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Standard Cosmology.

Immaginate la superficie di una

sfera
Sta N d d rd \ % 1 puntimi sulla superficie rappresentano le
CosmOIOgy IS feallzs:}:;'a si espande
Pased on the ..
cosmological BTN i Y.
- - pia distante da ogni altro puntino
prInCIPIe' di quanto esso lo fosse Iistante precedente
IHomogeneity: FATTORE di SCALA:
Le distanze sono
ISotrepy. funzioni del tempo

|



Evolution of the scale factor
without cosmological constant

5 10 15 20
L'evoluzione del fattore di scala predetta dalle equazioni

e e . . o . " [ tre possibili tre-spazi massimamente simmetrici.
di Einstein nei tre casi di curvatura negativa, nulla e positiva.




From 2001 we know that the Universe
IS spatially: flat (k=0) and that it is
dominated by dark energy.
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1st Stars
about 400 million yrs.

Contenuto dell'Universo al tempo attuale

Big Bang Expansion

13.7 billion years

Most probably there has been inflation




T he scalar fields drive inflation while
rolling down from a maximum to a
MINIMuUm

-

-

In questo esempio

il minimo
del potenziale
ézeroa ¢=38

-

Exponential expansion
during slow rolling

Fast rolling and exit from
inflation

* Oscillations and
reheating of the Universe



The isotropy and homogeneity
are proved by the CMB
SPECLrUM

) = Cosmic MICROWAVE BACKGROUND SPECTRUM FROM COBE
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L'Universo si ¢ espanso a partire da uno stato iniziale estremamente denso e caldissimo. Man mano che I'espansione

procede I'Universo si raffredda a causa del redshift cosmologico. La radiazione cosmica di fondo ¢ la maggiore
evidenza del Big Bang iniziale.






Noi viviamo qui

pariamo che

Eta della
radiazione

5 10 15 20 25 30)_’/35 _’.,mure
Eta della materia Eta dell' energia del vuoto 10
Equazione | TIPO DI FLUIDO ANDAMENTO
di stato della densita di energia
— 1 P ; cost
w = 3 Radiazione elettromagnetica o)
_ . . . . . . cost
w =0 Materia barionica visibile 2301
w =1 Campo scalare fast rolling —acgf;)
Energia Oscura,
w=—1 cioeé energia potenziale cost
del campo scalare slow rolling




The Friedman equations
govern this evolution

1 5. 2
~a’h? + gQn(h)

In general, also for
simple power like
potentials the
Friedman equations
. ) 1 are not integrable.
h+3Hh + — 0,20 (h Solutions are

8 known only
numerically.
Yet some new
results are now
obtained in gauged
supergravity....... !

where

a 2
H(t) = —ERkin. term = S
a 2

Is the Hubble function




Gauged and Ungauged
Supergravity

R 1
£ = |det ¢ [% — Zvu@bavﬂﬁbbhab(ﬁb) + 92V(¢’)

+ IMNas(¢) Fﬁ\yFZW]

1
5 ReNas (¢) iy FogetP?

Vud! = oud! + g AL ka(d)!

l

\
g = 0 UNGAUGED Gauging of isometries of the scalar
SUPERGRAVITY manifold




Non Isotropic Universes In
UNGAUGED SUPERGRAVITY

We saw what happens if: there s
ISotropy: !

Relaxing isotropy an entire new: world
off phenomena Opens up
In'a multidimensional world, as string

theory predicts, there is no isotropy.
among all dimensions!




Cosmic Billiards before 2003

A challenging phenomenon, was proposed, at the
, by a number of authors under

the name of . This proposal was a
development of the pioneering ideas of

, based on the of Einstein
equations. The Kasner solution corresponds to a regime,
where the scale factors of a D-dimensional universe have
an exponential behaviour . Einstein equations are simply
solved by imposing quadratic algebraic constraints on the
coefficients .



Some general considerations on
roots and gravity.......

String Theory implies D=10 space-time dimensions.

Hence a generalization of the standard cosmological metric is of the type:

9

2 2p; 2

dstop = —e%Tdr? + Y e?PiT dx;
1=1

In the absence of matter the conditions for this metric to be Einstein are;

are the coordinat®s of a ball

O 9
h . 7— p— . 7—— O movmq hn%@ Woa@stant
zil( ) zzlpz Z> Di

eIomty

What is the space where this fictitious ball moves



ANSWER:

The Cartan subalgebra of a rank 9 Lie algebra.

What is this rank 9 Lie algebra?

It is Ey , namely an affine extension of the Lie
algebra Eg



H;, H;| =0

H;, E°] = o B°

_EO‘, EP| = pots if a« + (B is a root
:EO‘, Eﬁ: =0 if a« 4+ B is not a root
o E_-O‘] —a- - H

(Oé, B) c 7 (Od, /8)
(3 8) & (,3 ﬁ)

IS @ root




Lie algebras are classified.......

by the properties of simple roots. For instance for A; we have O, O, , O3

such that........... _ _
It suffices to specify the scalar

prot ot i osieenierbets
2 -1 O
R\, aCc=| -1 2 -1
O -1 2

And all the roots are given

There is a simple way of
representing these scalar
products:Dynkin diagrams



Algebras of the type
. . .—. exist for any E

In D=3 we have E8

Then what do we have for
D=2 7 _

Theory indimension D=10-r+1




We have E, !

How come? More than 8 vectors cannot be fitted in an euclidean
space at the prescribed angles !

Yes! Euclidean!! Yet in a non euclidean space we can do that !!

Do you remember the condition on the exponent p, = (velocity of

the'ig'eba:) o (0 2 2 ... 2)
— T N2 — 2 0 2 ... 2
0= D4 K@j pjp@v)here_Kij —
. )L
\ 2 ... 2 2 0 )

If we diagonalize the matrix Kij we find the eigenvalues

~8,1,1,1,1,1,1,1
(ﬁ )

=

Here is the non-euclidean signature in the Cartan subalgebra of Eg. Itis an
infinite dimensional algebra ( = infinite number of roots!!)



Now let us Iintroduce also the

r00L1S......

There are infinitely many, but the time-like ones are in finite
number. There are 120 of them as in Eg. All the others are light-like

Time like roots, correspond to the light
fields of Superstring Theory different
from the diagonal. metric: off-diagonal
components of the metric and p-form

When we switch on the roots,
the fictitious cosmic ball no
longer goes on straight lines. It
bounces!!



The Lie algebra
roots correspond
to off-diagonal
elements of the
metric, or to matter
fields (the p+1
forms which
couple to p-branes)

Switching a root B
we raise awall on
which the cosmic

ball bounces

The cosmic Billiard




Before 2003: Rigid Billiards

Asymptotically any time—dependent solution defines a zigzag in In a; space

The Supergravity billiard is completely determined by U-duality group

h-space <——=> CSA of the U algebra

walls <—— hyperpl_anes orthogonal
to positive roots a(h;)

bounces <———=> Weyl reflections

Damour, Henneaux, - .
Nicolai 2002 - billiard region <——=> Weyl chamber

Exact cosmological solutions can be constructed using

Smooth billiards: U-duality (in fact billiards are exactly integrable)

Fré, Sorin, bounces <t=——=—=> Smooth Weyl reflections

and collaborators,
2003-2008

walls <=—=—>  Dynamical hyperplanes

series of papers



What is the meaning of the
smooth cosmic billiard ?

The number of effective dimensions varies
dynamically in time!

Some dimensions are suppressed for some cosmic time
and then enflate, while others contract.

The walls are also dynamical. First they do not exist
then they raise for a certain time and finally decay
once again.

The walls are euclidean p-branes! (Space-branes)

When there is the brane its parallel dimensions are
big and dominant, while the transverse ones contract.

When the brane decays the opposite occurs



Cosmic Billiards after 2008

The billiard phenomenon’is the generic feature of all exact solutions
restricted to time dependence.

We know! alliselutions Where two) scale factors are equals In thisicase one-
dimensional c=—model on the coset U/H. We proved completeintegrability.

We established aniintegration algorithm which' provides the generaliintegral.

\We discovered new: properties ofithe moduli'space ofi the general integral. This'is
the compact coset H/G i further modded by therelevantWeyl groups RIS is

the Weyl group WTS of the Tits Satake subalgebra U 72 U.

Jihere exist both trapped and (Super)crtical surfaces. Asymptotic'states of the
UnIVerse are in one-te-one correspondence with elements of: W-..

Cllassmcatlon ofi Integrable supergravity. billiards inte'a short list off universality.
classes.

Arrow of time. The time flow.isiin the direction of increasing the disorder:

Dlisorder IS measured by the number: off elementary transpositions in a Weyl group
element.

Glimpses off a new cosmological entropy. to be possibly: interpreted: in terms of;
iuplnerstring microstates, as it happens for: the Bekenstein-Hawking entropy: of black
oles.




Main Points

Definition

<< A supergravity billiard is a one-dimensional
o-model whose target space is a hon-compact
coset manifold U/H, metrically equivalent, in
force of a general theorem, to a solvable group
manifold exp [Solv (U/H)]. >>

Because t-dependent
supergravity field equations
are equivalent to the
geodesic equations for

a manifold

U/H

Statement

Supergravity billiards are exactly integrable by
means of a general algorithm constructing the
Toda-like flow

U — sl(N,R) ,

UDH — so(N) C sl(N,R) . <

Because U/H is always
metrically equivalent to
a solvable group
manifold exp[Solv(U/H)]
and this defines a
canonical embedding




-

. — . |
WIIENS @ 6,.- model 2. |

: p— - .
of maps from one mant ,_l another =

=
-~ World manifold W:
— coordinates &v |
e 5 Target manifold M:

- > coordinates ¢

A= [ (&) 80" 0 67 h1s(4)/—detgd"e




Starting from D=3 (p=2and b=1, a1s0) all the (bosonic)
degrees of freedom are scalars

OOO“f“O

o o a, o a, 0O

The bosonic Lagrangian of both Type [IA and Type |IB
reduces, upon toroidal dimensional reduction from D=10 to
D=3, to the gravity coupled sigma model

- =

1,7 "
commotel — \[—detg |2Rlg) + 1y (8)0u0 06" g
Wi . M _ E8(8) \
ith the target manifold _(
being the maximally non- target \S O(l 6) /
compact coset space ~ //

—



The discovered Principle

<< The asymptotic states at t = +oo are in
one-to-one correspondence with the elements
w; € Weyl(U). The Weyl group admits a nat-
ural ordering in terms of {r(w), i.e. the num-
ber of transpositions of the corresponding per-
mutation when Weyl(U) is embedded in the
symmetric group. Time flows goes always in

The relevant

Weyl group is that
of the Tits Satake
projection. It is

a property of a
universality class

of theories.
the direction of increasing ¢ which, therefore,
plays the role of entropy. >>
M . U . UTS There is an interesting topology of
TS . 7 parameter space for the LAX
H HTS EQUATION



HE™ eyl grﬂ.hg'caf aﬁeﬂfﬁf&"
e discretegroupigenerated by/all

ons W|th respect to all roots




Full Integrability

Lax pair representation
and the integration algorithm




[Lax Representation and
Integration Algorithm

I=1
O L(p) = H exp [ EY] exp [hi’Hi}

I=m

Solvable coset

representative

d
© L) = Z Tr (L_1£L Ki) K; , Laxoperator (symm.)
)
d
O W) = Z Tr (L_lgl Hg) Hy Connection (antisymm.)
14
d

—L — [W, L] Lax Equation W = I_I(L) :
dt = L>o— L<o




Parameters of the time flows

From initial data we obtain the time flow (complete integral)

IK : LO —> L(t,Lo)

Initial data are specified by a pair: an element of the non-compact Cartan
Subalgebra and an element of maximal compact group:

COECSAQK; O e H.

Lo = 01 ¢cyo




Properties of the tlows

The flow is isospectral

vVt € R : Eigenvalues[L(t)] =
{A\1 ... Any} = const

L(t) = O'(t)CoO(1)
The asymptotic values of the Lax operator are diagonal (Kasner epochs)

lim L(t) = Lty € CSA

t—=x00

im O(t) € Weyl (Utg)

{— 100




Parameter
space

Proposition

Trapped

submanifolds

ARROW OF
TIME

P = i / Weyl(U)

Gpaint

<< Consider now the N2 — 1 minors of O(t)
obtained by intersecting the first k columns
with any set of k-rows, for k = 1,...,N — 1.
If any of these minors vanishes at any finite
timet #= +oo then it is constant and vanishes
at all times.>>

There are N2 — 1 trapped hypersurfaces
2, C P. defined by the vanishing of one of
the minors. They can be intersected.

On any (trapped) manifold the flow is from the
lowest, to the highest accessible Weyl element




Example. The Weyl group ot
Sp(4)» SO(Z 3)

¢ Weyl group | %1 (h1,h2) — (h1,h2),

of sp(4,R) |¥2 (h1,h2) — (=h1,—h2) ,
0 we w3 @ (h1,h2) — (=hi,h2),

wg : (h1,h2) — (hy,—h2) ,

1 e ws : (h1,h2) — (ho,h1),
2 w1 we : (h1,h2) — (h2,—h1),
3 w3 wy : (hi,h2) — (—ha,h1),
3 w4 wg : (hi,h2) — (—hp,—hy1) .
4 wWo
5 w7y 1 w1 — ws
° s 2 1 ws > wp,
Available flows 3 wg — Wy , ﬁ
nsomersiors w4 g g | et s
critical surfaces 5 we — Wg . S.u;-faces




f
_ 3

h2

Plot of o, ¢ h 7
T, \ An example of flow on a
critical surface for SO(2,4).
) 3,,ie.0,,=0

14+

13+

12 ¢

11¢

Future infinity is Ag

(the highest Weyl group
element),

but at past infinity

we have A, (not the
highest) = criticality

Trajectory of the
cosmic ball

- hl

3 4 ] 6 7



Plot of a; ¢ h

h2

12

10 -

10

Plot of a; ¢ h

O, , "' 0.01 (Perturbation of
critical surface)

There is an extra primordial

bounce and we have the |owest
Weyl group element A; at

t=-1

hi



L.et us turn to Gauged
Supergravity

Inflation & CMBspectrumi regulire

the presence of a potential for the
Scalar fields



One scalar flat cosmologies

L(9.8) = |Rlg] + 50u60"6 — V(9)| v

Generalized ansatz for spatially flat metric

ds? = — e2BW g2 4+ 42(4) dx - dx |

: 1 . 2
Friedman | H* = S ¢°+ 2 V(e),
equations™] H = -2,

when B(t) =0 gb—|—3Hq5—|—V/ O,



In a recent paper by
P.F., Sagnotti & Sorin

It has been derived a BESTIARY of
potentials that lead to integrable models of
cosmology. There we also described the
explicit integration for the scalar field and
the scale factor for each of the potentials in
the list.

The question is: Can any of these cosmologies be
embedded into a Gauged Supergravity model?

This is a priori possible and natural within
a subclass of the mentioned Bestiary



The issue of the scalar potential
In N=1 supergravity and
extended supergravity



The Hodge Kahler geometry
of the scalar sector

The hermitian Kahler metric that defines the kinetic terms is
determined in terms of the Kahler potential:

gijr = 90K =  dsy = 8;0+Kd2' @ dz)

. ) : o .
M, = ., (42 = g 0;gppd?’
g { Jk } / = The Levi Civita connection

rk

[t o« — Complex Conjugate ofl'ik N
: . -k
The Kahler 2-form s the curvature of _— [/ ]
the Hodge line bundle K = | gZ]* dZ A dZ

The holomorphic sections W(z) of the Hodge bundle are the possible
superpotentials

|W||? = exp[K] W (z) W(Z)



The function G and the
Momentum Map

G(z,%Z) = log [|[W||* = K + log W + logW

An infinitesimal isometry defines

2zt — 2 —|- 6/\ ]{Z;\(Z) ~ aKilling vector

The holomorphic Killing vectors can be derived from a real
prepotential called the momentum map:

. - ek . - 4k

{ — it . : J () — i A.
/\(z) — 'gj aj*p/\ , k:/\ (Z) — 1g 8?,7)/\
The momentum map is constructed as follows in terms of the G function

PA = —% (kp0; G — K 01+ G)



The structure of the scalar potential

1 . 1
V = Zgij*%z,}{j — 358* —|— 5 (ImN_l)AZ DA DZ
= - gravitino contr. . q

chiralinos contr. gaugino contr.

. - 1
b EQEXD [}C] (gzj ’DiWDJ*W — 3|W|2) + ggzlmNAZPAPZ

The scalar potential is a quadratic form in the auxiliary fields of the
various multiplets:

1) The auxiliary fields of the chiral multiplets H'

2) The auxiliary field of the graviton multiplet S

3) The auxiliary fields of the vector multiplets PA

The auxiliary fields on shell become functions of the scalar fields with a
definite geometric interpretation.




Embedding Inflaton Models

\MK'ahIer = M;Q® M/cl ‘Q = iC + B
| |

Direct product of manifolds Distinguished complex
scalar

K = J(AmQ) + K(z,2)

Translational symmetry.
Does not depend on B!

1 Do
dsicanter = 57" (IM) [dQ2? + gijx dz' d2’

G = JAMQ) + K(z,2) + log [W(S2,2) W(Q,?)]




Final structure of the potential

Vivz = expl[J] |exp [K] (gij*’DiWDj*W — 3]W|2)

V=Vywy + Vzu

potential of the n multiplets

N2
+ exp [K] (sz |W|2]

The complete potential can be
reduced to a function of the
single field C if the other

moduli fields z' can be

stabilized in a C-independent
way




D-type inflaton embedding

Critical point of the superpotential

¥
V(C) = const? x (J’(C))2

1
Lor = 2 (Z J"(C) 8"C 8,C — const? x (J’(C’))Q)



F-type Embedding
J =0
V = exp [K] (¢°° D: W DW — 3|W|?)
it ] = I[(C) wee z =1iC + B

and - OgV|p=0 = O

we have a consistent truncation to a single inflaton model



rh type mbea'aln of SOMER

-ak gmmlca ‘models

Ve begin by con3|der|ng the issue
vthe F-type embedding of the

1 tegrable potentials in the Bestiary
e eomplled by Sagnotti, Sorin and P.F.

__*. -'..-

N
jeeie]

= "”I—_ater we will consider the issue of
- D-type embedding of the same



The integrable potentials candidate
In SUGRA via F-type

Potential function

From Friedman equations to

[1] Ci1e? + 2C1p + Cppe™?
¢ p— \/a h 2]  C1e27¢ 4 CreOr Tl (42 3£1)
[3] C1e?? + O

i 2 _ 2 _
Conversion formulae 7] €y (cosh ) 2+02(Smhw)7 2

P = V3 8] S0 (20 +sinn279))7 ']
V(e) = 3V(h) 2
= 3V(—— 9] G127 4+ Cren” (2 #E 1)
(\/3_61)
Effective dynamical model
L.pp = const x e34 — B 3 A% + —h2 e?B v (p)

2



Sporadie Integrable Potentials

e e

Vialip) = = [l:rr, + b) cosh [g:r:] + (3a — b) cosh {%:r:u]]

Vil = % [(e1 + b)sinh [%;} — (3a — b)sinh {%;}]

1 -3
where {a.b} = R
;| _3
16
Vir(e) = % [3a+3b—c+4(a—b)jcosh (3¢) + (a + b+ c)cosh (3¢)] |
¢ 1 1 _2
1 1 —BG
1 & —6
where {a,be} = ¢ L 16 1o
e
1 1§ -1
fofa,':-}:':' = i% |: 1— ?IE) e_':_ﬁ‘f:'.-'lls' + (T’ + ﬁ E—E-,JI,-"S
7 1 25 1 B /5
(7= ) el 4 (1 gig) oo
vfffb'::r:':l = l_}é [{3 — IHVEJ 11_'3""';"'5 + (G + 3|:|1/E} t,\—?-,ﬂ,-"Eu

+ (6 — 304/3) e2/5 4 (2 4+ 18/3) £54/7]

There are
additional
Integrable
sporadic
potentials
In the class
that might be
fit into
supergravity



Connection with Gauged SUGRA

In all integrable models the potential V(¢) is
a polynomial or rational function of exponen-
tials exp[3 ¢] of a field ¢ with canonical kinetic
term. The polynomial cases naturally connect
to Gauged Supergravity with scalar fields be-
longing to non compact, symmetric coset man-
ifolds G/H. There one can resort to a solvable
parameterization. The scalar fields fall into
two classes:

1. The Cartan fields h* associated with the
Cartan generators of the Lie algebra G,
whose number equals the rank r of G/H.

2. The axion fields b! associated with the roots
of the Lie algebra G.

From the gauging
procedure the
potential emerges
as a polynomial
function of the
coset
representative and
hence as a
polynomial
function in the
exponentials of
the Cartan fields
h.



CoOset COEeT BUSY
D=4 D=3
SLT{1,1) Gayay -
(1) SL2.R)=<SL[2.H) N =12
n=1
Spi6.R) Faray A=
B3 =11} Spi6 R =SLiZ R} YT
n==~06
S35 Egiay "I..'I‘ _ 2
SU(3) =8U(3) = U(1) S0(3.3) <8L(2.H) g
n=
S0M12) Eri-5) ’
BU(B) =11} SO~(1Z)=5L(2.R) N =2
n=15
ET’l—i-S-_- E-!Il—i-l.l o
Faj—re) < U(1) Fr (25 %5L(2.H) N =
= 27
SL({2,R) S0(2,24p) S04, 44p) A\ =9
2 SO =20 24ph SO 2,2 = 802,24 v
n=34p
Slip+1.1) SN p42.2) F
N ) Pt ) _."I.. =9

EU{pH1i=1ri(1}

=10 |:|_-|+ 1. 1= E\-LIJR'hF

The N=2

playing
ground

In N=2 or more extended
gauged SUGRA we have
found no integrable
submodel, so far. The full
set of gaugings has been
onstructed only for the
STU model

p=0

The classification of
other gaugings has to
be done and explored



Some results from a new paper by
P.F.,Sagnotti, Sorin & Trigiante
(to appear)

e We
Moo

nave classified all the gaugings of the STU
el, excluding integrable truncations

 We

nave found two integrable truncations of

gauged N=1 Supergravity. In short, suitable
superpotentials that lead to potentials with
consistent integrable truncations

* Analysing in depth the solutions of one of the
supersymmetric integrable models we have
discovered some new mechanisms with
potentially important cosmological

impl

icactions....



N=1 SUGRA potentials

N=1 SUGRA coupled to n Wess Zumino multiplets
— . ik _
Loiara = V=9 |Rlg] + 298 02t 0477 — 2V (2,2)]

8; 0+ KC
K = Kahler potential

where i
K

V = 4e? exp[K] (gij*DiWh(Z) DjWp(z) — 3|Wh(z)|2) )

9 D;W = oW 4+ ;KW

If one multiplet, for instance
_SU(1,1) _ 3
Mg = 0(1) » K = log [—(z—z) ]




Integrable SUGRA model N=1

If in supergravity coupled to one Wess Zumino
multiplet spanning the SU(1,1) / U(1) Kaehler manifold
we introduce the following superpotential

4 1 :i : H:Q—w
Wint = Az k23 | M= /5

we obtain a scalar potential

122272 ((4i2 + w)z2 — 4iz2z 4 72w)

where 5(z —2)

z = iexplh] + b

Truncation to zero axion b=0 is consistent

Vipt = geﬂ'h (w + 466)




V(p)

THIS IS AN INTEGRABLE

MODEL
_ ¥
h = 3

C1 exp [2y¢] + Co exp [(y+ 1) ¢]
2

3



The form of the potential

V4

/ Hyperbolic: ® > 0
/ Runaway potential
___ii.f"’
Trigonometric ® < 0 b
Potential with a
negative extremum: — ——
stable AdS vacuum o onoal ™~
[ “\\H




The General Integral in the
trigonometric case

a(r,\,Y) = ANa(r,Y) = A E Cos%(’r) ((COST)g/S 2 F1 (%, %; g; SinQ(T)) tan?(r) + 5)
-Y cos%(v-) sin(7)
olB (] = o (461000 (59155020 an2) - 2 5D 1 z0)

b(,Y)

_ 4 2,.49/10 19 3 2 2, Ysin(r)
log (5 cos“ (1) ~Fy (2, 10,2,sm (T)) tan<(r) COS%(T) + 4

The scalar field tries to set down at the negative
extremum but it cannot since there are no spatial flat
sections of AdS space!

The result is a BIG CRUNCH. General Mechanism
whenever there Is a negative extremum of the potential



The
simplest
solution

——
ParametricTins

lim a(7;0) = O

,lim, a(r;0)

lim ,0) = —

i, b(r,0) = oo
lim exp[B(7,0)] = 4o

T—+5



Phase portrait of the simplest solution

The extremum of the potential is at g =
—log[5]. It is reached by the solution how-
ever with a non vanishing velocity. There is no
fixed point and the trajectory is from infinity
to infinity.



Y-deformed solutions

An additional zero of the scale factor occurs for t, such that

4 1 ]. 9 3 .
Yy = - coss (7o) csc (79) (cos2 (10)°/10 1y (5’ o5 sin? (T0)> tan? (rg) + 5) = (7o)

Yoomfficiant

Param=tricTlim=

4/m (35

|Y| <Yy = = 3(10)
\ E)
Region of moduli space
without early Big Crunch




What new happens forY >Y, ?

Tomglary s Early Big Bang
and

climbing scalar

from-1to +1

CCa-oallattore

FarametricTime
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Particle and Event Horizons

Radial light-like geodesics

0 = exp [2B(7)] dr? — a?(7) dr?
Particle horizon: boundary of the visible universe at time T

Ty = 1) /_’1; . exp [B(7)]

a(7)

Event Horizon: Boundary of the Universe part from which no
signal will ever reach an observer living at time T

Amax Tmax

E(T) =

a(T') /Tmaw o, €xp [B(T)]

Omaxz Tmax Y1 CL(T)



Particle and Event Horizons do not

coincide!
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Hyperbolic solutions

ScaleFacter We do not write
.| the analytic form.
| It is also given in
terms of
hypergeometric
functions of
exponentials

a,(TC) ~ TC§ at Big Bang

KQ(TC) ~ (Tc — Tmam)%)
|

at Big Crunch




FLUX compactifications and
another integrable model

In string compactifications on T°/ Z, £ Z,

one arrives at 7 complex moduli fields
S, 11, 1», 13, Uy, U, U3
imposing a global SO(3) symmetry one can reduce the game to three fields
S T =T1=T>=1T3 ; U =Uj=U;=Us
with Kahler potential
K = —log[—i(S—3)] — log[i (T —T)3] — logli (U — T)3]

Switching on Fluxes introduces a superpotential W polynomial in S, T,U and breaks
SUSY N=4 into N=1



A special case
Winteg = (iT?’ + 1) (SU3 _ 1)

induces a potential depending on three dilatons and three axions.
The axions can be consistently truncated and one has a potential in three dilatons
with an extremum at hl1=h,=h; = 0 that is a STABLE dS VACUUM

There are two massive
and one massless
eigenstates. The
potential depends only
on the two massive
eigenstates o, and o,




The truncation to either one of the
mass eigenstates is consistent

one obtains:
3
3 Vd?ﬁl(w)|w1—0 wo = % — g(COSh((P) + 1)

3 2p
3V — — | cosh -7
0y = 2500 =0 32( (\/ﬁ) | )

THIS MODEL s
INTEGRABLE.
Number 1) in the list

Hence we can derive exact cosmological solutions in this supergravity
from flux compactifications



Conclusion on F-type

The study of integrable cosmologies within
superstring and supergravity scenarios has
just only begun.

Integrable cases In the F-type approach
are rare but do exist and can provide a lot
of unexpected information that illuminates
also the Physics behind the non integrable
cases.



Via D-type all positive potentials
can be embedded into N=1 SUGRA

New challenging interpretation problems !



Let us go back to where we

Imposing:

5 qb) (d6) = (d9)

D(¢) — —2730(0) e J,(O) momentum map
dC\ _ (dD(¢) ‘1§
> (dqs) _( dg )
Lacatar = 2 (5 0/69u6 — const? x (D(9)?)

The square root of the potential is interpreted as P = — 1 V(¢)
- 2

the momentum map of the translational symmetry

J"(C) (dC)? = J"(O) (




The Kahler curvature from the
scalar Potential

1 2
dSQK'ahIer — Zd¢2 T (P,(Cb)) dB*

_

1
El — 5olqb dE! + w A E?

____zweibein
EQ

2 1
P'(¢)dB di© — w A K

F w = —2 P”(qs)dB

R = dw = R(¢) E* A E?

W 3 v AL 2
R(¢) = 4 (V, -2 () )(@

0O
0




Example:
the best fit model in the y series

INTEGRABLE SERIES

V(¢) = aexp|2v3y¢|+bexp|V3(y+1)4]

7
Best fit for CMB (Sagnotti et al) v= — 6
1 280 15\ 4 28e2v3
R_Z(¢) = — | 39\ 35 — 5 +1
6 43 239 13¢
14X + e2v3 ()\ + e2\@)
L\ )

A =



Interpolating kink between two
Poincare spaces

R

F _,,-h_'lll
[




This is just the beginnig.....
We should find the geometric interpretation
of the Kahler manifolds associated with

iIntegrable potentials and their string
origin.........

THANK YOU FOR YOUR ATTENTION



