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Introduction

Table: The correspondence between the string theories, M-theory and the

supergravity theories

Quantum theory

Effective theory

M-theory

D =11, N =1 supergravity

Type A string theory

Non-chiral D = 10, N/ = 2 llA supergravity

Type |IB string theory

Chiral D =10, N' = 2 |IB supergravity

Type | string theory

D =10, N =1 supergravity + Yang Mills
with SO(32) gauge group

Heterotic SO(32) string theory

D =10, N =1 supergravity + Yang Mills
with SO(32) gauge group

Heterotic Es x Eg string theory

D =10, N =1 supergravity + Yang Mills
with Es x Eg gauge group
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10D and 11D Supergravity

11 dimensional A/ = 1 SUGRA

suD:/d“z |g\{R[g] 5 } /A ANEAF,

F = dA = %FNPQRCIZN A dZP AN dZQ N dZR

where

is the 4-form field strength of the 3-form potential A.
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10D and 11D Supergravity

11 dimensional A/ = 1 SUGRA

_ 11 . 1 -5 _1 A A .
san/d . |g\{R[g] 2(4!)F} 6/A/\F/\F,

F=dA=

where "
EFNPQRdZN AdzE A dz9 A d2R
is the 4-form field strength of the 3-form potential A.

10 dimensional A/ = 2 SUGRA

| 5\

_ 1
Srra,sF = /dml“\/ |9|{€ 2 [R[g] +46u§08u<;0 - 2(31) |F(3)|2} -

1 s 1 = 1/
—|Fip |2 — ——|F, }—f As A Fay A Fra,
2(2!)\ @ 2(4!)| @] 5 | A2 A Fy AFy

where ¢ is the dilaton, F(3y = dAs is the field strength of the NS-NS two form,
F(3)y = dA; is the field strength of the R-R 1-form, Fi4) = dAs,
F(4) = dAs + F(3) A A are the Ramond-Ramond field strengths.

\
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the transverse space  the worldvolume

6/36



Introduction Preserved Supersymmetries How does it work? Conclusions

P-brane Solution

Ansatz for the metric

My X M
~~

the transverse space  the worldvolume

SO(D —p — 1) x (Poincaré, 1))

6/36



Introduction
L]

P-brane Solution

Ansatz for the metric

My X M
~~

the transverse space  the worldvolume

SO(D —p — 1) x (Poincaré, 1))

g= 6245(56)90 + eZ'y(:c)gl. J

The harmonic function

A p-brane solution depends on a harmonic function H
V?H =0,

where (V?) is the Laplacian on the transverse space.
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The SUSY algebra

1
I?(CVFHIH-MP)OCBZ/—L1 P‘p7

ZP1tr = Qi /dX“1 AdXM2 AL ANdXHP

is the topological charge, C is the charge conjugation matrix, X* are spacetime
coordinates and T" is an antisymmetric combination of Gamma matrices.

{Qa, Q8} = Zap

| \

The BPS bound

N
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T = Q)
11D SUGRA: M2-brane, M5-brane, KK monopole, M9-brane

N

7/36



Introduction

The SUSY algebra

1
E(CFﬂlu-lﬁp)aﬁzul ”pv

ZMWMH:Q@K/dxﬂlAdX“ZA”.AdXM

is the topological charge, C' is the charge conjugation matrix, X* are spacetime
coordinates and T" is an antisymmetric combination of Gamma matrices.

{QQ7Q5} = Zaﬁ

The BPS bound

| A

T =Qu)

11D SUGRA: M2-brane, M5-brane, KK monopole, M9-brane
10D IIA SUGRA: DO-brane, D2-brane, D4-brane, D6-brane, D8-brane,
F-string, NS5, NS9, KK monopole

N

7/36



Introduction

[ ]
The SUSY algebra

1
E(CFﬂlu-lﬁp)aﬁzul ”pv

ZMWMH:Q@K/dxﬂlAdX“ZA”.AdXM
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coordinates and T" is an antisymmetric combination of Gamma matrices.

{QQ7Q5} = Zaﬁ

The BPS bound

| A

T =Qu)

11D SUGRA: M2-brane, M5-brane, KK monopole, M9-brane

10D IIA SUGRA: DO-brane, D2-brane, D4-brane, D6-brane, D8-brane,
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N
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© Preserved Supersymmetries
@ Generalization to curved manifolds
@ Multiple Configurations
@ Configurations on Ricci-flat factor spaces
o Killing Spinor Equations
@ The supersymmetry conditions
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The amount of preserved supersymmetries

N =n/v,

where v — a number of maximal supersymmetries of the system

9/36



Preserved Supersymmetries

The amount of preserved supersymmetries
N =n/v,
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11D SUGRA

on=0,124,56,8,16, v = 32.
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The amount of preserved supersymmetries

N =n/v,

where v — a number of maximal supersymmetries of the system

11D SUGRA
on=0,124586,8, 16, v = 32.
@ Basic M2- and M5- branes solutions preserve 1/2 SUSY

@ M-brane configurations on flat factor spaces

| A\

Mo x My X ... X M,,, M;=R"
N=27% k=1,2,345

@ E. Bergshoeff, M. de Roo, et al., Multiple Intersections of D-branes and
M-branes, Class. Quantum Grav., 14, 2757(1997).
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Generalization to curved manifolds

@ The generalization of worldvolume manifold to Ricci-flat manifold
admitting Killing spinors

ﬁ M. J. Duff, H. Lii, C. N. Pope and E. Sezgin, Phys. Lett. B 371,
(1996) 206

ﬁ D. R. Brecher and M. J. Perry, Nucl.Phys. B 566, 51-172 (2000).

10/36



Introduction Preserved Supersymmetries How does it work? Conclusions
000 @0000 0000000000000 00000

Generalization to curved manifolds

@ The generalization of worldvolume manifold to Ricci-flat manifold
admitting Killing spinors

ﬁ M. J. Duff, H. Lii, C. N. Pope and E. Sezgin, Phys. Lett. B 371,
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@ D. R. Brecher and M. J. Perry, Nucl.Phys. B 566, 51-172 (2000).
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Orthogonally intersecting branes

(p+ q1) — brane :
(p+ q2) — brane:
(p + g3) — brane :

How does it work?
000000000000000000

Conclusions
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Orthogonally intersecting branes

p+1
(p+q)—brane: % .. ¢
(p+gq2) —brane: y . .. x
(p+g3)—brane: .. . x
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Orthogonally intersecting branes

(p+q)—brane: 5. .T% -
(p+g2) —brane: y ... x i X X —e
(p+g3) —brane: ... ¥
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Orthogonally intersecting branes
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(p+g3) —brane: ... ¥

11/36



Preserved Supersymmetries
o

Orthogonally intersecting branes

(p+aq) —brane: ¥
(p+gq2)—brane: . .. x ... _  X...X —..—  _..._
(p+g3) —brane: ... ¥

The three branes have

o the (p + 1)-dimensional common worldvolume space

o the relative transverse (g1 + g2 + g3)-dimensional space

o the totally transverse D-dimensional space.
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Configurations on Ricci-flat factor spaces

The product of manifolds
M = My x My X ...x M,

g= 627(95)90 + Z e%i(’”)gi‘
a=1

The diagonalizing D-beins

A B
gMN = TABENMEN,

with nap = nAB =nadaB, 75 = e}?/,dxM

The field strength for composite intersecting branes

m
F = Z CodFars
s=1

where F; is an elementary 4-form corresponding to s-th p-brane, ¢ = +1 is the
sign factor of s-th p -brane, which defines the orientation of the worldvolume.
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Preserved Supersymmetries
o

SUSY equations

0 = (Dym+ Bm)e =0, where Dy = 0n + iwABMf‘Af‘B,
€ is a SUSY transformation parameter, wapa is a spin connection.
T o I = 277‘431327

-1
288
and I'as are world gamma matrices satisfying Clifford algebra relations

B (PMFNFPFQPR . 126A]\2PPFQFR) FNPOR

Car = epiTa, Tuln +TnTar = 29w 132
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Preserved Supersymmetries
o

SUSY equations

Killing Spinor Equations

1 oy
51/]2 (DM+BM)€:0, where Dy :8M+ZwABMFAFB,

€ is a SUSY transformation parameter, wapa is a spin connection.
T o I = 2?7ABIL>,27

1

- 288

and I'as are world gamma matrices satisfying Clifford algebra relations

By (PMFNFPFQPR - 1261\]\/}I‘PFQFR) s

Car = epiTa, Tuln +TnTar = 29w 132

The number of unbroken SUSY

| N

N = N/32,

where N is the dimension of the linear space of solutions to differential
equation (Das + Bar)e = 0.

A\
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(]

The chirality conditions

The solutions admit spinors in the form

.= (H Hs—l/6> ( H Hs_1/12> 7
sESe SESm

with the parallel spinor n

Din=0, Dp =0m, +wl) 1=0,...,n, (1)

arbymy?

satisfying brane chirality conditions

F[Sm EXNE

v

The chirality operators

f‘[S] =TNp4204 for se S,

fiy = DBPBPBSPBARBs  for e 8,

(f[s])Q =1

14 /36



How does it work?

Outline

© How does it work?
@ Pure electric background
@ Pure magnetic background
@ The intersection of two electric and one magnetic branes
@ The intersection of one electric and two magnetic branes
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How does it work?
@000

M2 M2n0 M2

The product of manifolds

My x My x Ma x Ms x My
do:4,d1:d2:d3:22ndd4:1

g=H"H)*H;*{§° + H{ *§" + H; '§* + H; '§° + H; "Hy "H; '§"},
F =cidHT ' A7y A7y + codHy ' A 7o A7y + cadHz " A 73 A 7,

where ¢? = ¢2 = ¢2 = 1. The metrics ¢, i = 0, 1,2, 3, have Euclidean
signatures and ¢g* = —dt ® dt.
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M2 M2n0 M2

The set of gamma matrices

Ty ® 1. ® 15 ® 1. ® I,
Ly ® I ©® 1.n ® 1. ® 1,
= itw © T © f“(?) ® 1., ® 1,
f'og ® Ty ® T © TF o 1,
f‘(0) ® 12‘(1) ® f‘(2) ® f(3) ® 1),
where X A A A -
Loy =T - IS, T =TElE,
obey
(C)? = 14, ()’ =-12, i=1,2,3. )

The monomial spinor reads

n=mno(z) @ m(y1) ®n2(y2) @ n3(ys) @ na(ya),

where 1o = 1m0 (z) is 4-component spinor on Mo, 1; = 1;(y;) is 2-component
spinor on M;, i = 1,2,3, and 14 = na(y4) is 1-component spinor on M.

17 /36
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[e]e] o]

M2\ M2\ M2

DWn = (D) @m ®@n: @ns @na,  Di)n =10 ® (Dig)m) @12 ® 03 @ 1a,
D(2)17 =M (Dggm) ® N3 @ N4, D$s377 =@M AN ® (Dﬁs’;na) ® N4,
Din)n =no@m Xn2@n3 & (D7(’n,47]4)
where Dﬁfl)z correspond to M;, i =0,1,2,3. Here Dﬁ,ﬂ = Omy, -
IA‘[s] =it = —f(o) Rl ® f‘(2) ® f(g) ®1, for s=1,
[y =020 = Tyl @1lolg®l, for s=I,

F[ 1= f‘ 3F23F14 = —f(o) ® f(l) ® f‘(g) ®R1a®1, for s=1Is.
The chirality restrictions are satisfied if

L0y = co)mo, oy = 1,

- 2

Lihyny = cgymys 5 = —1L
j=1,2,3 with

C(0) = ci1c2C3, c(y) = =Lic;.

18 /36
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How does it work?
[e]e]e] ]

The following solution to SUSY equations corresponding to the field

configuration from

e=Hy °H, P HT Y oo () @ mi(y1) © m2(y2) @ 13 (ys) @ na.

Here n;, i = 0,1,2,3, are chiral parallel spinors defined on M;, respectively
(D%Zm = 0), 14 is constant.

The number of linear independent solutions to (Das + Bm)e =0

N = 32N = ng(cicacs) Z n1 (icer)naz(icea)ns(ices),
c===11

where n;(c(;y) is the number of chiral parallel spinors on M, 7 =0, 1,2, 3.

M Mo M1 M2 M3 N = 1/16n0(c102C3)
R? R? | R? | R? 1/8
K3=CY, | R? RZ | R? 1/8 for cicacs =1 / 0 for cicacs = —1
Ci/Zz RQ RQ RQ 1/8 fOF C1C2C3 = 1 / 0 fOF C1C2C3 = -1

19/36
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00000

M50 M50 M5

The product manifold

Moy x My x My X Ms x My,
whered0:3,d1:d2:d3:d4:2.

- - — — — X X X X x X : Hy
. - — — X X — — X X X X : Ho
9= - — — X X X X - - x x : Hs.
M Y~ Y—~ Y~ ——~
Mo My Mo M3 My

The solutions for the metric and field strengths
g=HPHYPH P + Hy \Hy g+ HH g+ U H g
Hy'Hy 'Hy'g'y,
F = c1(x0dH1) A 71+ ca(*0dH2) A T2 + c3(*0dHs) A T3,

where ¢ =2 =2 = 1.
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How does it work?

[¢] lele]e}

The set of gamma matrices

l;(1) ®
a1

it ®
1. ®
1. ®

1. ®

RV X

I
1E))
%)

1.

1

b2 f(3) b
b2 f(3) b
® f(3) 02
® iy ®
® 1. ®

Here the operators f‘(i), i1 =1,2,3,4, are given by

Loy =TIy, Loy =30,

obey (F(i))

Dy =0131%, D=
E _127

(3)~ (3)
((0)* = 14,

I,
L,
L,
L,

Ie)

29, 73, fdy
L A i

with 7=1,2,3.

n=mno(z) ® m(y1) ®n2(y2) @ n3(ys) @ na(ya), J

where no(x) is a 1-component spinor on My, 7; = 1;(y;) is a 2-component
spinor on M;, i =1,2,3, na = n4(ya) is a 4-component spinor on Mjy.

21/36
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M50 M50 M5

The covariant derivatives can be written down as

1 S
Doy = Oy + —w'V) (1 @I ©Lel®1,

4 ajbymy ) ’
D _ 1 (2) a2 b2
Dmg — Umgy + Zwa2b2m2 (1 & 12 ® (2)" (2) ® 12 ® 14) ;
Doy = Oy + ~ ) 1911, o1
m3 — OUmg + iwalibsms ( ®12@12® 3)* 3) ® 4) ;

_ 1
Dm4 — Umy + *W(4)

4 agbgmy

ag b,
(1 ® 12 ®12 ® 12 ®F(£)F(i)) ’

where w(i)aéicq_ are components of the spin connection corresponding to the

manifold M;, D%)L is a covariant derivatives corresponding to M;, i = 1,2, 3,4,
Dimg = Omy and D) = 0,

g = DP2l20B0% 191 ;) @1, @1, @0y for s=1,
f‘[s] = f10f11f21f13f23 =1®1:® f(g) ®1s® f‘(4) for s= 1>,

>
=

Il

>

pliptiplep? — 1 91,81, ® e @Tw for s=1Is
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00080

The supersymmetry constraints

T'6yms = eymss C?j) =-1, j7=123,4,

and
C(1)C4) = €1, C(2)C4) = €2, €(3)C4) = C3-

3
_ 1
e=[1H: =@ my) @ne(y2) @ m2(ys) @ naya),
s=1

where 7;, i = 1,2, 3,4 are parallel spinors defined on M;, respectively.

C(1) = 7’L'61, C(2) = *7362, C3) = 7’L'63, Ca) = i,

C(l) = icl, C(z) = iCQ, C(3) = 7:C37 6(4) = —1.

The number of preserved supersymmetries

N = 32./\/ = nl(—icl)ng(—iCQ)ng(—i03)n4(i) =+ n1 (icl)ng (icz)ng(i03)n4(—i),

where n;(c;) is the number of chiral parallel spinors on Mj, j =1,2,3,4.
23/36



Exapmles

How does it work?
0000e

Let Mo =R and M; = Mz = M3 = R?. Then all n;(c) =1, j = 1,2,3, with

¢ = =4, and hence

N = 32N = n4(i) + n4(—i).

M [ My | My | My | Ms M, N
R | R? | R | R? RS 1/8
R | R? | R? | R? (Ri1/Zs) x R? 1/16
R | R? | R* | R? | a 4d pp-wave manifold | 1/16

(2)
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0000

M2NM2N0 M5

The product manifold

M0><M1><M2><M3><M4><M5><M6,
d0=3,d1=d2=d4:d5:d6=1andd3:3.

— — — X — — — — — X X : H1

_ _ _ — X - - = X — X 1 Ho

9= - - - _ - X X X X X X : Hs.
————— o e W
My My Moy M3 My Ms Mg

The solution reads

9= Hll/3H§/3H§/3{go +Hy'g'+Hy'g* + Hy 'g® + Hy 'Hy 'g* +
H1—1H3—lg5 +H1—1H2—1H3—lgﬁ
F = CldHl_l ANT1 NT5 N\ Tg —|—02dH2_1 ANToe NTa N\ Te +(33(>)<0ng) ANT1 N\ Ta,

25/36
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Oe000

M2NM2N0 M5

The set of I'-matrices

=9 010101318101 00 31 ® 1,
LRIFIRKLEIRI®1I®o ®1:® 1,
LRIFIRKLEIRI®1IROo: ®os ® 1,

LEIRIEIE ®I’I®IRnR o ®l;,
1,12191: 811801802 ®02 ® 03,
1LRIEIRLEIRI®1IYo: Qo ® o1,
LERIIFLEIIRYIR T ® o2 ® 02).

[ - 25 ™3
Loy =T @THIG: Te =THTHrE

(f((lf)) = (01,02,03), f(i) =1ily, 9=0,6 J
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How does it work?
00800

M2NM2N0 M5

n=mno(z) ®m(y1) ®n2(y2) @ n3(y3) @ na(ya) @ n5(ys) ® n6(ys) ® X» J

where 1n; = 1;(y;) is a 1-component spinor on M;, i = 1,2,4,5,6, no = no(x)
is a 2-component spinor on Mo, 13 = 13(y3) is a 2-component spinor on M3
and x belongs to V = C? ® C? ® C2. The covariant derivatives D,,, act on 7
as follows

Dimgn = (Dmono) QM ON2 QN3N N5 RN @ X,
Dz =m0@m @2 ® (foisns) @M1 @ N5 QN6 D X,

D =m0 @M @m2 @13 @4 @15 @ (D,(nﬁne) ® X,
where

_ 1 a
Ding = Omg + 0\ me 0T 1010101010101 @1 @ 1,),

4 aobomo

_ 1
Dm3 = 8m3 + *W(S)

4 azbzmsa

101elelEl; 0le10l®l®l®ls).

27 /36



How does it work?
000e0

M2 M20 M5

The operators corresponding to the M2-branes and the M5-brane

[ =TI =-1,918101.0181®1® B,
for s = 1,
[ =124l - _1,910191L 81818 1® B,
for s = I,

D = D202 = i1, 191811801811 B,

for s = I5.

B:; are self-adjoint commuting idempotent operators acting on
V=CeCxC?

Bi=01®12®03, By=02003®01, B3=1®03® 1.

e=H; VP H;VOHTY Pio(a) @ m @12 @ 13(y3) @ na @ 15 @ 16 @ Pey ege55

where no(x) and ns(ys) are parallel spinors defined on My and M3,
respectively, 7; is a constant 1-dimensional spinor on M;, i = 1,2,4,5,6.
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How does it work?
Q000e

— &5 = cs. (3)

The number of preserved SUSY

/\/: n0n3/32

where n; is the number of parallel spinors on the 3-dimensional manifolds Mj,
j=20,3.

M| My [ My | Mo [ My | My | Ms | Mg | N
R R [R[R ][R | R | R [1/8

20/36



How does it work?
@000

M2N M50 M5

The product of manifolds

]\J()><J\41><]\42><]\43><]\44><]\457
d0:d2=d3:d4:d5=2md1=1.

- = X - - - - — - X X : Hy
- = — X X — — X X X X : Ho
9= - - — - — X X X X X X . Hs.
N N Y~ Y~ Y~ Y—~—~
Mo My My M3 My Ms

The solution
g=HPHPH 0+ g+ Hy '+ By Hy H g
i Hy ' H '),
F =cidH; ' A7 A 75 4 ca(xodH) A 71 A 73 4 ca(xodHz) A 71 A 7o,

Ad=cd3=c3=1. ¢ (i=0,1,2,3,4) have Euclidean signatures ¢g° has the
signature (—, +).
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How does it work?

0000
M2N M50 M5

Ty ® 1 ® 1, ® 1m ® 1L ® I,
Py ® 1 ® TI'ey ® Iz ® Ty ® I
(1) = Lo ® 1 @ I'g) @ 12 ®© 1. ® 1
B iF(O) ® 1 ® F(g) ® F((l;) ® 1, ® 1,
'op ® 1 ® I'p ® I'g @ I'l ® 12
F'gpy ® 1 ® I ® I'gp ® 'y ® P{‘g”)%

- ~ls 12 - 1l 125

L) = F(§>F(§)v IO F(i)r(i)’

satisy

Tw)?=-12, ([)> =12, i=0,23,4.

n=no(z) ®m ®n2(y2) ®n3(y3) ® Na(ys) @ N5(ys)

where 1; = 1;(y;) is a 2-component spinor on M;, i = 0,2,3,4,5, 1 is a
1-component spinor on Mj.
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How does it work?
[e]e] e}

M2N M50 M5
The operator Dﬁ,ﬁ) acts on 7 as

ngl)m =...0MNi-1® (Difl)l7h> ®Nit1 ® ...

The chirality operators

f[s] = f‘llfl3f‘23 = f‘(()) ®R1R f‘(z) (4 f(g) %) f(4) (%) 12, for s= Il,
f[s] = f10f20f11f13f23 =101 f‘(z) Rl ® f(4) %4 f(5), for s= 12,
f[s] = f\lof\%f\hf\lzf\% =1LR11:Q f(3) (024 f(4) (2 f(5), for s= Is.

The restrictions are satisfied if

D =cam, =1

L'yns = ey, C?j) =-1, 7=0,2,4,5

CO)C@)CEB)CMU) = €, C2)C@)E(5) = €2, C(3)C4)C(5) = C3-
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M2N M50 M5

How does it work?

oooe

The solution to SUSY equations

e=H YV H; P HTY Pio(z) @ m @ 12(y2) © 12(ys) © 14 (ya) @ 715 (ys),

where 7;, i = 0,2, 3, 4,5 are chiral parallel spinors defined on M;, n; is

constant.

The number of linear independent solutions to (Das + Bm)e =0

N = 32N: Z 7’L0(’i€4616263)n2(’i&g)ng(iEQCQCg)n4(’i€4)TL5(—525462),

eo==1,
gq==1

where n;(c;) is the number of chiral parallel spinors on M;, j =0,2,3,4,5,

€2 = *1, e4 = £1.

M| My | My [ Mo [ M [ My Ms N
RZ| R [R? | R | R | ROD 1/8
R | R | R? | R? | R?2 [ Rz, | 1/16
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Conclusions

Conclusions

@ We have obtained relations for computing the amount of preserved SUSY
e M2-/Mb5-branes defined on product spaces including Ricci-flat manifolds
and flat spaces with non-trivial topology.
o All possible orthogonal intersections of two M-branes: M2 N M2,
M2N M5, M50 M5.
o All possible triple intersections: M2 N M2N M2, M50 M5 N M5(three
configurations), M2 N M5 N M5 (two configurations), M2 N M2 N M5.
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Conclusions

Conclusions

@ We have obtained relations for computing the amount of preserved SUSY

e M2-/Mb5-branes defined on product spaces including Ricci-flat manifolds
and flat spaces with non-trivial topology.

o All possible orthogonal intersections of two M-branes: M2 N M2,
M2nN M5, M5nN M5.

o All possible triple intersections: M2 N M2N M2, M50 M5 N M5(three
configurations), M2 N M5 N M5 (two configurations), M2 N M2 N M5.

@ The amount of preserved supersymmetries for the model defined on the
product of factor spaces including Ricci-flat manifolds or manifolds with
non trivial topology is less than for the case of the product of flat spaces.
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Conclusions

Conclusions

@ We have obtained relations for computing the amount of preserved SUSY
e M2-/Mb5-branes defined on product spaces including Ricci-flat manifolds
and flat spaces with non-trivial topology.
o All possible orthogonal intersections of two M-branes: M2 N M2,
M2N M5, M50 M5.
o All possible triple intersections: M2 N M2N M2, M50 M5 N M5(three
configurations), M2 N M5 N M5 (two configurations), M2 N M2 N M5.
@ The amount of preserved supersymmetries for the model defined on the
product of factor spaces including Ricci-flat manifolds or manifolds with
non trivial topology is less than for the case of the product of flat spaces.

o For the intersections M2 N M2 N M2, M50 M50 M5 we have presented
examples where A depend on upon brane sign factors c; = +1.

@ V. D. Ivashchuk, More M-branes on product of Ricci-flat manifolds,
IJGMMP 9 8 (2012); [arXiv:1107.4089v3 [hep-th]].

@ A.A. Golubtsova and V.D. Ivashchuk, Triple M-brane configurations and
preserved supersymmetries, Nucl. Phys. B872, 289-312(2013).
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