauge group                            |
| Heterotic $SO(32)$ string theory         | $D=10$ , $\mathcal{N}=1$ supergravity + Yang Mills   |
|                                          | with $SO(32)$ gauge group                            |
| Heterotic $E_8 \times E_8$ string theory | $D=10$ , $\mathcal{N}=1$ supergravity + Yang Mills   |
|                                          | with $E_8	imes E_8$ gauge group                      |

# Duality and reduction

Introduction



## 10D and 11D Supergravity

## 11 dimensional $\mathcal{N}=1$ SUGRA

$$S_{11D} = \int d^{11}z \sqrt{|g|} \left\{ R[g] - \frac{1}{2(4!)} \hat{F}^2 \right\} - \frac{1}{6} \int \hat{A} \wedge \hat{F} \wedge \hat{F},$$

where

•00

$$\hat{F} = d\hat{A} = \frac{1}{A!} \hat{F}_{NPQR} dz^N \wedge dz^P \wedge dz^Q \wedge dz^R$$

is the 4-form field strength of the 3-form potential A.

## 10D and 11D Supergravity

#### 11 dimensional $\mathcal{N}=1$ SUGRA

$$S_{11D} = \int d^{11}z \sqrt{|g|} \left\{ R[g] - \frac{1}{2(4!)} \hat{F}^2 \right\} - \frac{1}{6} \int \hat{A} \wedge \hat{F} \wedge \hat{F},$$

where

$$\hat{F} = d\hat{A} = \frac{1}{A!} \hat{F}_{NPQR} dz^N \wedge dz^P \wedge dz^Q \wedge dz^R$$

is the 4-form field strength of the 3-form potential A.

#### 10 dimensional $\mathcal{N}=2$ SUGRA

$$\begin{split} S_{IIA,SF} &= \int d^{10}x \sqrt{|g|} \Big\{ e^{-2\varphi} \left[ R[g] + 4 \partial_{\mu} \varphi \partial^{\mu} \varphi - \frac{1}{2(3!)} |F_{(3)}|^2 \right] - \\ &\qquad \frac{1}{2(2!)} |F_{(2)}|^2 - \frac{1}{2(4!)} |\tilde{F}_{(4)}|^2 \Big\} - \frac{1}{2} \int A_2 \wedge F_{(4)} \wedge F_{(4)}, \end{split}$$

where  $\varphi$  is the dilaton,  $F_{(3)}=dA_2$  is the field strength of the NS-NS two form,  $F_{(2)}=dA_1$  is the field strength of the R-R 1-form,  $F_{(4)}=dA_3$ ,  $\tilde{F}_{(4)}=dA_3+F_{(3)}\wedge A_1$  are the Ramond-Ramond field strengths.

## P-brane Solution

Introduction

000

### Ansatz for the metric



## P-brane Solution

Introduction

000

#### Ansatz for the metric

$$M_0 \times M_1$$

the transverse space the worldvolume

$$SO(D-p-1)\times (\mathsf{Poincar\acute{e}}_{(p+1)})$$

#### P-brane Solution

Introduction

#### Ansatz for the metric

$$M_0 imes M_1$$

the transverse space the worldvolume

$$SO(D-p-1)\times (\mathsf{Poincar\acute{e}}_{(p+1)})$$

$$g = e^{2\phi(x)}g^0 + e^{2\gamma(x)}g^1.$$

#### The harmonic function

A p-brane solution depends on a harmonic function H

$$\nabla^2 H = 0.$$

where  $(\nabla^2)$  is the Laplacian on the transverse space.

Introduction

$$\frac{1}{p!}(C\Gamma_{\mu_1\dots\mu_p})_{\alpha\beta}Z^{\mu_1\dots\mu_p},$$

$$Z^{\mu_1\dots\mu_p} = Q_{(p)} \int dX^{\mu_1} \wedge dX^{\mu_2} \wedge \dots \wedge dX^{\mu_p}$$

is the topological charge, C is the charge conjugation matrix,  $X^\mu$  are spacetime coordinates and  $\Gamma$  is an antisymmetric combination of Gamma matrices.

$$\{\hat{Q}_{\alpha}, \hat{Q}_{\beta}\} = Z_{\alpha\beta}$$

#### The BPS bound

$$T = Q_{(p)}$$

#### The SUSY algebra

Introduction

$$\frac{1}{p!} (C\Gamma_{\mu_1 \dots \mu_p})_{\alpha\beta} Z^{\mu_1 \dots \mu_p},$$

$$Z^{\mu_1 \dots \mu_p} = Q_{(p)} \int dX^{\mu_1} \wedge dX^{\mu_2} \wedge \dots \wedge dX^{\mu_p}$$

is the topological charge, C is the charge conjugation matrix,  $X^{\mu}$  are spacetime coordinates and  $\Gamma$  is an antisymmetric combination of Gamma matrices.

$$\{\hat{Q}_{\alpha}, \hat{Q}_{\beta}\} = Z_{\alpha\beta}$$

#### The BPS bound

$$T = Q_{(n)}$$

11D SUGRA: M2-brane, M5-brane, KK monopole, M9-brane

#### The SUSY algebra

Introduction

$$\frac{1}{p!} (C\Gamma_{\mu_1 \dots \mu_p})_{\alpha\beta} Z^{\mu_1 \dots \mu_p},$$

$$Z^{\mu_1 \dots \mu_p} = Q_{(p)} \int dX^{\mu_1} \wedge dX^{\mu_2} \wedge \dots \wedge dX^{\mu_p}$$

is the topological charge, C is the charge conjugation matrix,  $X^{\mu}$  are spacetime coordinates and  $\Gamma$  is an antisymmetric combination of Gamma matrices.

$$\{\hat{Q}_{\alpha}, \hat{Q}_{\beta}\} = Z_{\alpha\beta}$$

#### The BPS bound

$$T = Q_{(p)}$$

11D SUGRA: M2-brane, M5-brane, KK monopole, M9-brane 10D IIA SUGRA: D0-brane, D2-brane, D4-brane, D6-brane, D8-brane, F-string, NS5, NS9, KK monopole

#### The SUSY algebra

$$\frac{1}{p!} (C\Gamma_{\mu_1 \dots \mu_p})_{\alpha\beta} Z^{\mu_1 \dots \mu_p},$$

$$Z^{\mu_1 \dots \mu_p} = Q_{(p)} \int dX^{\mu_1} \wedge dX^{\mu_2} \wedge \dots \wedge dX^{\mu_p}$$

is the topological charge, C is the charge conjugation matrix,  $X^{\mu}$  are spacetime coordinates and  $\Gamma$  is an antisymmetric combination of Gamma matrices.

$$\{\hat{Q}_{\alpha}, \hat{Q}_{\beta}\} = Z_{\alpha\beta}$$

#### The BPS bound

$$T = Q_{(p)}$$

11D SUGRA: M2-brane, M5-brane, KK monopole, M9-brane 10D IIA SUGRA: D0-brane, D2-brane, D4-brane, D6-brane, D8-brane, F-string, NS5, NS9, KK monopole 10D IIB SUGRA: D1-brane, D3-brane, D5-brane, D7-brane, D9-brane, F-string, NS5, NS9, KK monopole

# Introduction Outline

- - 10D and 11D Supergravity
  - P-brane Solution
  - The Supersymmetry Algebra and BPS Bound
- Preserved Supersymmetries
  - Generalization to curved manifolds
  - Multiple Configurations
  - Configurations on Ricci-flat factor spaces
  - Killing Spinor Equations
  - The supersymmetry conditions
- - Pure electric background
  - Pure magnetic background
  - The intersection of two electric and one magnetic branes
  - The intersection of one electric and two magnetic branes

$$\mathcal{N}=n/\nu,$$

where  $\nu$  — a number of maximal supersymmetries of the system

$$\mathcal{N}=n/\nu,$$

where  $\nu$  — a number of maximal supersymmetries of the system

$$\bullet \ n=0,1,2,4,5,6,8,16 \text{, } \nu=32.$$

$$\mathcal{N}=n/\nu,$$

where  $\nu$  — a number of maximal supersymmetries of the system

- $n = 0, 1, 2, 4, 5, 6, 8, 16, \nu = 32.$
- Basic M2- and M5- branes solutions preserve 1/2 SUSY

Conclusions

## The amount of preserved supersymmetries

$$\mathcal{N}=n/\nu,$$

where  $\nu$  — a number of maximal supersymmetries of the system

- $n = 0, 1, 2, 4, 5, 6, 8, 16, \nu = 32.$
- Basic M2- and M5- branes solutions preserve 1/2 SUSY
- M-brane configurations on flat factor spaces

$$M_0$$

$$\mathcal{N}=n/\nu,$$

where  $\nu$  — a number of maximal supersymmetries of the system

- $n = 0, 1, 2, 4, 5, 6, 8, 16, \nu = 32.$
- Basic M2- and M5- branes solutions preserve 1/2 SUSY
- M-brane configurations on flat factor spaces

$$M_0 \times M_1$$

$$\mathcal{N}=n/\nu,$$

How does it work?

where  $\nu$  — a number of maximal supersymmetries of the system

- $n = 0, 1, 2, 4, 5, 6, 8, 16, \nu = 32.$
- Basic M2- and M5- branes solutions preserve 1/2 SUSY
- M-brane configurations on flat factor spaces

$$M_0 \times M_1 \times \dots$$

$$\mathcal{N}=n/\nu,$$

where  $\nu$  — a number of maximal supersymmetries of the system

- $n = 0, 1, 2, 4, 5, 6, 8, 16, \nu = 32.$
- Basic M2- and M5- branes solutions preserve 1/2 SUSY
- M-brane configurations on flat factor spaces

$$M_0 \times M_1 \times \ldots \times M_n, \quad M_i = \mathbb{R}^{k_i}$$

$$\mathcal{N}=n/\nu,$$

where  $\nu$  — a number of maximal supersymmetries of the system

#### 11D SUGRA

- $n = 0, 1, 2, 4, 5, 6, 8, 16, \nu = 32.$
- Basic M2- and M5- branes solutions preserve 1/2 SUSY
- M-brane configurations on flat factor spaces

$$M_0 \times M_1 \times \ldots \times M_n$$
,  $M_i = \mathbb{R}^{k_i}$   
 $\mathcal{N} = 2^{-k}$ ,  $k = 1, 2, 3, 4, 5$ 



E. Bergshoeff, M. de Roo, et al., Multiple Intersections of D-branes and M-branes, Class. Quantum Grav., 14, 2757(1997).

$$\mathcal{N}=n/\nu,$$

How does it work?

where  $\nu$  — a number of maximal supersymmetries of the system

#### 11D SUGRA

- $n = 0, 1, 2, 4, 5, 6, 8, 16, \nu = 32.$
- Basic M2- and M5- branes solutions preserve 1/2 SUSY
- M-brane configurations on flat factor spaces

$$M_0 \times M_1 \times \ldots \times M_n$$
,  $M_i = \mathbb{R}^{k_i}$   
 $\mathcal{N} = 2^{-k}$ ,  $k = 1, 2, 3, 4, 5$ 



**E.** Bergshoeff, M. de Roo, et al., Multiple Intersections of D-branes and M-branes, Class. Quantum Grav., 14, 2757(1997).

•  $\Rightarrow$  P-branes on Ricci-flat manifolds,  $\mathcal{N} = ?$ 

#### Generalization to curved manifolds

 The generalization of worldvolume manifold to Ricci-flat manifold admitting Killing spinors



Introduction

M. J. Duff, H. Lü, C. N. Pope and E. Sezgin, Phys. Lett. B 371, (1996) 206



D. R. Brecher and M. J. Perry, *Nucl. Phys. B* **566**, 51-172 (2000).

#### Generalization to curved manifolds

Introduction

- The generalization of worldvolume manifold to Ricci-flat manifold admitting Killing spinors
  - M. J. Duff, H. Lü, C. N. Pope and E. Sezgin, Phys. Lett. B 371, (1996) 206
  - D. R. Brecher and M. J. Perry, *Nucl. Phys. B* **566**, 51-172 (2000).
- The solutions with indecomposable Ricci-flat brane worldwolumes
  - A. Kaya, Nucl. Phys. B 583, 411 (2000).
    - J. M. Figueroa-O'Farrill, More Ricci-flat branes, Phys.Lett. B 471, 128-132 (1999).

Introduction

- $(p+q_1)$  brane :
- $(p+q_2)$  brane :
- $(p+q_3)$  brane :

$$(p+q_1)$$
 - brane :  $\overbrace{X \dots X}^{p+1}$   
 $(p+q_2)$  - brane :  $\underbrace{X \dots X}_{X \dots X}$   
 $(p+q_3)$  - brane :  $\underbrace{X \dots X}_{X \dots X}$ 

Introduction

Introduction

#### The three branes have

- ullet the (p+1)-dimensional common worldvolume space
- the relative transverse  $(q_1 + q_2 + q_3)$ -dimensional space
- the totally transverse  $\hat{D}$ -dimensional space.

## Configurations on Ricci-flat factor spaces

#### The product of manifolds

$$M = M_0 \times M_1 \times \dots \times M_n$$
  
 $g = e^{2\gamma(x)} g^0 + \sum_{i=1}^n e^{2\phi^i(x)} g^i.$ 

The diagonalizing D-beins

$$g_{MN} = \eta_{AB} e_M^A e_N^B,$$
 with  $\eta_{AB} = \eta^{AB} = \eta_A \delta_{AB}, \quad e^A = e_M^A dx^M$ 

#### The field strength for composite intersecting branes

$$F = \sum_{s=1}^{m} c_s \mathcal{F}_s,$$

where  $\mathcal{F}_s$  is an elementary 4-form corresponding to s-th p-brane,  $c_s=\pm 1$  is the sign factor of s-th p -brane, which defines the orientation of the worldvolume.

## SUSY equations

#### Killing Spinor Equations

 $\delta\psi=(D_M+B_M)\varepsilon=0, \quad \text{where} \quad D_M=\partial_M+\frac{1}{4}w_{ABM}\hat{\Gamma}^A\hat{\Gamma}^B,$   $\varepsilon$  is a SUSY transformation parameter,  $w_{ABM}$  is a spin connection.

$$\hat{\Gamma}^A \hat{\Gamma}^B + \hat{\Gamma}^B \hat{\Gamma}^A = 2\eta^{AB} \mathbf{1}_{32},$$

$$B_M = \frac{1}{288} \left( \Gamma_M \Gamma^N \Gamma^P \Gamma^Q \Gamma^R - 12 \delta_M^N \Gamma^P \Gamma^Q \Gamma^R \right) F_{NPQR}$$

and  $\Gamma_{M}$  are world gamma matrices satisfying Clifford algebra relations

$$\Gamma_M = e_M^A \Gamma_A, \quad \Gamma_M \Gamma_N + \Gamma_N \Gamma_M = 2g_{MN} \mathbf{1}_{32}$$

## SUSY equations

#### Killing Spinor Equations

$$\delta \psi = (D_M + B_M)\varepsilon = 0, \quad \text{where} \quad D_M = \partial_M + \frac{1}{4}w_{ABM}\hat{\Gamma}^A\hat{\Gamma}^B,$$

 $\varepsilon$  is a SUSY transformation parameter,  $w_{ABM}$  is a spin connection.

$$\hat{\Gamma}^A \hat{\Gamma}^B + \hat{\Gamma}^B \hat{\Gamma}^A = 2\eta^{AB} \mathbf{1}_{32},$$

$$B_M = \frac{1}{288} \left( \Gamma_M \Gamma^N \Gamma^P \Gamma^Q \Gamma^R - 12 \delta_M^N \Gamma^P \Gamma^Q \Gamma^R \right) F_{NPQR}$$

and  $\Gamma_M$  are world gamma matrices satisfying Clifford algebra relations

$$\Gamma_M = e_M^A \Gamma_A, \quad \Gamma_M \Gamma_N + \Gamma_N \Gamma_M = 2g_{MN} \mathbf{1}_{32}$$

#### The number of unbroken SUSY

$$\mathcal{N} = N/32,$$

where N is the dimension of the linear space of solutions to differential equation  $(D_M + B_M)\varepsilon = 0$ .

## The chirality conditions

The solutions admit spinors in the form

$$\varepsilon = \left(\prod_{s \in S_e} H_s^{-1/6}\right) \left(\prod_{s \in S_m} H_s^{-1/12}\right) \eta$$

with the parallel spinor  $\eta$ 

$$\bar{D}_{m_l}^l \eta = 0, \quad \bar{D}_{m_l}^l = \partial_{m_l} + w_{a_l b_l m_l}^{(l)}, \quad l = 0, \dots, n,$$
 (1)

satisfying brane chirality conditions

$$\hat{\Gamma}_{[s]}\eta = c_s\eta.$$

#### The chirality operators

$$\begin{split} \hat{\Gamma}_{[s]} &= \hat{\Gamma}^{A_1} \hat{\Gamma}^{A_2} \hat{\Gamma}^{A_3}, \quad \text{for} \quad s \in S_e \\ \hat{\Gamma}_{[s]} &= \hat{\Gamma}^{B_1} \hat{\Gamma}^{B_2} \hat{\Gamma}^{B_3} \hat{\Gamma}^{B_4} \hat{\Gamma}^{B_5}, \quad \text{for} \quad s \in S_m \\ \left(\hat{\Gamma}_{[s]}\right)^2 &= 1 \end{split}$$

# Introduction Outline

- - 10D and 11D Supergravity
  - P-brane Solution
  - The Supersymmetry Algebra and BPS Bound
- - Generalization to curved manifolds
  - Multiple Configurations
  - Configurations on Ricci-flat factor spaces
  - Killing Spinor Equations
  - The supersymmetry conditions
- How does it work?
  - Pure electric background
  - Pure magnetic background
  - The intersection of two electric and one magnetic branes
  - The intersection of one electric and two magnetic branes

# The product of manifolds

$$M_0 \times M_1 \times M_2 \times M_3 \times M_4$$

$$d_0 = 4$$
,  $d_1 = d_2 = d_3 = 2$  and  $d_4 = 1$ 

#### The solution

$$\begin{split} g &= H_1^{1/3} H_2^{1/3} H_3^{1/3} \{ \hat{g}^0 + H_1^{-1} \hat{g}^1 + H_2^{-1} \hat{g}^2 + H_3^{-1} \hat{g}^3 + H_1^{-1} H_2^{-1} H_3^{-1} \hat{g}^4 \}, \\ F &= c_1 d H_1^{-1} \wedge \hat{\tau}_1 \wedge \hat{\tau}_4 + c_2 d H_2^{-1} \wedge \hat{\tau}_2 \wedge \hat{\tau}_4 + c_3 d H_3^{-1} \wedge \hat{\tau}_3 \wedge \hat{\tau}_4, \end{split}$$

where  $c_1^2 = c_2^2 = c_3^2 = 1$ . The metrics  $g^i$ , i = 0, 1, 2, 3, have Euclidean signatures and  $q^4 = -dt \otimes dt$ .



#### The set of gamma matrices

$$(\hat{\Gamma}^{a_0}_{(0)} \otimes \mathbf{1}_2 \otimes \mathbf{1}_2 \otimes \mathbf{1}_2 \otimes \mathbf{1}, \\ \hat{\Gamma}_{(0)} \otimes \hat{\Gamma}^{a_1}_{(1)} \otimes \mathbf{1}_2 \otimes \mathbf{1}_2 \otimes \mathbf{1}, \\ (\hat{\Gamma}^A) = i\hat{\Gamma}_{(0)} \otimes \hat{\Gamma}_{(1)} \otimes \hat{\Gamma}_{(2)} \otimes \hat{\Gamma}_{(2)} \otimes \mathbf{1}_2 \otimes \mathbf{1}, \\ \hat{\Gamma}_{(0)} \otimes \hat{\Gamma}_{(1)} \otimes \hat{\Gamma}_{(2)} \otimes \hat{\Gamma}_{(3)} \otimes \mathbf{1}, \\ \hat{\Gamma}_{(0)} \otimes \hat{\Gamma}_{(1)} \otimes \hat{\Gamma}_{(2)} \otimes \hat{\Gamma}_{(3)} \otimes \mathbf{1}, \\ \hat{\Gamma}_{(0)} \otimes \hat{\Gamma}_{(1)} \otimes \hat{\Gamma}_{(2)} \otimes \hat{\Gamma}_{(3)} \otimes \mathbf{1},$$

where

$$\hat{\Gamma}_{(0)} = \hat{\Gamma}_{(0)}^{1_0} \dots \hat{\Gamma}_{(0)}^{4_0}, \quad \hat{\Gamma}_{(i)} = \hat{\Gamma}_{(i)}^{1_i} \hat{\Gamma}_{(i)}^{2_i},$$

obey

$$(\hat{\Gamma}_{(0)})^2 = \mathbf{1}_4, \qquad (\hat{\Gamma}_{(i)})^2 = -\mathbf{1}_2, \quad i = 1, 2, 3.$$

The monomial spinor reads

$$\eta = \eta_0(x) \otimes \eta_1(y_1) \otimes \eta_2(y_2) \otimes \eta_3(y_3) \otimes \eta_4(y_4),$$

where  $\eta_0 = \eta_0(x)$  is 4-component spinor on  $M_0$ ,  $\eta_i = \eta_i(y_i)$  is 2-component spinor on  $M_i$ , i=1,2,3, and  $\eta_4=\eta_4(y_4)$  is 1-component spinor on  $M_4$ .

Introduction

$$\bar{D}_{m_0}^{(0)} \eta = (D_{m_0}^{(0)} \eta_0) \otimes \eta_1 \otimes \eta_2 \otimes \eta_3 \otimes \eta_4, \quad \bar{D}_{m_1}^{(1)} \eta = \eta_0 \otimes (D_{m_1}^{(1)} \eta_1) \otimes \eta_2 \otimes \eta_3 \otimes \eta_4, 
\bar{D}_{m_2}^{(2)} \eta = \eta_0 \otimes \eta_1 \otimes (D_{m_2}^{(2)} \eta_2) \otimes \eta_3 \otimes \eta_4, \quad \bar{D}_{m_3}^{(3)} \eta = \eta_0 \otimes \eta_1 \otimes \eta_2 \otimes (D_{m_3}^{(3)} \eta_3) \otimes \eta_4, 
\bar{D}_{m_4}^{(4)} \eta = \eta_0 \otimes \eta_1 \otimes \eta_2 \otimes \eta_3 \otimes (D_{m_4}^{(4)} \eta_4),$$

where  $D_{m_i}^{(i)}$  correspond to  $M_i$ , i=0,1,2,3. Here  $D_{m_A}^{(4)}=\partial_{m_A}$ .

$$\begin{split} &\hat{\Gamma}_{[s]} = \hat{\Gamma}^{1_1} \hat{\Gamma}^{2_1} \hat{\Gamma}^{1_4} = -\hat{\Gamma}_{(0)} \otimes \mathbf{1}_2 \otimes \hat{\Gamma}_{(2)} \otimes \hat{\Gamma}_{(3)} \otimes 1, \quad \text{for} \quad s = I_1, \\ &\hat{\Gamma}_{[s]} = \hat{\Gamma}^{1_2} \hat{\Gamma}^{2_2} \hat{\Gamma}^{1_4} = -\hat{\Gamma}_{(0)} \otimes \hat{\Gamma}_{(1)} \otimes \mathbf{1}_2 \otimes \hat{\Gamma}_{(3)} \otimes 1, \quad \text{for} \quad s = I_2, \\ &\hat{\Gamma}_{[s]} = \hat{\Gamma}^{1_3} \hat{\Gamma}^{2_3} \hat{\Gamma}^{1_4} = -\hat{\Gamma}_{(0)} \otimes \hat{\Gamma}_{(1)} \otimes \hat{\Gamma}_{(2)} \otimes \mathbf{1}_2 \otimes 1, \quad \text{for} \quad s = I_3. \end{split}$$

# The chirality restrictions are satisfied if

$$\begin{split} \hat{\Gamma}_{(0)}\eta_0 &= c_{(0)}\eta_0, \qquad c_{(0)}^2 = 1, \\ \hat{\Gamma}_{(j)}\eta_j &= c_{(j)}\eta_j, \qquad c_{(j)}^2 = -1, \end{split}$$

j = 1, 2, 3 with

$$c_{(0)} = c_1 c_2 c_3, \qquad c_{(j)} = \pm i c_j.$$

The following solution to SUSY equations corresponding to the field configuration from

$$\varepsilon = H_1^{-1/6} H_2^{-1/6} H_3^{-1/6} \eta_0(x) \otimes \eta_1(y_1) \otimes \eta_2(y_2) \otimes \eta_3(y_3) \otimes \eta_4.$$

How does it work?

Here  $\eta_i$ , i=0,1,2,3, are chiral parallel spinors defined on  $M_i$ , respectively  $(D_{m_i}^{(i)}\eta_i=0)$ ,  $\eta_4$  is constant.

## The number of linear independent solutions to $(D_M + B_m)\varepsilon = 0$

$$N = 32\mathcal{N} = n_0(c_1c_2c_3) \sum_{c=\pm 1} n_1(icc_1)n_2(icc_2)n_3(icc_3),$$

where  $n_j(c_{(j)})$  is the number of chiral parallel spinors on  $M_j$ , j=0,1,2,3.

| M | $M_0$                | $M_1$          | $M_2$          | $M_3$          | $\mathcal{N} = 1/16n_0(c_1c_2c_3)$                 |
|---|----------------------|----------------|----------------|----------------|----------------------------------------------------|
|   | $\mathbb{R}^4$       | $\mathbb{R}^2$ | $\mathbb{R}^2$ | $\mathbb{R}^2$ | 1/8                                                |
|   | $K3 = CY_2$          | $\mathbb{R}^2$ | $\mathbb{R}^2$ | $\mathbb{R}^2$ | $1/8$ for $c_1c_2c_3 = 1 / 0$ for $c_1c_2c_3 = -1$ |
|   | $\mathbb{C}^2_*/Z_2$ | $\mathbb{R}^2$ | $\mathbb{R}^2$ | $\mathbb{R}^2$ | $1/8$ for $c_1c_2c_3 = 1 / 0$ for $c_1c_2c_3 = -1$ |

## $M5 \cap M5 \cap M5$

#### The product manifold

$$M_0 \times M_1 \times M_2 \times M_3 \times M_4$$
,

where  $d_0 = 3$ .  $d_1 = d_2 = d_3 = d_4 = 2$ .

The solutions for the metric and field strengths

$$g = H_1^{2/3} H_2^{2/3} H_3^{2/3} \left\{ g^0 + H_2^{-1} H_3^{-1} g^1 + H_1^{-1} H_3^{-1} g^2 + H_1^{-1} H_2^{-1} g^3 + H_1^{-1} H_2^{-1} H_3^{-1} g^4 \right\},$$
  
$$F = c_1(*_0 dH_1) \wedge \tau_1 + c_2(*_0 dH_2) \wedge \tau_2 + c_3(*_0 dH_3) \wedge \tau_3,$$

where  $c_1^2 = c_2^2 = c_2^2 = 1$ .

Introduction

#### The set of gamma matrices

Here the operators  $\hat{\Gamma}_{(i)}$ , i=1,2,3,4, are given by

$$\begin{split} \hat{\Gamma}_{(1)} &= \hat{\Gamma}_{(1)}^{1_1} \hat{\Gamma}_{(1)}^{2_1}, \quad \hat{\Gamma}_{(2)} &= \hat{\Gamma}_{(2)}^{1_2} \hat{\Gamma}_{(2)}^{2_2}, \quad \hat{\Gamma}_{(3)} &= \hat{\Gamma}_{(3)}^{1_3} \hat{\Gamma}_{(3)}^{2_3}, \quad \hat{\Gamma}_{(4)} &= \hat{\Gamma}_{(4)}^{1_4} \hat{\Gamma}_{(4)}^{2_4} \hat{\Gamma}_{(4)}^{3_4} \hat{\Gamma}_{(4)}^{4_4} \\ & \text{obey} \quad (\hat{\Gamma}_{(i)})^2 = -\mathbf{1}_2, \quad (\hat{\Gamma}_{(4)})^2 = -\mathbf{1}_4, \quad \text{with} \quad i = 1, 2, 3. \end{split}$$

$$\eta = \eta_0(x) \otimes \eta_1(y_1) \otimes \eta_2(y_2) \otimes \eta_3(y_3) \otimes \eta_4(y_4),$$

where  $\eta_0(x)$  is a 1-component spinor on  $M_0$ ,  $\eta_i=\eta_i(y_i)$  is a 2-component spinor on  $M_i$ , i=1,2,3,  $\eta_4=\eta_4(y_4)$  is a 4-component spinor on  $M_4$ .

## $M5 \cap M5 \cap M5$

The covariant derivatives can be written down as

$$\begin{split} \bar{D}_{m_1} &= \partial_{m_1} + \frac{1}{4} \omega_{a_1 b_1 m_1}^{(1)} \left( 1 \otimes \hat{\Gamma}_{(1)}^{a_1} \hat{\Gamma}_{(1)}^{b_1} \otimes \mathbf{1}_2 \otimes \mathbf{1}_2 \otimes \mathbf{1}_4 \right), \\ \bar{D}_{m_2} &= \partial_{m_2} + \frac{1}{4} \omega_{a_2 b_2 m_2}^{(2)} \left( 1 \otimes \mathbf{1}_2 \otimes \hat{\Gamma}_{(2)}^{a_2} \hat{\Gamma}_{(2)}^{b_2} \otimes \mathbf{1}_2 \otimes \mathbf{1}_4 \right), \\ \bar{D}_{m_3} &= \partial_{m_3} + \frac{1}{4} \omega_{a_3 b_3 m_3}^{(3)} \left( 1 \otimes \mathbf{1}_2 \otimes \mathbf{1}_2 \otimes \hat{\Gamma}_{(3)}^{a_3} \hat{\Gamma}_{(3)}^{b_3} \otimes \mathbf{1}_4 \right), \\ \bar{D}_{m_4} &= \partial_{m_4} + \frac{1}{4} \omega_{a_4 b_4 m_4}^{(4)} \left( 1 \otimes \mathbf{1}_2 \otimes \mathbf{1}_2 \otimes \hat{\Gamma}_{2} \otimes \hat{\Gamma}_{(4)}^{a_4} \hat{\Gamma}_{(4)}^{b_4} \right), \end{split}$$

where  $\omega^{(i)a_i}_{b_ic_i}$  are components of the spin connection corresponding to the manifold  $M_i$ ,  $D^{(i)}_{m_i}$  is a covariant derivatives corresponding to  $M_i$ , i=1,2,3,4,  $\bar{D}_{m_0}=\partial_{m_0}$  and  $D^{(0)}_{m_0}=\partial_{m_0}$ .

$$\begin{split} \hat{\Gamma}_{[s]} &= \hat{\Gamma}^{1_0} \hat{\Gamma}^{1_2} \hat{\Gamma}^{2_2} \hat{\Gamma}^{1_3} \hat{\Gamma}^{2_3} = 1 \otimes \hat{\Gamma}_{(1)} \otimes \mathbf{1}_2 \otimes \mathbf{1}_2 \otimes \hat{\Gamma}_{(4)} \quad \text{for} \quad s = I_1, \\ \hat{\Gamma}_{[s]} &= \hat{\Gamma}^{1_0} \hat{\Gamma}^{1_1} \hat{\Gamma}^{2_1} \hat{\Gamma}^{1_3} \hat{\Gamma}^{2_3} = 1 \otimes \mathbf{1}_2 \otimes \hat{\Gamma}_{(2)} \otimes \mathbf{1}_2 \otimes \hat{\Gamma}_{(4)} \quad \text{for} \quad s = I_2, \\ \hat{\Gamma}_{[s]} &= \hat{\Gamma}^{1_0} \hat{\Gamma}^{1_1} \hat{\Gamma}^{2_1} \hat{\Gamma}^{1_2} \hat{\Gamma}^{2_2} = 1 \otimes \mathbf{1}_2 \otimes \mathbf{1}_2 \otimes \hat{\Gamma}_{(3)} \otimes \hat{\Gamma}_{(4)} \quad \text{for} \quad s = I_3. \end{split}$$

# The supersymmetry constraints

$$\hat{\Gamma}_{(j)}\eta_j = c_{(j)}\eta_j, \qquad c_{(j)}^2 = -1, \quad j = 1, 2, 3, 4,$$

and

Introduction

$$c_{(1)}c_{(4)} = c_1, \quad c_{(2)}c_{(4)} = c_2, \quad c_{(3)}c_{(4)} = c_3.$$

$$\varepsilon = \prod_{n=1}^{3} H_s^{-\frac{1}{12}} \eta_0 \otimes \eta_1(y_1) \otimes \eta_2(y_2) \otimes \eta_2(y_3) \otimes \eta_4(y_4),$$

where  $\eta_i$ , i = 1, 2, 3, 4 are parallel spinors defined on  $M_i$ , respectively.

$$c_{(1)} = -ic_1, \quad c_{(2)} = -ic_2, \quad c_{(3)} = -ic_3, \quad c_{(4)} = i,$$
  
 $c_{(1)} = ic_1, \quad c_{(2)} = ic_2, \quad c_{(3)} = ic_3, \quad c_{(4)} = -i.$ 

#### The number of preserved supersymmetries

$$N = 32\mathcal{N} = n_1(-ic_1)n_2(-ic_2)n_3(-ic_3)n_4(i) + n_1(ic_1)n_2(ic_2)n_3(ic_3)n_4(-i),$$

where  $n_i(c_i)$  is the number of chiral parallel spinors on  $M_i$ , j = 1, 2, 3, 4.

# Exapmles

Introduction

Let  $M_0=\mathbb{R}$  and  $M_1=M_2=M_3=\mathbb{R}^2$ . Then all  $n_j(c)=1,\ j=1,2,3,$  with  $c=\pm i$ , and hence

$$N = 32\mathcal{N} = n_4(i) + n_4(-i). \tag{2}$$

| M | $M_0$        | $M_1$          | $M_2$          | $M_3$          | $M_4$                                          | $\mathcal{N}$ |
|---|--------------|----------------|----------------|----------------|------------------------------------------------|---------------|
|   | $\mathbb{R}$ | $\mathbb{R}^2$ | $\mathbb{R}^2$ | $\mathbb{R}^2$ | $\mathbb{R}^{1,3}$                             | 1/8           |
|   | $\mathbb{R}$ | $\mathbb{R}^2$ | $\mathbb{R}^2$ | $\mathbb{R}^2$ | $(\mathbb{R}^{1,1}_*/Z_2) \times \mathbb{R}^2$ | 1/16          |
|   | $\mathbb{R}$ | $\mathbb{R}^2$ | $\mathbb{R}^2$ | $\mathbb{R}^2$ | a $4d\ pp$ -wave manifold                      | 1/16          |

## The product manifold

$$M_0 \times M_1 \times M_2 \times M_3 \times M_4 \times M_5 \times M_6,$$

$$d_0 = 3$$
,  $d_1 = d_2 = d_4 = d_5 = d_6 = 1$  and  $d_3 = 3$ .

The solution reads

$$\begin{split} g &= H_1^{1/3} H_2^{1/3} H_3^{2/3} \Big\{ g^0 + H_1^{-1} g^1 + H_2^{-1} g^2 + H_3^{-1} g^3 + H_2^{-1} H_3^{-1} g^4 + \\ &\qquad \qquad H_1^{-1} H_3^{-1} g^5 + H_1^{-1} H_2^{-1} H_3^{-1} g^6 \Big\}, \end{split}$$

$$F = c_1 dH_1^{-1} \wedge \tau_1 \wedge \tau_5 \wedge \tau_6 + c_2 dH_2^{-1} \wedge \tau_2 \wedge \tau_4 \wedge \tau_6 + c_3(*_0 dH_3) \wedge \tau_1 \wedge \tau_2,$$



#### The set of $\Gamma$ -matrices

$$\begin{split} (\hat{\Gamma}^A) &= (\hat{\Gamma}^{a_0}_{(0)} \otimes 1 \otimes 1 \otimes \mathbf{1} \otimes \mathbf{1}_2 \otimes 1 \otimes 1 \otimes 1 \otimes \sigma_3 \otimes \mathbf{1}_2 \otimes \mathbf{1}_2, \\ \mathbf{1}_2 \otimes 1 \otimes 1 \otimes \mathbf{1}_2 \otimes 1 \otimes 1 \otimes 1 \otimes 1 \otimes \sigma_1 \otimes \mathbf{1}_2 \otimes \mathbf{1}_2, \\ \mathbf{1}_2 \otimes 1 \otimes 1 \otimes \mathbf{1}_2 \otimes 1 \otimes 1 \otimes 1 \otimes \sigma_2 \otimes \sigma_3 \otimes \mathbf{1}_2, \\ \mathbf{1}_2 \otimes 1 \otimes 1 \otimes \hat{\Gamma}^{a_3}_{(3)} \otimes 1 \otimes 1 \otimes 1 \otimes \sigma_2 \otimes \sigma_1 \otimes \mathbf{1}_2, \\ \mathbf{1}_2 \otimes 1 \otimes 1 \otimes \mathbf{1} \otimes \mathbf{1}_2 \otimes 1 \otimes 1 \otimes 1 \otimes \sigma_2 \otimes \sigma_2 \otimes \sigma_3, \\ \mathbf{1}_2 \otimes 1 \otimes 1 \otimes \mathbf{1}_2 \otimes 1 \otimes 1 \otimes 1 \otimes \sigma_2 \otimes \sigma_2 \otimes \sigma_3, \\ \mathbf{1}_2 \otimes 1 \otimes 1 \otimes \mathbf{1}_2 \otimes 1 \otimes 1 \otimes 1 \otimes \sigma_2 \otimes \sigma_2 \otimes \sigma_2, \\ \mathbf{1}_2 \otimes 1 \otimes 1 \otimes 1 \otimes \mathbf{1}_2 \otimes 1 \otimes 1 \otimes 1 \otimes \sigma_2 \otimes \sigma_2 \otimes \sigma_2. \end{split}$$

$$\hat{\Gamma}_{(0)} = \hat{\Gamma}_{(0)}^{1_0} \hat{\Gamma}_{(0)}^{2_0} \hat{\Gamma}_{(0)}^{3_0}, \quad \hat{\Gamma}_{(3)} = \hat{\Gamma}_{(3)}^{1_3} \hat{\Gamma}_{(3)}^{2_3} \hat{\Gamma}_{(3)}^{3_3}$$

$$(\hat{\Gamma}_{(i)}^{a_i}) = (\sigma_1, \sigma_2, \sigma_3), \quad \hat{\Gamma}_{(i)} = i\mathbf{1}_2, \quad i = 0, 6$$

Introduction

$$\eta = \eta_0(x) \otimes \eta_1(y_1) \otimes \eta_2(y_2) \otimes \eta_3(y_3) \otimes \eta_4(y_4) \otimes \eta_5(y_5) \otimes \eta_6(y_6) \otimes \chi,$$

where  $\eta_i = \eta_i(y_i)$  is a 1-component spinor on  $M_i$ , i = 1, 2, 4, 5, 6,  $\eta_0 = \eta_0(x)$ is a 2-component spinor on  $M_0$ ,  $\eta_3 = \eta_3(y_3)$  is a 2-component spinor on  $M_3$ and  $\chi$  belongs to  $V = \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$ . The covariant derivatives  $\bar{D}_{m_s}$  act on  $\eta$ as follows

$$\bar{D}_{m_0} \eta = \left( D_{m_0}^{(0)} \eta_0 \right) \otimes \eta_1 \otimes \eta_2 \otimes \eta_3 \otimes \eta_4 \otimes \eta_5 \otimes \eta_6 \otimes \chi,$$

$$\dots$$

$$\bar{D}_{m_3} \eta = \eta_0 \otimes \eta_1 \otimes \eta_2 \otimes \left( D_{m_3}^{(3)} \eta_3 \right) \otimes \eta_4 \otimes \eta_5 \otimes \eta_6 \otimes \chi,$$

$$\dots$$

$$\bar{D}_{m_6} \eta = \eta_0 \otimes \eta_1 \otimes \eta_2 \otimes \eta_3 \otimes \eta_4 \otimes \eta_5 \otimes \left( D_{m_6}^{(6)} \eta_6 \right) \otimes \chi,$$

where

$$\bar{D}_{m_0} = \partial_{m_0} + \frac{1}{4} \omega_{a_0 b_0 m_0}^{(0)} (\hat{\Gamma}_{(0)}^{a_0} \hat{\Gamma}_{(0)}^{b_0} \otimes 1 \otimes 1 \otimes \mathbf{1}_2 \otimes 1 \otimes 1 \otimes 1 \otimes \mathbf{1}_2 \otimes \mathbf{1}_2 \otimes \mathbf{1}_2),$$

$$\bar{D}_{m_3} = \partial_{m_3} + \frac{1}{4} \omega_{a_3 b_3 m_3}^{(3)} (\mathbf{1}_2 \otimes 1 \otimes 1 \otimes \hat{\Gamma}_{(3)}^{a_3} \hat{\Gamma}_{(3)}^{b_3} \otimes 1 \otimes 1 \otimes 1 \otimes \mathbf{1}_2 \otimes \mathbf{1}_2 \otimes \mathbf{1}_2).$$

## The operators corresponding to the M2-branes and the M5-brane

$$\hat{\Gamma}_{[s]} = \hat{\Gamma}^{1_1} \hat{\Gamma}^{1_5} \hat{\Gamma}^{1_6} = -\mathbf{1}_2 \otimes 1 \otimes 1 \otimes 1_2 \otimes 1 \otimes 1 \otimes 1 \otimes B_1,$$

for  $s = I_1$ ,

$$\hat{\Gamma}_{[s]} = \hat{\Gamma}^{1_2} \hat{\Gamma}^{1_4} \hat{\Gamma}^{1_6} = -\mathbf{1}_2 \otimes 1 \otimes 1 \otimes 1_2 \otimes 1 \otimes 1 \otimes 1 \otimes B_2,$$

for  $s = I_2$ ,

$$\hat{\Gamma}_{[s]} = \hat{\Gamma}^{1_0} \hat{\Gamma}^{2_0} \hat{\Gamma}^{3_0} \hat{\Gamma}^{1_1} \hat{\Gamma}^{1_2} = i \hat{\Gamma}_{(0)} \otimes 1 \otimes 1,$$

for  $s = I_3$ .

 $B_s$  are self-adjoint commuting idempotent operators acting on  $V = \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$ 

$$B_1 = \sigma_1 \otimes \mathbf{1}_2 \otimes \sigma_3, \quad B_2 = \sigma_2 \otimes \sigma_3 \otimes \sigma_1, \quad B_3 = \mathbf{1}_2 \otimes \sigma_3 \otimes \mathbf{1}_2.$$

$$\varepsilon = H_1^{-1/6} H_2^{-1/6} H_3^{-1/12} \eta_0(x) \otimes \eta_1 \otimes \eta_2 \otimes \eta_3(y_3) \otimes \eta_4 \otimes \eta_5 \otimes \eta_6 \otimes \psi_{\varepsilon_1, \varepsilon_2, \varepsilon_3},$$

where  $\eta_0(x)$  and  $\eta_3(y_3)$  are parallel spinors defined on  $M_0$  and  $M_3$ , respectively,  $\eta_i$  is a constant 1-dimensional spinor on  $M_i$ , i = 1, 2, 4, 5, 6.

How does it work?

### The number of preserved SUSY

Introduction

$$\mathcal{N} = n_0 n_3 / 32$$

 $-\varepsilon_s=c_s$ .

where  $n_i$  is the number of parallel spinors on the 3-dimensional manifolds  $M_i$ , j = 0, 3.

| M | $M_0$          | $M_1$        | $M_2$        | $M_3$          | $M_4$        | $M_5$        | $M_6$        | $\mathcal{N}$ |
|---|----------------|--------------|--------------|----------------|--------------|--------------|--------------|---------------|
|   | $\mathbb{R}^3$ | $\mathbb{R}$ | $\mathbb{R}$ | $\mathbb{R}^3$ | $\mathbb{R}$ | $\mathbb{R}$ | $\mathbb{R}$ | 1/8           |

## The product of manifolds

$$M_0 \times M_1 \times M_2 \times M_3 \times M_4 \times M_5$$

$$d_0 = d_2 = d_3 = d_4 = d_5 = 2$$
 in  $d_1 = 1$ .

The solution

$$g = H_1^{1/3} H_2^{2/3} H_3^{2/3} \Big\{ \hat{g}^0 + H_1^{-1} \hat{g}^1 + H_2^{-1} \hat{g}^2 + H_3^{-1} \hat{g}^3 + H_2^{-1} H_3^{-1} \hat{g}^4 + H_1^{-1} H_2^{-1} H_3^{-1} \hat{g}^5 \Big\},$$

 $F = c_1 dH_1^{-1} \wedge \hat{\tau}_1 \wedge \hat{\tau}_5 + c_2 (*_0 dH_2) \wedge \hat{\tau}_1 \wedge \hat{\tau}_3 + c_3 (*_0 dH_3) \wedge \hat{\tau}_1 \wedge \hat{\tau}_2,$   $c_1^2 = c_2^2 = c_3^2 = 1. \ g^i \ (i = 0, 1, 2, 3, 4) \ \text{have Euclidean signatures} \ g^5 \ \text{has the signature} \ (-, +).$ 

Conclusions

## $M2 \cap M5 \cap M5$

#### $\Gamma$ -matrices

$$\hat{\Gamma}_{(5)} = \hat{\Gamma}_{(5)}^{1_5} \hat{\Gamma}_{(5)}^{2_5}, \quad \hat{\Gamma}_{(i)} = \hat{\Gamma}_{(i)}^{1_i} \hat{\Gamma}_{(i)}^{2_i},$$

satisy

$$(\hat{\Gamma}_{(i)})^2 = -\mathbf{1}_2, \quad (\hat{\Gamma}_{(5)})^2 = \mathbf{1}_2, \quad i = 0, 2, 3, 4.$$

$$\eta = \eta_0(x) \otimes \eta_1 \otimes \eta_2(y_2) \otimes \eta_3(y_3) \otimes \eta_4(y_4) \otimes \eta_5(y_5)$$

where  $\eta_i = \eta_i(y_i)$  is a 2-component spinor on  $M_i$ ,  $i = 0, 2, 3, 4, 5, \eta_1$  is a 1-component spinor on  $M_1$ .

#### $M2 \cap M5 \cap M5$

The operator  $ar{D}_{m_i}^{(i)}$  acts on  $\eta$  as

$$\bar{D}_{m_i}^{(i)}\eta = \ldots \otimes \eta_{i-1} \otimes \left(D_{m_i}^{(i)}\eta_i\right) \otimes \eta_{i+1} \otimes \ldots$$

#### The chirality operators

$$\begin{split} \hat{\Gamma}_{[s]} &= \hat{\Gamma}^{1_1} \hat{\Gamma}^{1_3} \hat{\Gamma}^{2_3} = \hat{\Gamma}_{(0)} \otimes 1 \otimes \hat{\Gamma}_{(2)} \otimes \hat{\Gamma}_{(3)} \otimes \hat{\Gamma}_{(4)} \otimes \mathbf{1}_2, \quad \text{for} \quad s = I_1, \\ \hat{\Gamma}_{[s]} &= \hat{\Gamma}^{1_0} \hat{\Gamma}^{2_0} \hat{\Gamma}^{1_1} \hat{\Gamma}^{1_3} \hat{\Gamma}^{2_3} = \mathbf{1}_2 \otimes 1 \otimes \hat{\Gamma}_{(2)} \otimes \mathbf{1}_2 \otimes \hat{\Gamma}_{(4)} \otimes \hat{\Gamma}_{(5)}, \quad \text{for} \quad s = I_2, \\ \hat{\Gamma}_{[s]} &= \hat{\Gamma}^{1_0} \hat{\Gamma}^{2_0} \hat{\Gamma}^{1_1} \hat{\Gamma}^{1_2} \hat{\Gamma}^{2_2} = \mathbf{1}_2 \otimes 1 \otimes \mathbf{1}_2 \otimes \hat{\Gamma}_{(3)} \otimes \hat{\Gamma}_{(4)} \otimes \hat{\Gamma}_{(5)}, \quad \text{for} \quad s = I_3. \end{split}$$

#### The restrictions are satisfied if

$$\begin{split} \hat{\Gamma}_{(3)}\eta_3 &= c_{(3)}\eta_3, \qquad c_{(3)}^2 = 1, \\ \hat{\Gamma}_{(j)}\eta_j &= c_{(j)}\eta_j, \qquad c_{(j)}^2 = -1, \quad j = 0, 2, 4, 5 \\ c_{(0)}c_{(2)}c_{(3)}c_{(4)} &= c_1, \quad c_{(2)}c_{(4)}c_{(5)} = c_2, \quad c_{(3)}c_{(4)}c_{(5)} = c_3. \end{split}$$

## $M2 \cap M5 \cap M5$

#### The solution to SUSY equations

$$\varepsilon = H_1^{-1/6} H_2^{-1/12} H_3^{-1/12} \eta_0(x) \otimes \eta_1 \otimes \eta_2(y_2) \otimes \eta_2(y_3) \otimes \eta_4(y_4) \otimes \eta_5(y_5),$$

where  $\eta_i, i = 0, 2, 3, 4, 5$  are chiral parallel spinors defined on  $M_i, \eta_1$  is constant.

#### The number of linear independent solutions to $(D_M + B_m)\varepsilon = 0$

$$N = 32\mathcal{N} = \sum_{\substack{\varepsilon_2 = \pm 1, \\ \varepsilon_4 = \pm 1}} n_0(i\varepsilon_4 c_1 c_2 c_3) n_2(i\varepsilon_2) n_3(i\varepsilon_2 c_2 c_3) n_4(i\varepsilon_4) n_5(-\varepsilon_2 \varepsilon_4 c_2),$$

where  $n_j(c_j)$  is the number of chiral parallel spinors on  $M_j$ , j=0,2,3,4,5,  $\varepsilon_2=\pm 1,\, \varepsilon_4=\pm 1.$ 

| M | $M_0$          | $M_1$        | $M_2$          | $M_3$          | $M_4$          | $M_5$                      | $\mathcal{N}$ |
|---|----------------|--------------|----------------|----------------|----------------|----------------------------|---------------|
|   | $\mathbb{R}^2$ | $\mathbb{R}$ | $\mathbb{R}^2$ | $\mathbb{R}^2$ | $\mathbb{R}^2$ | $\mathbb{R}^{(1,1)}$       | 1/8           |
|   | $\mathbb{R}^2$ | $\mathbb{R}$ | $\mathbb{R}^2$ | $\mathbb{R}^2$ | $\mathbb{R}^2$ | $\mathbb{R}^{(1,1)}_*/Z_2$ | 1/16          |

# Introduction Outline

- - 10D and 11D Supergravity
  - P-brane Solution
  - The Supersymmetry Algebra and BPS Bound
- - Generalization to curved manifolds
  - Multiple Configurations
  - Configurations on Ricci-flat factor spaces
  - Killing Spinor Equations
  - The supersymmetry conditions
- - Pure electric background
  - Pure magnetic background
  - The intersection of two electric and one magnetic branes
  - The intersection of one electric and two magnetic branes
- Conclusions

#### Conclusions

Introduction

- We have obtained relations for computing the amount of preserved SUSY
  - M2-/M5-branes defined on product spaces including Ricci-flat manifolds and flat spaces with non-trivial topology.
  - All possible orthogonal intersections of two M-branes:  $M2 \cap M2$ ,  $M2 \cap M5$ .  $M5 \cap M5$ .
  - All possible triple intersections:  $M2 \cap M2 \cap M2$ ,  $M5 \cap M5 \cap M5$  (three configurations),  $M2 \cap M5 \cap M5$  (two configurations),  $M2 \cap M2 \cap M5$ .

#### Conclusions

Introduction

- We have obtained relations for computing the amount of preserved SUSY
  - M2-/M5-branes defined on product spaces including Ricci-flat manifolds and flat spaces with non-trivial topology.
  - All possible orthogonal intersections of two M-branes:  $M2 \cap M2$ ,  $M2 \cap M5$ .  $M5 \cap M5$ .
  - All possible triple intersections:  $M2 \cap M2 \cap M2$ ,  $M5 \cap M5 \cap M5$  (three configurations),  $M2 \cap M5 \cap M5$  (two configurations),  $M2 \cap M2 \cap M5$ .
- The amount of preserved supersymmetries for the model defined on the product of factor spaces including Ricci-flat manifolds or manifolds with non trivial topology is less than for the case of the product of flat spaces.

#### Conclusions

Introduction

- We have obtained relations for computing the amount of preserved SUSY
  - M2-/M5-branes defined on product spaces including Ricci-flat manifolds and flat spaces with non-trivial topology.
  - All possible orthogonal intersections of two M-branes:  $M2 \cap M2$ ,  $M2 \cap M5$ .  $M5 \cap M5$ .
  - All possible triple intersections:  $M2 \cap M2 \cap M2$ ,  $M5 \cap M5 \cap M5$  (three configurations),  $M2 \cap M5 \cap M5$  (two configurations),  $M2 \cap M2 \cap M5$ .
- The amount of preserved supersymmetries for the model defined on the product of factor spaces including Ricci-flat manifolds or manifolds with non trivial topology is less than for the case of the product of flat spaces.
- For the intersections  $M2 \cap M2 \cap M2$ ,  $M5 \cap M5 \cap M5$  we have presented examples where  $\mathcal{N}$  depend on upon brane sign factors  $c_s = \pm 1$ .



V. D. Ivashchuk, More M-branes on product of Ricci-flat manifolds, IJGMMP 9 8 (2012); [arXiv:1107.4089v3 [hep-th]].



A.A. Golubtsova and V.D. Ivashchuk, Triple M-brane configurations and preserved supersymmetries, Nucl. Phys. B872, 289-312(2013).

Introduction

THANK YOU FOR YOUR ATTENTION!

Conclusions