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Lecture 1. Grounds for supersymmetry

@ Unification in elementary particle physics. Symmetries.

@ Haag-Lopushanski-Sohnius theorem: Graded symmetry algebra.
@ Brief sketch on supermatrix and supergroups.

@ Super—Poincare algebra, conformal and dS (AdS) supersymmetry.
@ Wess—Zumino model.
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Lecture 1:  Grounds for supersymmetry Unification in elementary particle physics

In elementary particle physics, the hope is that we will eventually achieve a unified scheme which
combines all particles and all their interactions into one consistent theory.
The currently known particles:

Maxwell Theory, U(1)

—_—
Bosonss A,~(E,B) @ Wi, W) @& Gl,r=1..8 @® guw ® _H
Electroweek TheorySU(2) x U(1) Strong InteractionSU (3) Gravity Higgs

Fermions: b, Ya

Here pu,v =0,1,2,3, o = 1,2, & = 1,2 are the Lorentz indices; i is internal symmetry index.
Bosons are the carriers of interactions (except Higgs). Fermions describe particles of matter.

Symmetries play fundamental role in the formulation of modern theories, which actually specify
the theories. Symmetries are defined by concrete groups and corresponding algebras.

¥ — g(\) ¢, etc, where g(\) =exp{\*Ba}, [Ba,Bg]=icssBc.
Parameters are functions of the space-time coordinates, M = M\(x,) — local (gauge) group:
— Maxwell theory: gauge group U(1);
— Electro-week theory: gauge group U(1) x SU(2);
— Standard model: gauge group U(1) x SU(2) x SU(3);
— Gravity: local diffeomorphism group of four-dimensional space-time;
— String theory: local diffeomorphism group of the worldsheet (two-dimensional space-time).

An important role is played by the space-time (relativistic) symmetry.
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Lecture 1:  Grounds for supersymmetry Unification in elementary particle physics

Space-time symmetries

{Lorentz algebra SO(3,1) = SL(2,C) } C {Poincare algebra T* & SL(2,C) } C
C { conformal algebra SO(4, 2) = SU(2, 2) }

[Livs Loal = T (ool + Murlvp — (0 < v))  SL(2,C)
[P;_L, PV] = O, [L;_LV, P/\] =i (nu/\P;_L — Nux PV) conformal
[D7 PH] =1 PH ) [D7 KP«] = —i KH ) [D7 LP«V] =0 algebra
[Ke,Ki] =0, [Pu,Ki]= =21 (0D + L), [Luw,Ki]=1(maKy—nu1K)

Poincare algebra

Npv = dlag(—i—l, _17 _17 _1)’ n= 07 17 27 3

All modern realistic field theories are relativistic and possess Poincare symmetry.
Conformal symmetry is invariance of light-cone

(X% = (x1)? = (x*)* = (x*)> =0
and is symmetry in the theories of massless fields (CFT).

SO(d, 1) — Lorentz symmetry in (d + 1)-dimensonal space-time.
SO(d + 1, 2) — conformal symmetry in (d + 1)-dimensonal space-time.
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Lecture 1:  Grounds for supersymmetry Unification in elementary particle physics

Space-time symmetries
{de Sitter algebra SO(4, 1) } , {anti de Sitter algebra SO(3, 2) = Sp(4) }

[Mun, Mi] =i (9neMuk + vk Mae — (M < N))
TIMN :diaq+17_17_17_17:':1)7 M :071727374: (/‘1’7 4)
Using notations M, = Ly, My4 = pP, we obtain

[L}JJ/; Lp/\] = I (’ql/PLll«)\ + nl—b/\LVP - (/"L An V)) p—roo i
PuPu] = +ip 2Lu s [LpwsPa] = i (moaPy — 7Py —  Poincare algebra

de Sitter and anti de Sitter groups are symmetries of maximally symmetric manifold with constant
scalar curvature (dS or AdS spaces)

(XO)Z _ (X1)2 _ (X2)2 _ (X3)2 F (X4)2 — :sz .

p is the radius of curvature of dS or AdS spaces.
dS and AdS spaces are maximally symmetric vacuum solution of Einstein’s field equation with
cosmological constant.

SO(d + 1, 1) — de Sitter group in (d + 1)-dimensonal space-time.
SO(d, 2) — anti de Sitter group in (d + 1)-dimensonal space-time.

(anti de Sitter group in (d + 1)-dimensonal space-time) =
(conformal group in d-dimensonal space-time) - present in AdS/CFT correspondence
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Lecture 1:  Grounds for supersymmetry Unification in elementary particle physics

Internal symmetries
sU(n) algebra [T/, T ] =i (8T - §Ti), (T)"=-T/, T =0
i=1,...,n

O(n) algebra [Jaszcd] =i (6bc~]ad + 5ad~]bc — (a e b)), (Jab)+ = Jab =] _Jba

a=1,...,n

Internal symmetries commute with space-time ones.
O(3) 2 SU(2)
[Ja; Jp] = i€ancdc Ja = %0a7 a=123

Jab = —€apcde
T =Jda(oa)!, =12
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Lecture 1:  Grounds for supersymmetry Haag-Lopushanski-Sohnius theorem: Graded symmetry algebra

Coleman, Mandula, 1967: it is impossible to unify space—time symmetry with internal symmetries
in frame of local relativistic field theory in four dimension with finite number of massive particles.

WH = LemAep Ly, W2 =_—m?J% (P?+0), W, = AP, (P?=0)
[T/,P?] = [T/,W?] = [T/,A] =0 - all particles of an irreducible multiplet must have

the same mass and the same spin (helicity)

Bypass of the Coleman—Mandula theorem:

Haag, Lopushanski, Sohnius, 1975 proved that in the context of relativistic field theory the only
models which lead to the unification problem are supersymmetric theories.

In supersymmetric theories, the symmetry described by the Lie superalgebras
and Lie supergroups.

S. Fedoruk (BLTP JINR, Dubna) Introduction to SUSY BLTP JINR, Dubna, 2-14.09.13 9/91



Lecture 1:  Grounds for supersymmetry Haag-Lopushanski-Sohnius theorem: Graded symmetry algebra

Symmetry algebras of the supersymmetric models are graded Lie algebras or Lie superalgebras

[Ba,Bg] = i cisBc , [Ba, Qk] = i 9Ak Qu , {Qk,Qu} =i ftuBa
Ba are even (bosonic) elements; Qg are odd (fermionic) elements
Graded Jacobi identities

[[G1, G2}, Gs} + graded cyclic= 0

(there is additional minus sign if two fermionic operators are interchanged)
Bosonic subalgebra Ba are defined by Coleman—Mandula theorem.
On the fermionic operators Qu it is realized the representation of the bosonic subalgebra.

Qm generate supersymmetric tansformations
Q |boson> = |fermion >, Q |fermion > = |boson>
Parity: q(B)=0, q(Q)=1, q(Jboson>)=0, q(|fermion>)=1
Exponential representation of Lie supergroups are given by
X = exp{i (AABA + §MFm) }
where \* are c-number parameters whereas ¢M are Grassmann parameters:

MN =M = (2 =0, ()P =0, et
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Lecture 1:  Grounds for supersymmetry Brief sketch on supermatrix and supergroups

X — By | F1 . B, are ordinary matrices
B ’ F1, are fermionic matrices

strX =trB; —trB,, strXY = strYX

B]_ F]_ o 1 Fl _ -1, _ .
sdet( 0o 1 ) = detB,, sdet(O Bz> = detB; ; sdetXY = sdetX - sdetY

Bi F1\ (1 Fi\[(Bi—FiB,'F, 0 B [ |
(Fz BZ> = (0 Bz> ( B;l 1) sdetX = det(Bl Fle F2) det82

sdetX = exp {str(InX)}

osgmin): G =¢* :< Spn) | Fu )

U(mvn) | Fl >
U(m,n|p) : G=¢eX=

(m,njp) (s
SU(m, np) : G=¢e", strXx=0

For m 4+ n = p the identity matrix obeys tr B; = tr B, and generates U(1) subgroup.
The quotient PSUm, n|p) = SU(m, n|p)/U(1) is simple and is often denoted just SU(m, n|p).
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Super—Poincare algebra

unds for supersymmetry

Lecture 1: G

) 0 (o). a=1,.,4
. b _ . H)apB 9 009
Notations used:  (y.)," = <(&u)a,3 0 ) a=12 a¢=12
i
Vv = 5 [ ]

Xa = (¥a) for a Majorana spinor

Ouby +0u6y = 2Nyy, Opw = 10[,G,), Guw = 16,0y

Y=g, Ya=eapt®, P =€*"P;, Da=ey50°,

12
€aB= — €Ba; €4p= — €44, €12= — € =il
(&M)da = Eaﬁedﬁ (O-P«)BB ) (Uu)ad = (175:)0“54 ) (&u)aa = (17 _&)d&
Xop = OhXu, X2 =G0, X =Xy,
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Lecture 1:  Grounds for supersymmetry Super—Poincare algebra

4D N-extended Poincare superalgebra

Pl T+ QL Qu=@QW" + 2Z'.Z=(2""

{Ql.. Oy = 26/(0") 0P {Ql, QL) = capZ’, {04,958 = .32,
[P/M le] = 07 [PIM Q(’Il] = 07 [ 2] Qa] - __(U,LLV) Qom [L,Lll/7 édi] - %(&ul/)deh
[T,Qal = 6°Qn — #6Q4, [T}, Qax] = =6k Qaj + 6 Qax

Z",Z; = (Z")* are central charges, [Z,P]=[Z,L]=[Z,Q]=[Z,Z]=0

In massless case, P2 =0, : zi =0, ZIJ =10

Basic properties of Poincare supersymmetry

o [P2, Q] =0 - allparticles of any supermultiplet have the same mass
@ 0<Y, > {Q,,Qu}=4NPy - theenergyis non-negative
@ {|bosons>} 2 {|fermions>} 2 {|bosons>} translated by P, =

There are an equal number of bosons and fermions
when translations are an invertible operator
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Lecture 1:  Grounds for supersymmetry Conformal supersymmetry

4D N-extended conformal superalgebra

UWN)
—
Pu L, T, R, KD,

U(2,2|N)

Qiav Qrfxi — (Qla)+r Srur Sl — (Sai)+

even

{Q4,Qp} = 24(c

{Qu, S} = 4 (™)oL

[Ku, Q] = (04)us

[PMSOA] = (au)
0.Q1=5Q, [Db,Q]=

m

[e¥e’
i
2

[R.Q]=-3Q, [R,Q]=

S. Fedoruk (BLTP JINR, Dubna)

odd

H)aBPlM {Sah éja} = 25{((7”)0@'(# )

,,—4|65T'—2|656D+ BN 5E5R,
K, Qail = — (o), -si",
Q' [Pu,Sal = = (01)0s Q™
Q

) [D,S]:—%S, [D S] Iiéa
1Q, [R.sSI=3s, [RS]=-35,
Introduction to SUSY BLTP JINR, Dubna, 2-14.09.13
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4D N-extended AdS superalgebra

OSp(4|N)
O(N)
=~ =T
Py,: I—uz/y TI] ’ Qaiy (QI — C:(DI )
even odd

{Qi,Q} = (27“Pu 4+ ﬁ_lv“"Lw) ;
[Pqu] = __P 17#Qi 5

[Luv, Q] = P 'Y;WQH
[Tk, Qi] = |(5|iQk — Q1)
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Lecture 1:  Grounds for supersymmetry Wess—Zumino model

Simple 4D supersymmetric field theory: Wess—Zumino model

¢(x), $(x), F(x), F(x), va(x), Pa(x)

bosong c—numbe) fermions(Grassmanp

€a, £a — Grassmann parameters of SUSY translations , {€a,e5} = {€a,&3} =0

5¢ = (e"Qa +8aQ%)¢, .., s = (e"Qa +2aQ%)s
(5152—5251)(]5 = 2(510’“52—520“51)PM(]5, ceey (6162—6261)1Zd = 2(510'M52_520u51)Pu7Zd

Off-shell supersymmetry transformation of component fields:

0 = =%, o = —2icH

fe%es

¢ —2eaF, OF = —ic” . E%0,9°

fe%es
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Lecture 1:  Grounds for supersymmetry Wess—Zumino model

Supersymmetry invariant action: S=[d* L,
= 0P — 5 Yot O — F MYy +PP) — 3 9 ($v¢ + $PD)

+FF +m (6F + ¢F) + g (¢°F + ¢°F)
—(m+g¢)(M+9$)oé

F(x), F(x) are auxiliary fields; its equations of motion is purely algebraic:
F+mé+gd2=0 F+mop-+ge?=0

8¢ = —e%Po, Otho = —2ict & E40u¢ + 2eqp(m+9go) - on-shell SUSY transformations
(nonlinear in case of the interaction,
closed only on field equations of motion)

In massless case m = 0 the Wess-Zumino action
S = [ d* [0"30,6 — 60" 0,5 — G697 — S0 (ovw + 530)]
possesses superconformal invariance. Direct generalization
S= [ Dx [ 9V,0 = b 4ot V,d + m205 - 92(03)2 — § 0 (6w + 350

invariant under AdS supersymmetry. Here, V,, is AdS covariant derivative, p = m~—! is AdS
radius and Dx is AdS is invariant volume element.
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Lecture 2: 1D SUSY in component formulation and
In superspace

(]

1D super-Poincare and superconformal symmerties.

1D field theory with global SUSY:
Hamiltonian analysis and supercharges.

@ 1D N = 1 supergravity in component formulation:
spin 1/2 particle model.

Superspace formulation. 1D supergravity in superspace.

Extended SUSY in 1D superspace:
N=2 real and chiral superfields.

©

e ©

©

Superconformal mechanics.
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To (V=R DR VS @ [ olelyg ooy l=T A eIV EU I e R RV ISTSoEI=] 1D super-Poincare and superconformal symmerties

1D N-extended super-Poincare algebra
{QaaQb} :25abH7 (Qa)+ :Q7 a= 17"'7N
1D N-extended superconformal algebra

1D superconformal algebra > 1D conformal symmetry SO(1,2) ~ Sp(2) ~ SU(1, 1)
N( Sp(2) |Q+S> N(SU(1,1)|Q+S )

Q-S| SON) Q-S | Sum)

{Q,Q} ~H, {S,S}~K, {Q,S}~D+J, (H,K,D)csu(1,1), Jco(N)orsu(M)
N=1: 0S{1]2)
N=2: 0S{2[2)~SU(1,11)
N=4: D(2,1;a)

a=-1/2,a=1: D(2,1;a) ~ OSH4|2)
a=0,a=—1: D(2 1;a)~SUL,1[2) @, SU2)

D(2,1;a) . {Qai'i7Qbk'k} -2 (Eikei/k/Tab +aeabei/k/Jik _ (1+a)€ab6ik|i/k/ ,

[Tab Tcd] — i(eachd +6deaC) [Tab Qci’i] — iec(aQb)i’i
0?i—_q', Q22'i — -3, QWi=s' Q¥i-§ T2y TH_K, T2—_p.
Bosonic generators T®, J% and 1'% form su(1, 1), su(2) and su’(2) algebras.
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To V(=2 R DR USY @ N otel [ sTeg T R (el EUT e ARSI LIS ETe]  Example of 1D field theory: relativistic particle

t - time coordinate; 1D field theory - mechanics

S = [dtL, L=16-¢ - 1D massless Klein-Gordon action
Global invariance: t' =t +a, ¢/'(t') = ¢(t)
Local invariance: 1D gravity

4D:  gwun = mageyel, ef are vielbein fields
M3 =073 (Bubvp + 8u0up — pGur), RO\ = 8,0, + T2, — (¢ v)
1D: g, =e?, g =e? Jg=e [=(ne), R=0

S:/dtL, L =1\/§0""0ud- Budp + & vaM? = L (714 b+ em?)

H=Zle(-p-m?), Ti=p-p-m’°~0, To=pe~0
Quantization:
A Bl =i{AB},: ¢é=x, p=—i, é=e, Pe=—ide
®=d(x,e,t), IGP=HP, T;,6=0
= (O+m?)d(x) =0, Klein — Gordon equation

Quantization 1D matter fields in 1D gravity background = spin O target space field

String action Sstring = J 020 Lstring. Lstring = T /390X 05Xy
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Lecture 2: 1D SUSY in component formulation and in superspace [EIBR{(=llsRiglte g AWVI{sNo{[e] EIRS{USNE

S = /dtL L=1¢"+ 1y
[p(ta), d(t2)] = P(t2)(t2) —B(t2)d(t1) =0, {(tr), ¥(t2)} = ¥(t)P(t2)+¥(t2)3h(tr) = O
9" =0, Pt =1 (AB)" =B'A"

Q: ¢ = v, ¢ — ¢ = the parametet = e+ must be anticommuting

[S/Al=0, h=1 = [U=+41, [tI=-1 = [¢]=-1/2, [4]=0
dp=iey = El=-1/2 = Sp~ed

op =iy, S = —¢e¢
=3 (c¢d) +iépd =0, e=const, @li—ioo = Pli=too =0

[61,82] ¢ = 2ic1e29), [61,02] ¥ = 2ie1e29)
INN>11DandD > 1 [61, 2] ¥ = 2ie1e2%) + (eqof motion)
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Lecture 2: 1D SUSY in component formulation and in superspace [zEINIIQIEEEGEGEIET BTl ET e[

oL oL ; i
p_B_qB’ 7r—8—¢ = p=¢, T=3%
Ho = pé+ m¢) — L = 3 p*

G=n— —w 0 — theconstraint
H =Hy + \G

{¢7p}P = 13 {1/]77T}p - 1
{G,G}, =—i#0 — second class constraint

G={H,G},=0 = A=0 = H=1ip?

{A7 B}D = {Av B}P - {Av G}P{G’ G};l{G’ B}P

{o.p}o =1, {$dlo=—-1 = [gpl=i {Y9}=1
5S= /dt/\ / (—6q+—6q> = /dt (—6q /\) /dt(%—%%)&q:o
pdog — A = const on — shell

pdp+mhp —N=iepy =ieQ,
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Lecture 2: 1D SUSY in component formulation and in superspace [EAVEEETE (VAT IIb]

s:/dr(%éﬁ‘ﬂ&), 5s:i/dte‘¢q's e =e(t)
Introduce the gauge fermionic field (the gravitino) x =x™: dx =¢+ ...
Newterm: S’ = —j /dt XU, additional terms S’ = —i /dt ex(ivy + ¢d)
The first term can be canceled by adding a new term in 6%

The last term can only be canceled by introducing a new field h (the graviton) and coupling $2
Local SUSY is a theory of gravity!!!

Newterm: S = —/dthzz'xz}
Liosuera = % ¢ + |§ Y —ixtd — hdg

Local SUSY: ¢ =iey, 6 = —e(1 —2h)d +iex,
oh=—ig(1-2h)x, dx=(1-2h)¢
[0cy, 0,10 = 2iere2(1 — 2h) — e1eoxt) = £ +ié

Gravity transformation ~ §¢ = ¢, s =¢p,  Sh=1E+¢h—¢Eh, Sy =¢x

5g,ul/ = an)\guu I a,uf)\g)\u + 8,,@9,,,\, 5e;n2 = anAe;n; T aufkeT,
dek = eronek —eponEr, ek =1-2h
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=10 (V2R DD RS VS Y@ el oIy IR (VI W E RN R EEEY  Quantization: spin 1/2 particle in pseudoclassical approach

¢=(¢u), ¥=u), w=01,.D-1  e'=1-2h

s= [l L=fe ¢ du + L —ixd
Pp = e_lq-Su —ixtu, m= izwu: pe =0, m =0

Ho = pug” + muy* + pe€ —L = 3 ep¥pu + 5 X P*¢u
Ppe~0, w0 G,=m,— %1/;,1 ~0 — primary constraints
H = Ho + MG, + XePe + ATy

{¢#7 p'/}p = 77#”7 {w}uﬂ-lf}p = 77#'/ {e7pe}p = 1 {X7 pX}P = 1
{G,,Gu}p = —inu second class constraints
G, ={H,G,}, =0 = A\ =0

Ppe = {H,pe}, =0 = T=p"“p.~0
Ty = {H, 7}, =0 = D =pHy, ~0

BLTP JINR, Dubna, 2-14.09.13 24 /91
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=10 (V2R DD RS VS Y@ el oIy IR (VI W E RN R EEEY  Quantization: spin 1/2 particle in pseudoclassical approach

{A7 B}D = {A7 B}P - {Av Gu}P {Guv GV};I{Gyv B}P
{¢u: pV}D = Nuv, {w}uwlf}o = _i’qw/

Quantization:

ABl=i{AB),:  [buPl=imuw, (Dt} =1
qu = Xu, ﬁu = _iam 12# = % Y

W = Wa(x), ~Ho,¥ =0, 4o, v =0 Dirac field

Quantization 1D matter fields in 1D supergravity background = spin % target space field
Fermionic string action: St_string = fdzaﬁmmng,
Li_sing = T /3 {9°P0aX 0pX,s — F7*Batty — 2Xar®v4* (06X, + 3 Row ) }

v = egq?, a=1,2, a=1,2, w=01,...D—-1
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Lecture 2: 1D SUSY in component formulation and in superspace [ESIVsl=lgil=l BRI RV oI o Tel=]

Superspace: Supersymmetry is realized by coordinate transformations
Q describes fermionic transformations —  translations in odd direction of extended space
Usual 1D space: (t) =

N=1, 1D superspace: (t,#), where 6 = @ is Grassmann coordinate, 66 = 0
Q=Q =08 +i0x, H=H"=ia; {Q,Q}=2H, [H,Q]=0
ot=eQ-t, 0=eQ-0 : ot =ieb, 00 =¢

N=1, 1D superfield: d(t,0) = P(t) +10y(t)
O(t',0') = o(t,0), & =0(t',0)—d(1,0)=eQ - ®=5¢+i05) =
Sp=lie, Oh=—cd

Integration over odd variable /d@f(a) = /daf(0+a) = /dé)é) =1, /d@a =0
Covariant derivatives Dy =09 —i00 =D, Dt =&, {Q,D} =0, [Q,%]=0

S = [dtdOL(®,80,D0), S = [dtdIQ[.]= [dtdOds[.] + [dtdd i65]..]
S————-r— N——

=0,9p][...] contains n@ the total derivative
Any action, built from superfields and covariant derivatives 9; and D, is always supersymmetric
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Examples of the A'=1 supermultiplets
O(t,0) = P(t) +i0y(t) — even superfield
S=4 /dtdamm =1 /dt (¢32+i¢¢})
(1,1,0) supermultiplet

W(t,0) = y(t) + OF (1) —  odd superfield

sz%/dtdawow:%/dt(iw+F = /dtqu
(0,1,1) supermultiplet

m physical bosons
The supermultiplet (m,n,n —m) contains n fermions
n —m auxiliary bosons
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Lecture 2: 1D SUSY in component formulation and in superspace [IBESoI=I(s| I\ AT KT o[=T6 o o Tor=]

Supergravity: local translations and local supertranslations =

general coordinate transformations in superspace

4D scalar matter in the curved space /d x det(e]]) n™ ehd.d-er oo
N N——
Dm¢ Dn¢
4D space — 1D superspace Y

=1 /dtdesde(EMA) EMom® E'ono
3 N — N——

Do Dy
w™(t,0) — the super vierbeirfsupermatrix
M,N = (1,2) = (t,0) are curved indices; A,B=(1,2) = (,0) are flatindices
M(t,0) = the inverse super vierbein  EAMEw® = 68
Om = (O, D) — curved derivatives

Dy = Ef"0u = E{& + E{'0 } covariant derivatives

DngQ ON :Egd(+EQ Oy
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Lecture 2: 1D SUSY in component formulation and in superspace [IBESoI=I(s| I\ AT KT o[=T6 o o Tor=]

General coordinate transformations in superspace:

SEm” = ENONEMA + OmEN EnA, _ M M
SEAM — ENOVEAM — ExN Oy e, 0P =¥ oy, £Y(t,0) — 2 local parameters
The extra symmetry which acts on tangent vectors:

SEmA = EmB & o, §sde{En?) = of sde{Ey™?),

A
o (t,0) — 2 local parameters
SEAM :_5!AaBEBM7 5o =0, (t,0) p

Gauge fixing for 3 local transformations eliminates 3 from 4 superfields in Ey”. Possible choice:

Evi=E Ew' Ew!=EY2Ew’ E(10) - residual gauge superfield
° A_( 1 0 IV 1 0 o
= "= ( i0 1 )’ Ea™ = ( —ig 1 ) — flat vielbein

0 E—l 0

Ea M('?M = (&, D), EAM = ( LigE-L2 E-1/2 ) , sde(EMA) _Egl/2

S:%/dthE*ldSDd:t

E@L0) =e®)—i0x(D),  ©(0) = o) +i0v(), S=} [de i@ +ivi—ie ki)

Replacement ¢ — el/24, x — e3/2x yields the component action considered.
Residual gauge transformations coincide with local SUSY of the component action considered.
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Lecture 2: 1D SUSY in component formulation and in superspace [ESICIERIURN @RIl E{oETel}

N-extended 1D superspace:
(t79i)> ek:(@L {9i79k}:0> i>j7k:17~'~7N

Realization of super-Poincare algebra in superspace:

8 0 .
QA =Q = +l9kd H=H"=id; {QuQ}=2H, [H,Qd =0
ot :Eka ~t, 50k = Eij ~9k 5 ot =i 5k9k7 5(9k = €k

General supersfield:

D(t, 0k) = P(t) + Ok (t) + Ok, O, Py, (1) + Oky Oucy Oka Vikqkepks (1) -+ - Ok - - - Ok Doy ke (1)
Off-shell contents:

oN-1 bosonigfermionic) component fields, ¢k i, , - - -

2N~ fermionic(bosonig component fieldsx, , Vi, kks - - - } if »(t, 8 ) is bosonid(fermionic)

Covariant derivatives:

o ., 0

Dk:a_ekf'ekﬁ’

{QJ7DK} :0

F(Dk)® =0 — covariant constraint

On-shell (physical) contents of a model is defined by the action.
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Lecture 2: 1D SUSY in component formulation and in superspace [VEPEIS W E RO ES

N=2 1D supersymmetric models are similar to the models with N'=1 4D SUSY
Real N'=2, 1D superspace:  (t,01,02), 01 =05, 0, =05
0 8 .
Q1_87+|913t7 Qz— +|928t7 H=i0;
{Q17Q1}:2H7 {Q27Q2}22H7 {Q17Q2}:07 [H7Q1] :[HzQZ] =0
ot =i (5191 + 5202), 00, = &y 00, = &5
Complex N'=2, 1D superspace:

(t,0,0), 0=5(61+i62), §=0" = 25 (61 —i62)

Q——+I98t Q— 0—+|08t, H=io
6t=i(56_?+59), 00 = ¢, 80 = &, g=¢"
General N'=2, 1D superfield:
(t,0) = (t) + 0p(t) + Ox(t) + OOF (1)
Sp=ep+&x, OY=—icp+eF, dy=—iep—cF, OF =—iep+icx

Covariant derivatives D = % —ifo, D= d% —-i0a, {D,Q}={D,Q}=0
¢t =& — thereal superfield D& =0 — the chiral superfield
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Lecture 2: 1D SUSY in component formulation and in superspace [VEPEIS W E RO ES

Real superfield:
O(t,0) = & = ¢(t) + 0y(t) — OP(t) + 00F (1), ¢" =6, F'=F, ¢"=49
Off-shell SUSY transformations:

dp=ep—&p, Ohp=—igp+iF, Pp=iep+eF, OF = —i(e) + &)

s=1i /dtd@déchch: 2 /dt{q52+i(¢12—¢zﬁ)+F2}
On—shel: ¢=0 ¢=0, ¢=0  F=0 (1,2 1) multiplet
On-shell action:
s=1 /dt{gz'SZJri(wL/_;fd}LE)}
On-shell SUSY transformations:
Sp=ep—&p, Sp=—-igp, SP=ied

[01,0209 = i (122 — €221) ¢ — 2i 5_15'21/;)
N—_——
=0 on—shell

On-shell SUSY transformations are closed only on equations of motion.
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Lecture 2: 1D SUSY in component formulation and in superspace [VEPEIS W E RO ES

Chiral superfield:

D=0 — &, 0) =)+ 0p(t)—i004(t), ¢ % — complex fields

(2,2,0) multiplet

®(t,0) = 6(t) + 0u(t) — i 006(t) = o(t) + Oy(t) = O(tL, 0)
Chiral N=2, 1D subspace:
(t,0), tL=t—i00
St=i(eh+20), d0=¢, 60=F = ot =2i0, 80 =¢
Supercharges in superspace (., 6, 0):

0
Q=5 Q_—_+2uealL

SUSY transformations of component fields:

Sp=ep, Op=—2i5p

SUSY invariant action:

s=-1 /dtdede‘chDé :%/dt{%q?—i(wi—w)}

S. Fedoruk (BLTP JINR, Dubna) Introduction to SUSY BLTP JINR, Dubna, 2-14.09.13

33/91



To V(=R DR USY @ [ N olely ol ly =T A (e VBN Iy e AT RIS ISISoET=Y  (Super)conformal mechanics in black hole physics

In the near horizon limit the extreme (M = Q) Reissner-Nordstrom black hole solution
of Einstein-Maxwell equations are (in the units with G = 1)

2 r\2 .o M2 2 2
dsf—(m) dt+<T) dr? + M%dQ

M
where 7, =diag(—,+,—), 7uX"X” = —M?,
X0 = (2r) M1+ r3(M2 —t?)], x'=(2r)" 1 -r3(M?+1?)], x? = Mrt.
The near horizon limit the extreme Reissner-Nordstrém black hole possesses
AdS, x S? geometry.

2 2
But - (L) dt? + <¥) dr? = 7,,, dx"dx”

AdS; part, having SO(2, 1) symmetry, is described by conformal mechanics.

Superconformal mechanics models describe motion of the particle with angular
momentum (spin) near horizon of the extreme Reissner-Nordstrom black hole.

S. Fedoruk (BLTP JINR, Dubna) Introduction to SUSY BLTP JINR, Dubna, 2-14.09.13 34/91



Lecture 2: 1D SUSY in component formulation and in superspace [eelgi{elgnE1N Il EQIESHI I E i)

Conformal mechanics action:
1 2
=32 /dt (X ==

t=a+bt+ct?=f(t), ox==1ifx, 6S:/dt/\, A=1fx?

Conformal invariance:

Conserved charges (p =X; % (Hét —pox +A) = O):

Ho= ()
D = tH-1xp
K = t*H-—txp+ 1x?

d 0 d 7] -
EK P K+{K,H}, =0, aD = aD—k{D,H}P =0, H — the Hamiltonian
{H,D}, =H, {K,D}, =—-K, {H,K}, =2D —  dynamical symmetry
[A,B]=i{A,B},: [H,D]=iH, [K,D]=-iK, [H,K]=2iD — sl(2,R) algebra

S. Fedoruk (BLTP JINR, Dubna) Introduction to SUSY BLTP JINR, Dubna, 2-14.09.13 35/91



Lecture 2: 1D SUSY in component formulation and in superspace [eelgi{elgnE1N Il EQIESHI I E i)

Properties of the conformal mechanics:
@ If HEE >=E|E >, then He“P |E >=e®>*E |E > =
the spectrum of H is continuous;

@ The eigenspectrum of H includes all E >0 values,
for each of which there exists a plane wave narmalizable state;

@ The spectrum of H does not have an endpoint (ground state),
the state with E=0 is not even plane wave normalizible.

It is obstacle to describe the conformal theory in terms of H eigenstates.

The sl(2,R) algebra in the Virasoro form:

1 1 . .
R:%(aH—s—aK), Li:—%(aH—aszlD); a is a parameter

[R,L+]=+Ls, [Ls, L ]=-2R
R is the u(1) generator in sl(2,R) ~ o(1, 2) algebra.

The eigenvalues of
1 (2., 9 2
R‘t:o,azl— 3 <p +F+X )

are given by a discrete series

fh=ro+n, n=0,1,2,..; ro=%<1+\/g+%)
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CTo V(=32 R DR USY A N otel g sTe g [T R (eI gna | EUTe T I ARSI IS oEIE]  Black hole interpretation of conformal mechanics

The absence of a normalizable ground states in the conformal mechanics and
necessity to redefine the Hamiltonian are given in black hole interpretation.

In the black hole interpretation, eigenstates E of H describe the states with time-like
energy-momentum vector, p#p, > 0.

The absence of a ground state at E = 0 can be interpreted as impossibility to cover
null geodesics of the event horizon with p#p,, = 0 by the static time coordinates
adapted by H.

Thus, the passing from H to “the Hamiltonian” R is transition to “good” time coordinate
near horizon.

Calogero model (multiparticle generalization of conformal mechanics)
. n C2 1 CZ
s=1 [dt Xada— S —— |, H:_[ 7}
[ Txx -3 sy H opebet S ey
= #b a a#b

in the large n limit may provide the description of the extreme RN black holes in the
near horizon limit.
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Lecture 2: 1D SUSY in component formulation and in superspace [AVEPESIIE vl eI

The N'=2 superconformal group OSp(2|2)~SU(1,1|1)
{Q.Q}=2H, {S,S}=2K, {Q,§}=2(D-U), {S,Q}=2(D+U),

FEIQ) k(@)
PE-Q) RO
OIS B

The closure of S, S with Q, Q = the full OSp(2|2).
We obtain the superconformal transformations by nonlinear realization method.

Coset realization of A = 2 superspace:
G={H,Q,QU}, H={U}, K={HQQ}
K(t,0,0) = €™+ {9 § are the coordinates on the coset
Qe g +00+0Q _ o'HH6'Q+8'Q . 5t (.4 29), S0 =¢, OO=2
e*e® =exp {A+ B+ 1[AB]+ % ([A[AB]] +[[AB]B]) +--}
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=2 superconformal mechanics
Coset realization of SU(1,1|1):
g={H,D,K,Q,Q,S,S,U}, H={U}, K={H,D,K,Q.Q,s,S}

= enH eaQ+9Q iuD eizK e<s+§§

e UK = K'H, e™TPK=KH
e"Be " =e"AB, 1AB=B, AAB=[AB], A?AB=]A,A,B]],
5t =i(e0 + &9), 80 = ¢, 80 =&
St=imh+a0)t,  &0=n(t—i00), &0 =7n(t+i60)
§'(dtd?9) =0, §'D=—-2in0D, &'D=—2i76D

X = x(t) + 0 — O(t) + 00F (1),  §'X =i(nd +70) X

2 ”
S—/dtd() 1 DXDX + v |nx /dt{x i () — ) — v+xzw¢}

Multi-particle generalization (N=2 superconformal Calogero):

SE /dtd0 ZDf)Can)Ca—i—'yZInDCa Xo|
a#b
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Lecture 2: 1D SUSY in component formulation and in superspace SIS e N WV RS Y olpi (ol EWNN S E [0

The standard N'=4, 1D superspace:
{t,ak,ék - (ek)+}, k=12
Supersymmetry transformations from the A'=4, 1D superconformal group D(2,1; «):
6t = i(0kd* — %), 0 =&k, 60 =&
§'t = —i(m@ — T 0t + (1 + 20)6,0 (G + 76k,
80 = it — 2iabk6;7 + 2i(1+ )0 — i(1 + 20) 6,0
Covariant derivatives DX = a%k +i 0% D¢ = % +i 0%

Some types of the A'=4, 1D superfields:

@ D¥DyX = m, D¥DxX = m, [D¥,Dx]X = 0 - scalar superfield, (1,4,3) multiplet

@ Div =p, DivK =0 - vectorsuperfield, (3,4,1)
Superconformal models (X = (V“‘Vik)l/2 for vector superfield):

s~/dtd4ex*1/2 for a # —1; S~/dtd4€xmx fora =—1

In components S ~ /dt [)-(2 i (e — ) — g+ 'j((;ﬁﬂﬁ)

More general formulations of A'=4, 1D models is achieved in harmonic superspace
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Lecture 3: 4D SUSY in superspace

@ N =1 4D superspace.

@ N =1 4D superfields action.

@ N-extended SUSY in superspace.

@ N =2 4D in harmonic superspace formulation.
@ Superstring action.
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The Poincaré group has a natural realization in the Minkowski space
M =x"), p=0,1,2,3
We can consider the Minkowski space as the coset

Poincare group

(4) _ )
M= Lorentz group (Pus L) / (Luv) -

k(x") = exp{ix"P,},  g(e", ") - k(x") = k(x'*) - (x" ", ")
The Poincaré supergroup can be realized in the coset

Poincare supergroup
Lorentz group

M(4‘4) (P;“Lp.quOévéd) /(LP'V)

Exponential parametrization of it:
k(x*,0%,0%) = exp{ix”Pu 1i0%Qa — iédéd} ,
where new spinor coordinates 0, % of coset are anticommuting parameters.
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Lecture 3: 4D SUSY in superspace N = 14D superspace

The extended manifold
MO (2, 67, 5
is called N' = 1 Minkowski superspace.

The spinor coordinates are called odd or Grassmann coordinates and have the
Grassmann parity —1, while x™ are even coordinates having the Grassmann parity +1

[0%,x"] = [0%,x"] =0, {0°,0°} ={0°,6°} =0.
Important consequence: fermionic coordinates are nilpotent, 6161 = 6,60, = 0.

From (e*, & are anticommuting parameters and spinor coordinates also anticommute
with them)

exp{ia"Qa - igd(gd} exp{ix”Pu +i0°Qn — ié‘ic‘gd} = exp{ix"‘Pu +i0°Qa — ié’déd}
we obtain supersymmetry transformations on superspace
oa/:9a+6a7 éa/:§a+6—a

x* = x" —i(ec™d — 0ME) .

Supersymmetry transformations are realized as translations in nilpotent directions of
the superspace.
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Lecture 3: 4D SUSY in superspace N = 14D superspace

The general scalar N = 1 superfield
o' (x',6',0") = &(x,0,0).
has the following finite series expansion in Grassmann coordinates

O(x,0,0) = G(X)+ 0% a(X) + 0s X*(X) + 0> M(x) + 62 N(x)
+00"GAL(X) + 02 0% pa(X) + 0% 85 X¥(x) + 62 0° D(x),

where 6? := %0, = eagﬁaﬁﬁ , 0% = 0,0% = edgégéd , €12 = €43 = 1.

Here there are 8 bosonic and 8 fermionic independent complex component fields.

The reality condition
@=0

implies the following reality conditions for the component fields

B(X) = o(x), Xa(X) =valx), M(X)=N(x), Au(x)=Au(x),

They leave in ® just (8 + 8) independent real components.
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Lecture 3: 4D SUSY in superspace N = 14D superspace

The transformation law ®'(x, 8,0) = ®(x — 6x,6 — ¢, d — €) implies

_ 0% 0 om0 (o 4 z5E
0P = —¢€ 500 eaao_d OX T =i (6 Qo + €:Q )(D
and leads to the expressions for supercharges
_; 9 D% (ot i ‘A__'i_a 5 i
Qa =1 902 0 (U )aa BT Qa = Iaéé‘ 0 (U )aa BT
0

{Qa,Qa} =2P,, {Qa,Qp} ={Qa,Qs} =0, P.=—i5—.

OXH
The relevant transformations of component fields are obtained from the formula
6D = 8¢+ 0“6tpa + . .. + 6°626D
and are
0p = —ep — &, Yo = —i(0"E)aOmd — 2caM — ("E)0Am, ... ,

i i =
oD = EampUmE— Eeam(?m/\,

The supermultiplet of fields encompassed by ®(x, 6, 8) is reducible.
How to describe irreducible supermultiplets in the superfield language?
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Lecture 3: 4D SUSY in superspace N = 14D superspace

An important element of the superspace formalism are spinor covariant derivatives

_ 9 igomy . 9 B9 pagomy O
Da_80ﬂ+|0 (o )(maxu, Ds = 505 i0% (o )““axw

{Da,Da} = —2i(6™)aaOm, {Da,Ds}={Ds,Dz}=0.

The covariant derivatives anticommute with supercharges,

{D,Q}={D,Q} =0,

so D, and D@ are again superfields:

5Da® = Dydd = Dai (eaQa + a;@d) &= (e“Qa + Edéd) Dad.

With the help of the covariant spinor derivatives it becomes possible to define
superfield description of the irreducible supermultiplets.

S. Fedoruk (BLTP JINR, Dubna) Introduction to SUSY BLTP JINR, Dubna, 2-14.09.13 46 /91



Lecture 3: 4D SUSY in superspace N = 14D superspace

Chiral superfields
Chirality condition

Da®L(x,0,6) =0
implies _
¢L(X7 0, 0) = L,0|_(XL7 9) = ¢(XL) + ea’l/]a(XL) + 00F(X|_) s
where B
X" =x"+i0cM0.
We obtain less independent fields: the set ¢, ¢, F is closed under N' = 1
supersymmetry:

0p = —etp, tha = —2i(0"€)aOmp — 2eaF, O6F = —ie6"0mv.
This is just the transformation law of the scalar /' = 1 supermultiplet.
The geometric interpretation: the subspace (chiral V' = 1 superspace)

(x",6%)
is closed under A/ = 1 supersymmetry:
ox" =2i6c™Me, 50 =€~ .
In the basis (x", 6%,6°): D = —=—.
00%
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Lecture 3: 4D SUSY in superspace Superfield actions

@ Scalar superfield Lagrangian:
L = L(®,Da®, De®,nd,...), L= (eaQa + gdc‘gd) 2,
@ The variation of the higher component of any expansion of any superfield is a
total derivative. This component is extracted by the Berezin integral. It is

equivalent to differentiation in Grassmann coordinates. In the considered case of
N = 1 superspace it is defined by the rules

/d29 02 =1, /d25(§)2 —1, /d29d2§(9)4 —1, (0) = (02(3)

@ Invariant superfield action:

= /d4xd40£(d>, Da®, Ds®, nd,...), 6L = (EQQQ + a@d) .
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Lecture 3: 4D SUSY in superspace Superfield actions

Chiral superfield
The kinetic terms is as follows

Skin = /d4xd46 O(x, 0)P(xr,0), xt =) =x"—i00"F.
After performing integration over Grassmann coordinates, one obtains
S ~ /d“x (a%am - 'Ewa“a,ﬂz + Fﬁ) .
The total Wess-Zumino model action is reproduced by adding, to this kinetic term,
also potential superfield term
Spm_/dxde gL ¢2)+cc
This action is the only renormalizble action of the scalar AV = 1 multiplet. In principle,
one can construct more general actions, e.g., the action of K&hler sigma model and

generalized potential term

Siin :/d“xd“eK [®(xL,0), D(Xr,0)] ,  Spot :/d“dezG P(®) +c.c..
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Vector superfield (M = 1 SYM)
It is described by the real superfield V (x, 6, ) possessing the gauge freedom

OV (x,0,0) = i[A(x" —i0c"B,0) — \(x" + i05"F, 0)],

where A\(x_, 0) is an arbitatry chiral superfild parameter. Using this freedom, one can
choose the so called Wess-Zumino gauge

Vwz (X, 0,0) = 2000 Au(X) + 21070 1pa(X) — 210°04 0% (X) 4+ 6°6° D(x) .
Residual gauge invariance in WZ gauge: A, (x) = A, + 9uA(X).
The invariant action is written as an integral over the chiral superspace

L1 .
Sgaiée = E/d4XLd29 (W*W,) +c.c.,

where W, = —%DZDQV is chiral DaW, = 0.

The corresponding component off-shell action reads (F*” = 0,A, — 0,A,)

S:/d4x {—%F“”Fw—iwg“&ﬂ;—F%Dz .
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N =1SYMtheory + matter

Superfields:
V(x,0,0) + &(x,0)
Total action
SE Sgauge + Smatter 5

1 a
Sgauge = 1—6/d4de29 (W W,) +c.c.,

Smatter == /d4Xd49 q_)aevq)a + /d4XLd20 (mzab q)aq)b + %q)aq)bq)c) +CC

3

invariant with respect local superfield transformations

Ve e 9, 5 e e,
(map = 0whenty +t, # 0 and gape = 0 Whenty +t, + tc # 0)

In nonabelian case:

W, = —%Dze*\/ D.e".
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Lecture 3: 4D SUSY in superspace N -extended SUSY in superspace

The difficulties in case of higher N supersymmetries arise because the relevant
superspaces contain too many 6 coordinates and many component fields,

2" for n Grassmann coordinates,

and it is a very complicated constraints to define the superfields which would correctly
describe the relevant irreps.

Let us consider N = 2 case.

R —symmetry
_ ——
N'=2, 4D SUSY algebra {Pu, QK, Quk = (Q%), Lo, 3™, } ik=1,2

su(2)

Standard\'= 2, 4D superspace {Pu, QX, Qax, Ly, J ik} / {LW, J "‘}
Standard superspace coordinates {x“, o, 0%% = (62)" }
Basic A = 2 superfield (hypermultiplet superfield) ¢’ (x, 6, 8) subjected by the
constraints o o
Dlg’(x,0,8)=0, D!q’(x,6,6)=0
does not have off-shell description (Lagrangian description) in standard superspace. It
possesses an off-shell formulation only in the A" = 2 harmonic superspace.
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Lecture 3: 4D SUSY in superspace Harmonic superspace for N'=2, 4D SUSY models

su (2) algebra: ~ J™) = {Ji, J° }, J° — u(1) generator

N'=4, 1D harmonic superspace {Pu, Q¥, Qak, Ly, J ”‘} / {Lu,,, JO}

Harmonic superspace coordinates {x“,é?, gk uii }

Harmonic coordinates parametrize S? ~ SU(2)/U(1) by two SU(2) spinors

u, u~ = (u¥)
which subject to the constraint uflu” =1 —  ufug —ufu = e
and are defined up to a U(1) phase transformations
ut = ey, uT e u”
(v U
lull=1{ o3 u ) € SU(2),  llulf—=gllullh, geSU(2), heU()

Any function on S? ~ SU(2)/U(1) must have a definite U(1) charge q

Z¢'1 gt u g for n>0
Harmonic functions are defined up to the transformations @ — e'@9¢(@)

of S 2 has the advantane of manifest SU(2) covariance
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Lecture 3: 4D SUSY in superspace Harmonic superspace for N'=2, 4D SUSY models

Covariant derivatives on the harmonic sphere S 2:

0 0 _ 0

DTt —ut—— =o*F, D’ =u'— —u — =9°
' ouT bout T u”
[D++,D__] — DO’ [D07Dii] — 42 Dii

Harmonic fields satisfy

Harmonic integrals:
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Lecture 3: 4D SUSY in superspace Harmonic superspace for N'=2, 4D SUSY models

Central basis in harmonic superspace:
{Xu7eﬁ7édk7uii } = {Z7u}
The N'=4, 1D Poincare supersymmetry:

ox* =i(a"B — 0ot E), 00 =ef, 60K =gk sut =0

Analytic basis in harmonic superspace:
S e O
{X:79a70d7ui :{ZA7U}7

where 0% =60Lu®, 05 =0suF,  x{=x*—i(00"0 +6 0”0

Analytic superspace (with half odd coordinates)
{X/g?G;:?g_zvuii } = {C7U}
is closed under A'=4 Poincare SUSY (and under /=4 superconformal symmetry)

Sxh = —2i(eo"0T + 010" YV, 605 = by 605 =2.ut,  sut =

I bl
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Lecture 3: 4D SUSY in superspace Harmonic superfield models

Covariant derivatives Di D'a u-, Di = DI +in analytic basis:
1o} - 0 _ 1o} - _ 1o} Lo
D)=—/—, Dl=———, D =2 B Dy = — A
fe 50— ) & 897‘5‘ ’ e 89+0‘ I(O—H ) aA ’ a 89+é‘ (0 0-#) aA
Therefore,

Dl W(z,u) =D} ¥(z,u) =0 = v = V((, )
— superfield that lives on the analytic superspace depends on half of the Grassmann
variables and has a smaller number of component fields.
Hypermultiplet
It is described by the analytic superfield q*, Dq" =D*q* =0
Invariant (free) action:

S = / d¢adu gD "

Analytic basis:
D*tq" =0 = equations of motion
Central basis:
D**qt=0 =
Dtq*t = D+q+ =0 =
Self-interactions:

a'=q (Z_)U
DlgY) =Dlgk) =0 (resolution of the constraints)

+14 Sr~t\2 ST\4
Sw = [ dédu [a(a")" +b(@'a") + (@)
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Lecture 3: 4D SUSY in superspace Superstring action

Fermionic string (Neveu-Schwarz-Ramond string) — 2d world-sheet supersymmetry

Superstring (Green-Schwarz superstring) — D = 3,4, 6, 10 target space
supersymmetry

o® = (o', 0%) — world-sheet coordinates, ~“ =egy?, a=1,2
D
2

X"(0), ©*(0) — target-space 2 fields, ©=0,1,.,D—1, A=1,..2

Target-space supersymmetry:
s0% =2, XM =igrte,
where I'* are Dirac matrices in D-dimensional space-time.
SUSY invariant one-forms
wt =dX* —ier+de, w" =dowl,
N =1 GS superstring action Sgs = [ d?0Lcs,
Los =T (VBI™? whiwy,p + 260X BT 050

Quantum spectrum of the superstring contains infinite towers of states having
higher spins

(SYM on ground state or SUGRA on ground state of N' = 2 GS superstring).
Higher spin fields will be considered in the lessons by M.Vasiliev and V.Didenko.
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Lectures 4,5: The elements of twistor theory

@ Symmetries of massless particle action.

@ Twistor space and its geometry.

@ Twistor transform.

@ Supertwistors.

@ (Supen)twistors in HS theory and superstring theory.
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Lectures 4,5: The elements of twistor theory

Proposed in 1967 by R. Penrose the twistor theory provides a basis for a new
mathematical tool in theoretical physics, in which the complex structure of quantum
field theory would follow directly from the complex structure of the new base space
(replacing the usual space-time).

Although there is still no consensus on the interpretation of the twistor theory,

or as a more suitable base (instead of the space-time approach) to build a future
complete theory of fundamental interactions,

or as a powerful mathematical tool for analyzing the conventional theories,

the twistor methods are very popular in modern theoretical physics.

Twistor methods allowed to develop new methods of constructing solutions of the
Einstein equations, have led to some progress in the construction of quantum gravity,
yielded non-trivial results in the Yang-Mills theory.

Twistor theory is used extensively in the theory of monopoles and instantons and in
the analysis of higher spin theory and superstring theory.

The ground positions of the twistor theory is best explored when analyzing massless
particle and its quantization.
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Lectures 4,5: The elements of twistor theory Symmetries of massless particle action

The action of the relativistic spinless particles in the first-order formalism
S, = /dr (puk” —e(p? - mz)) .

x*(7), p.(7) are the position and momentum variables; their Poisson brackets are
[x*,p.], =dL. 7 is evolution parameter. e(r) is Lagrange multiplier for the constraint

determining the mass of the particle.
Inserting equations of motion p,, = X../(2e) back in S; we obtain the action in the

second-order formalism
1 XHX
S, =2 [dr [ =2~ +em?) .
273 / T( e T )

Itis 1D gravity-like action where e(7) plays the role of 1D gravity field and second
term is 1D analog of 4D term with cosmological constant.

Insertion of equation of motion e = /X#x,,/m back in S; yields the square-root

action
S = m/dn/f(#)'(“,

The last action is only valid for a massive particle with m # 0.
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Lectures 4,5: The elements of twistor theory Symmetries of massless particle action

Let us consider massless case m = 0.
The action S; is invariant with respect the following global transformations

OxH = ak 4+ 1"x, + ex* + 2(k - x)x* — x?k* de = 2ce + 4(k - x)e,
6pu = luwp” — cpu + 2(k - )X — 2(k - X)pu — 2(X - p)K, -
Generators of these transformations (conserved charges)
P =By L =0l =%, D=0, (e =200 @l = B

form conformal algebra (here we will take 7, = diag(— + ++)) with respect the
Poisson brackets [x*, p,], = dk:

[L;LU7 L)\o']p = Nux Luo — Nuo LVA - (:u A V)7

[LAWv PA]P = nLMPV - (:u A V) ) [L#V7 Kk]p = np)\KV - (M A V) )
[PuvD]p =—Py, [KuvD]p =Ky, [PM,K,/]F, =2Myy — 21D .

Conformal boosts are non-linear transformations in the space-time. In space-time
formulation it is a hidden symmetry of conformally invariant systems. For example, in
the case of conformal transformations we have §00 = —4(kx)O + 4k*9,, O = 9*0,.
Therefore, the conformal invariance of the simplest Klein-Gordon equation J®(x) = 0
assumes the following transformations of massless scalar field & = —2(kx) ®.
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Lectures 4,5: The elements of twistor theory Symmetries of massless particle action

Conformal algebra has transparent representation.
Collecting 15 conformal generators in antisymmetric tensor Jux = —Jnm,
M = (1,0 u) = (1/,0;0,1,2,3) by

wa = Luuv JuO’ = %(Pu + Ku)v \]ul’ = %(Pu - Ku)v Jor =D,
we get the following realization of the conformal algebra
[Iwn, Ikl = vk Ine — vdnk — (M« N,

where nun has components 7, and 1,00 = 1,1 = Mo/ = 0, Moy = —1rr = +1 and
is metric tensor of 6-dimensional space with signature (— — + + ++).

That is, the conformal algebra is nothing but the algebra of the group SO(2, 4),
which is Lorentz group of the 6-dimensional space with two times. Corresponding
spinor group is SU(2, 2) group (similar to SL(2,C) = SO(1, 3)).

Consequently, there is possibility to reformulation of conformal invariant systems in
terms of the quantities transformed by the spin-tensorial representations of SO(2, 4)
or SU(2,2). Then all conformal transformations (shifts, linear and nonlinear
transformations) are realized in the form of linear transformations: the 6-dimensional
rotations or spinor transformations of 6-dimensional space-time. In fact, just for the
solution of this problem in 1967 Penrose introduced the concept of the twistors.

Possibility of the consideration of half-integer spin fields necessarily requires the
use of SU(2, 2)-spinors, which, in fact, determine the twistor space.
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Lectures 4,5: The elements of twistor theory Twistor space

In twistor theory, the conformal-invariant systems are formulated in space,
parameterized commuting SU(2, 2)-spinor Z,, a = 1, ..., 4. In fact, this space replaces
usual phase space formed by 4-vectors x* and p,,.

To obtain the results in terms of the usual 4D spin-tensor fields it is convenient to
consider the representation, when SU (2, 2) spinor

Za = (Aamud)

is represented in the form of two commuting 4D Weyl spinors (o = 1,2, & = 1, 2) with
opposite chiralities A, , u®.

Conjugated 4D spinors Mg = (M), A% = (u%) form SU(2, 2) spinor
Zs = (e, 5%),
that transforms according to a complex-conjugate representation.

SU (2, 2)-invariant tensor
- 0 435
ab _ . B

allows us to determine SU (2, 2) spinor
za = gabzb = (ﬁa7 _;\d)v
which is transformed by the inverse SU(2, 2) matrix.
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Lectures 4,5: The elements of twistor theory Twistor space

The contraction of the spinor Z, and its adjoint Z2 defines a Hermitian form
N=172.=19%Z;Za = 1 (3%Na — Xap®)
which is SU(2, 2)-invariant and defines the norm of SU (2, 2) spinor Za.

The twistor space T is a spinor space (the space C*) conformal group SU(2,2) with
Hermitian form A.

The twistors are SU (2, 2) spinors Z,, defined on the twistor space.

Depending on the value of the Hermitian form A, there are the following subsets of the
twistor space:

@ the positive twistor space T, where A > 0,

@ the negative twistor space T_, where A < 0

@ the isotropic twistor space To, where A = 0.

We will see below that the twistor norm A defines the helicity of massless particle.
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Lectures 4,5: The elements of twistor theory Twistor space

From the definition, conformal transformations are realized by linear transformations
on the twistor space. The infinitesimal transformations of spinor components are

0Aa

lagA® — Jcha — kosn?,
cmd = TdB/LB' T %Cud 2l adﬁ)\g
Defining the Poisson brackets in the twistor space
[Z%,Z)s =68 : [A% sl =05, [, 2g)e =55,

we find that these transformation are generated by the following quantities

Pasd = Aala, Ko = p%a*,

Las = Aahp) aﬁ—j\aﬂﬁ

D= (u Ao + )\au ).

They form the conformal algebra and leave invariant the twistor norm. In terms of the
4-component twistor formalizm, these generators are presented in the form of a
traceless product of twistor Z, and its adjoint Z2:

2°Z2, — 360 2°Zc.
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Lectures 4,5: The elements of twistor theory Two-spinor notations

In 4D twistor theory there are mainly used two-spinor notation for all quantities.

For 4-vectors of the position x* and momentum p,, we use two-index quantities x**
and p.. We define their relationship in the following form

1
pad = =

_ 1, s
ﬁpﬂaad7 pu_ﬁpﬂﬂo-,u 3
o 1 pmia w1 aa _p
X = 2X Ou X

= ﬁ X Uad o
Present in these relations multiplier % enables the rapid transformation of

expressions written in terms of vectors in expressions using the spinor indices. That
is, we can formally make substitutions
Pu=Pas,  X"=x"".
For example,

[Xua pV]P = 5562

aa a g
& Xl = 8565
We use also the following conventions
N . .
Pad = &5 Pty KO = VEK!5®,
L —1L,,0" Loz = 2L,6"
afB 2 FuvPags a8 2 —rv9sp0
U”V:%(a”&l’—a”&”), &”V:%(&”UV—&VU”)
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Lectures 4,5: The elements of twistor theory Twistor transform

That is, we have two formalism to describe the conformal-invariant systems:
space-time description and twistor formulation.

The relationship of space-time and twistor variables is defined by the relations

Pasa = )\aAa 5
p® =x%xg, T :XBX[M.
These relations are the Penrose twistor transform for the coordinates.

When twistor transform are valid, then

@ twistor representation of conformal generators goes into space-time realization
of them;

@ conformal transformations of twistor variables yield conformal transformations of
space-time quantities.

@ space-time and twistor symplectic structures are compatible with one another:
the Poisson brackets of any two quantities equal to each other when using the
space-time Poisson brackets or twistor Poisson brackets.
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Lectures 4,5: The elements of twistor theory Twistor transform

The relations of twistor transform have clear physical and geometrical meaning.

Equations p.a = Ao \a automatically mean light-like 4-momentum of the particle
p? = 0. This follows directly from the identity A* X, = ¢** X5\, = 0, which is valid for
commuting 4D spinors.

The conditions p® = x% )5, % = /_\Bxﬁa establish the links between Minkowski
space-time and twistor variables. Its are the incidence conditions. In particular, for a
fixed twistors the solution for x

X9 = x& 4 a e

contains an arbitrary real constant a, parametrizing light-like line in Minkowski space
with direction vector \*\“.

That is, (several) point of the twistor space correspond to light-like line in Minkowski
space.
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Lectures 4,5: The elements of twistor theory Twistor transform

Incidence conditions & = x%¥\s, [a® = Xﬁx‘?“ have important consequence: the
twistor, appearing in them, is isotropic

A=17%Z, =1 (3%\a — Xap®) =0.
This is achieved, in fact, because the matrix x“ is Hermitian.

What is the isotropic twistor condition or, indeed, what is the physical meaning of the
twistor norm?

The answer to this question is found after the calculation of the Pauli-Lubanski vector
W, = 3 en,P"MM.
In twistor realization of the generators we get
Was = APoa,
where A is the twistor norm and is defined above.

Thus, the twistor norm coincides with the helicity of massless particle, which is
described by this twistor.
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Lectures 4,5: The elements of twistor theory Twistor action of massless spinless particle

The twistor action of massless spinless particle has the following form
ghster — %/dr [Zaz'a —7%Z.— nzaza] :

where I(7) is Lagrange multiplier for the constraint A = %Zaza ~ 0 (vanishing
helicity). Up to a total derivative, this action takes the following form in the 4D spinor
notation

Sé)wistor _ /dT [,lja)\a + S\d/ld _ i§|(ﬁ°‘)\a = Xd‘ud)} .

It should be noted that, up to a total derivative the kinetic term i*\, + Xa /i of this
action takes the form of the space-time kinetic term p,x* after using the twistor
transform.

Let us do the quantization of twistor particle: find twistor wave function and compare it
with the scalar field obtained in the space-time formulation.
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Lectures 4,5: The elements of twistor theory Field twistor transform

At the transition to the quantum theory, the Poisson brackets go to the commutators

722 2] = 065

The quantization of the twistor particles is conveniently carried out in the holomorphic

representation (the Penrose representation), where the operators Z, diagonal, and ze
are realized as differential operators
a 3]

:laza; Aa alud7 I :|8—>\a.

N
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Lectures 4,5: The elements of twistor theory Field twistor transform

Twistor wave function
V(Z) =V(A p)

satisfies the equation

A= 1737, — A=

Nl=

we find that the twistor wave equation has the form

0 0 ;
17 ~ Y=_v: T, — &
22a82aw v, 2()\&8>\a 4

0
o

Thus, the twistor wave function of the considered system is a holomorphic
homogeneous function of homogeneity degree (—2):

v (cz) =c2w2(Z),

where c is arbitrary complex number.
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Lectures 4,5: The elements of twistor theory Field twistor transform

Usual space-time field is obtained from the twistor field by the Penrose twistor
transform for the fields. It is constructed as follows. In the twistor field the spinor . is
resolved by the incidence conditions

v(=3(z) =W, x%N,) .

,LLA:X{‘;”]A(‘,

Due to the homogeneity, this function is defined on the complex projective space CP*
and efficiently depends on a single complex variable. For example, it depends on

z = A\ /X at Az # 0. Integrating the twistor field with respect to this variable, we get
the usual space-time field. In the covariant record that does not depend on the choice
of independent coordinates on CP?, the twistor field is integrated with the measure
d) = \%d ).

d(x) = }hdw(*”(%xdwa),
where the integrand is invariant under A — c\. In this integral transformation the

integration is performed along a closed loop in the space of independent complex
variable, covering the pole of the twistor field.

Defined integral transformation is the Penrose twistor transform for scalar field.

Itis important that the field ®(x) automatically satisfies massless Klein-Gordon
equation 09, ®(x). This is the result of depending the twistor field on x** only in
combination x“*\, with commuting spinor ., for which the identity A* X, = 0 is valid.
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Lectures 4,5: The elements of twistor theory Mixed wistor-space-time formulation

We have considered both purely space-time formulation of massless particle with zero
helicity or its purely twistor formulation.

There is also mixed formulation that uses both space-time and twistor variables.
This is so-called Shirafuji twistor formulation.

The action of the massless spin-zero particles in the Shirafuji formulation is, in fact,
space-time action, in which the momentum is resolved through the twistor variables

Stmix) = /dmam“m .

That is, the importance of twistor relation

is coded directly in mixed action.
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Lectures 4,5: The elements of twistor theory Twistor transform as bridge

space-time
formulation

L= pad)'(da _ ep2

Penrose transform

pwd = )\a Xzi/

/,Ld _ X(.\B)\g , ﬂa — /_\SXBQ

mixed formulation

twistor formulation

L= i + Aait® = HI(E"Aa = Raps®)
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Lectures 4,5: The elements of twistor theory Twistor transform as bridge

twistor field space-time field

\U(iz)(z) = ‘U(iz)()\m Nd) _— (x) = %)\d)\w(iﬁ(z)hd:xda&,

(Zaa% g 2) v9(z) =0 Oo(x) = 0
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Lectures 4,5: The elements of twistor theory Twistor formulation of massless spinning particle

In the twistor formulation of the helicity of the particles is determined by the twistor
norm. Consequently, the phase space of massless particle of helicity s has to be
limited to the constraint

A—s =577 — s = §(i*da — Aap®) — s = 0.

The action

Svistor _ /dr 3@ -2z -l 2°2. - 9)]
determines the twistor formulation of a massless particle nonzero helicity s.

Quantization of the system is carried out by analogy with the spinless case. Twistor
constraint yields the equation for the twistor wave function

0
17 9y _ v
22857, (1+s)v.

Thus, the twistor field of massless particle with helicity s is holomorphic
homogeneous function of degree (—2 — 2s)

y(=2=2)(z).
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Lectures 4,5: The elements of twistor theory Twistor formulation of massless spinning particle

Corresponding usual space-time field can be obtained by using the incidence
conditions and the Penrose field transform:

Par o) = PN Aoy -+ Aoy U220, x5 N).

In contrast to the zero-helicity case, here integrand contains 2s components of the
spinor \ to compensate the negative weight of the twistor field.

The resulting space-time field is symmetric with respect to spinor indices because of
commuting twistor component, ®., . a,; = P(q,...a,) @and automatically satisfies the
Dirac equation .

O Dq, . ap(X) =0.

That s, it is complex self-dual field strength of massless particle of helicity s.
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Lectures 4,5: The elements of twistor theory Massive particle in twistor formulation

If the massless case the light-like momentum vector is resolved in term of single
spinor, spinor representation of the time-like momentum of a massive particle

p2:m2

must use at least two spinors (here it is summation with respect of repeating index
i=1,2) o

pad = )\Ia )\d iy
where Xsi = (AL).

Interpreting, by analogy with the massless case, the spinor \ as half the twistor,
we find that a massive particle should have bitwistor description. Furthermore, two
spinor used should be limited additional constraint

|)\aiAai |2 _ m2
or perhaps stronger conditions, such as
)\ai)\ai =m, /_\di/_\di =m,

which would violate the conformal symmetry to the Poincare group.
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Lectures 4,5: The elements of twistor theory Massless superparticle

Superparticle action in the formalism of the first order is given by

Sg ™ = /dT (padof"“ — epmp“) L W =X g% %"

The action is invariant under the following global transformations:
@ Poincare transformations
XY = @t o x Mo T B 607 = 015
@ dilatations _ _
SXY =cx, 0% = ico”;
@ conformal boosts
ox 4 = x Pk
@ supertranslations
oYY = —(0%* — &%), 0% =€,
@ superconformal boosts
X4 = 2i(B4 x5 — x VP ng6) — 40°6°(6°ns + 71,0°) ,

g pp 58 a _ B Ba | ipBpay .
Mx —40°0% 07k,50" 30 = 07Kg s (X" +1070%);

50% = —4i6° 0°ns + 75(x"* +10°6%) ,
and chiral spinor transformations §6* = —%igf)&a.
These nonlinear transformations form superconformal group SU(2,2|1).
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Lectures 4,5: The elements of twistor theory Supertwistors

Supertwistor formulation solves the basic task: superconformal symmetry in it is
realized by linear transformations.

By analogy with the purely bosonic case, supertwistors defined as spinors of the
superconformal group SU(2,2|1). Among the five components supertwistors

Za = (Za; X) = (Ma, 155 X) A=1,...,5

four ones are c-numerical components, formed by usual twistor - SU(2, 2)-spinor Za.
Fifth component is Grassmann, complex Lorentz scalar x, x = (x)-
Conjugated supertwistor
ZA = (2% 2ix) = (5%, —Xa; 2i%)
can be represented by complex-conjugated supertwistor
2=6"%, Z=0ai"%%),
and SU(2, 2|1)-invariant tensor

c ab
g _ (9 0
( 0o 2 )’
where g® is SU(2, 2)-invariant tensor.
SU (2, 2|1)-invariant supertwistor norm is defined by

N=12rz, = %GABZBZA = 3(1%Xa — Rafi®) — XX -
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Lectures 4,5: The elements of twistor theory Supertwistors

Conformal transformations act only on bosonic components of the supertwistor and
are defined previously. Supertranslations and superconformal boosts, realized linearly
on the supertwistor space, mix bosonic and fermionic components of the
supertwistors

0o = 2inaX, o = 2ie%y, 6x = € Ao — Tap® .
Chiral transformations of supertwistor components are
a=4%dha, Op=%out, dx=idx.
Introducing the (graded) symplectic structure with using the canonical Poisson
brackets for bosonic component and
{X7 )_C}P = IE

for Grassmann component, we obtain the following expressions for the generators of
supertranslations

Qu=2%Aa, Qa=-2ix\,
superconformal boosts
S* =2i v i”, S% = 2igpt
and chiral transformations
A= 5(ANa — Xap®) — 28X
These generators together with conformal generators form SU (2, 2|1).
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Lectures 4,5: The elements of twistor theory Supertwistors

In addition to the above considered algebra SU (2, 2), the superconformal algebra
SU(2,2|1) has non-zero Poisson brackets between the supertranslation generators
and superconformal boosts

{Qua,Qa}p = 2iPus,  {S*,8%}, =2iK*,

{Qu, 5%}, = —2iLa” —i(D —iA)8.?,  {Qa,5"}, = —2iLa” — (D +iA)6." .

The closure of the fermion symmetries generate all superalgebra SU(2,2|1).
Other non-zero brackets of the fermionic generators are
{Qu, KPP}, = 216587, {S°Pys),=2i65Q;,
{Qa,A}, =2iQa, {S“%,A}, =2iS°
and their complex conjugates.
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Lectures 4,5: The elements of twistor theory Supertwistor transform

Links of supertwistor and superspace variables are defined by the supersymmetric
generalization of the Penrose transform

In case of such relationship of the supercoordinates of two formulations,
superconformal symmetry in supertwistor formulation become the symmetry of the
superspace approach.

As in the case of usual (nonsupersymmetric) particles the supertwistor _
transformations include the resolution light-like momentum vector pas = AaAa-

Supersymmetric generalization of incidence condition ;& = x%*\,, + i 8%y is a shift of
the spinor 1%, defined in purely bosonic case, on the quantity which depends on the
Grassmann variables. Note that this condition contains complex vector coordinate of
chiral superspace ' .

pe=x"" Ao
The condition x = 6%\, determines Grassmann component of supertwistors as
A-projection of the spinor 6.
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Lectures 4,5: The elements of twistor theory Supertwistor action

Supertwistor action of massless superparticle has the form
Ss_w = %/dr [Z’AZA — G, = iléAzA} ,
or in term of the twistor components
Setw = /dr (B R+ Rt +iGx — %0) — V)

where I(7) is Lagrange multiplier for the constraint

N = (5" Xa = Xafi™) = xx = 0.

Calculating generalized Pauli-Lubanski vector shows that the supertwistor norm
coincides with superhelicity of massless superparticle described by this supertwistors.
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Lectures 4,5: The elements of twistor theory Twistor superfield transform

Twistor superfield, obtained as the wave function of first-quantized system, is a
homogeneous function of the supertwistor

v (2,) = v(Z,; ).

Twistor field yields standard superfield, defined on superspace, by the integral
transformation, which is generalization of Penrose field transform

o(x,,0) = ?{)\d)\\U(_z)(Aa, X2 Xai 0% Xa),

v(=?(z) =V (0, X% Na; 0°0a) .

X=X XN o
(N
The resulting chiral superfield is defined on superspace and describes Wess-Zumino
supermultiplet: in the x expansion there are only two terms with scalar and spinor
component fields.

Other massless multiplets are described by the twistor superfields W("(2,) having a
different degree of homogeneity (like massless field of nonzero helicity).
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Lectures 4,5: The elements of twistor theory Twistors in HS theory

We have seen that the generators of the conformal group SU(2, 2) are represented in
terms of bilinears _ _

Z%Zy — 305 2°Zc (Pu,Luw, Ky, P)
in the twistor formalism.

But the higher-spin (HS) symmetry is a generalization of the conformal symmetry.
For this reason, HS symmetry has natural and simple realization in terms of twistors.

Generators of infinite-dimensional HS symmetry are the monomials

Za, ... Zan 2" ... 2%,

All bilinear combinations _ o
Zazb7 Zazb7 ZaZb

form Sp(8) algebra, Sp(8) D SU(2,2). Itis basic symmetry in HS theory and HS
generalization of conformal algebra.
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Lectures 4,5: The elements of twistor theory Twistors in HS theory

Action for HS particle
Shs = /dT (/\a?\dxda ERVEDW +ydf\d) .
It is important that in this case we obtain twistor relation
Pac — Aada ~ 0
as constraints without fixing helicity (here not present the constraint A ~ const).

Taking the representation

S, = =i 5 g

_Iay—a7 a__lﬁ.

we see that basic twistor relation yields the Valiliev unfolded equation

. o 0 _
('3aa = 8)/—6“8)7“) V(x,y,y)=0

for HS field W(x,y,y). Its expansion in y,y produces tower of usual massless
space-time fields of all helicities.
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Lectures 4,5: The elements of twistor theory Twistor superstring

Recently, a great interest in the twistor theory is connected with the unexpected
application of superstring theory.

In 2003 E.Witten showed that the simple holomorphic form of maximal
helicity-violating (MHV) tree amplitudes in A" = 4 super-Yang-Mills theory can be
described by curves in supertwistor space, i.e. by twistor superstring.

Later, the amplitudes of the other processes have been described in terms of the
twistor superstring.

Witten twistor superstring is described by N = 4 supertwistors

ZA:(Za; Xi):(kﬂhud;xi)v |:1774

Corresponding twistor transformations are

Pas = >\a5\d )
'ud _ Xdoz)\a + i élaxl , 'aa _ ;\dxda _ I)Zl 0io¢ :
X = 0%\, K= Al
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