Axial Anomaly and chiral (magnetic and vortical) effects

Helmholtz International School Lattice OCD, Hadron Structure and Hadronic Matter

JINR, Dubna, September 6-7, 2011

Oleg Teryaev JINR, Dubna

Lecture 1 (on the blackboard) Physical interpretation Anomaly as Landau levels flow Triangle diagram Lecture 2 Anomaly and hadronic spectrum: t'Hooft principle Abelian vs non-Abelian Anomalies **Chiral Magnetic Effect Chiral Vortical Effect** Observation of chiral effects

Symmetries and conserved operators

- (Global) Symmetry -> conserved current ($\partial^{\mu}J_{\mu} = 0$)
- Exact:
- U(1) symmetry charge conservation electromagnetic (vector) current
- Translational symmetry energy momentum tensor $\partial^{\mu}T_{\mu\nu} = 0$

Massless fermions (quarks) – approximate symmetries

- Chiral symmetry (mass flips the helicity) $\partial^{\mu}J^{5}{}_{\mu} = 0$
- Dilatational invariance (mass introduce dimensional scale – c.f. energymomentum tensor of electromagnetic radiation)

$$T_{\mu\mu} = 0$$

Quantum theory

- Currents -> operators
- Not all the classical symmetries can be preserved -> anomalies
- Enter in pairs (triples?...)
- Vector current conservation <-> chiral invariance
- Translational invariance <-> dilatational invariance

Calculation of anomalies

- Many various ways
- All lead to the same operator equation

$$\partial^{\mu} j_{5\mu}^{(0)} = 2i \sum_{q} m_{q} \overline{q} \gamma_{5} q - \left(\frac{N_{f} \alpha_{s}}{4\pi}\right) G^{a}_{\mu\nu} \widetilde{G}^{\mu\nu,a}$$

 UV vs IR languagesunderstood in physical
 picture (Gribov, Feynman, Nielsen and Ninomiya)
 of Landau levels flow (E||H)

Anomaly and virtual photons

- Often assumed that only manifested in real photon amplitudes
- Not true appears at any Q²

4

- Natural way dispersive approach to anomaly (Dolgov, Zakharov'70) - anomaly sum rules
- One real and one virtual photon Horejsi,OT'95

$$\int_{4m^2}^{\infty} A_3(t;q^2,m^2)dt = \frac{1}{2\pi}$$

where

$$F_j(p^2) = \frac{1}{\pi} \int_{4m^2}^{\infty} \frac{A_j(t)}{t - p^2} dt, \qquad j = 3,$$

$$\begin{aligned} T_{\alpha\mu\nu}(k,q) &= F_1 \varepsilon_{\alpha\mu\nu\rho} k^{\rho} + F_2 \varepsilon_{\alpha\mu\nu\rho} q^{\rho} \\ &+ F_3 q_{\nu} \varepsilon_{\alpha\mu\rho\sigma} k^{\rho} q^{\sigma} + F_4 q_{\nu} \varepsilon_{\alpha\mu\rho\sigma} k^{\rho} q^{\sigma} \\ &+ F_5 k_{\mu} \varepsilon_{\alpha\nu\rho\sigma} k^{\rho} q^{\sigma} + F_6 q_{\mu} \varepsilon_{\alpha\nu\rho\sigma} k^{\rho} q^{\sigma} \end{aligned}$$

Dispersive derivation

- Axial WI $F_2 F_1 = 2mG + \frac{1}{2\pi^2}$
- GI $F_2 F_1 = (q^2 p^2)F_3 q^2F_4$
- No anomaly for imaginary parts

$$(q^2 - t)A_3(t) - q^2A_4(t) = 2mB(t)$$
 $F_j(p^2) = \frac{1}{\pi} \int_{4m^2}^{\infty} \frac{A_j(t)}{t - p^2} dt, \quad j = 3, 4$

Anomaly as a finite subtraction

$$F_2 - F_1 - 2mG = \frac{1}{\pi} \int_{4m^2}^{\infty} A_3(t)dt$$

$$\int_{4m^2}^{\infty} A_3(t;q^2,m^2)dt = \frac{1}{2\pi}$$

Properties of anomaly sum rules

- Valid for any Q² (and quark mass)
- No perturbative QCD corrections (Adler-Bardeen theorem)
- No non-perturbative QCD correctioons (t'Hooft consistency principle)
- Exact powerful tool

Mesons contributions (Klopot, Oganesian, OT) Phys.Lett.B695:130-135,2011 (1009.1120) and 1106.3855

- Pion saturates sum rule for real photons $ImF_3 = \sqrt{2}f_{\pi}\pi F_{\pi\gamma\gamma*}(Q^2)\delta(s-m_{\pi}^2)$ $F_{\pi\gamma*\gamma}(0) = \frac{1}{2\sqrt{2}\pi^2 f_{\pi}}$
- For virtual photons pion contribution is rapidly decreasing $F_{\pi\gamma\gamma^*}^{\text{asymp}}(Q^2) = \frac{\sqrt{2}f_{\pi}}{Q^2} + O(1/Q^4)$
- This is also true also for axial and higher spin mesons (longitudianl components are dominant)
- Heavy PS decouple in a chiral limit

Anomaly as a collective effect

- One can never get constant summing finite number of decreasing function
- Anomaly at finite Q² is a collective effect of meson spectrum
- General situation –occurs for any scale parameter (playing the role of regulator for massless pole)
- For quantitative analysis quarkhadron duality

Mesons contributions within quark hadron duality – transition FF (talks of P. Kroll, S. Mikhailov, A. Pimikov)

Pion:
$$F_{\pi\gamma\gamma*}(Q^2) = \frac{1}{2\sqrt{2}\pi^2 f_{\pi}} \frac{s_0}{s_0 + Q^2}$$

- Cf Brodsky&Lepage, Radyushkin comes now from anomaly!
- Axial meson contribution to ASR

$$\int_0^\infty A_3(s;Q^2)ds = \frac{1}{2\pi} = I_\pi + I_{a_1} + I_{cont}. \qquad I_{a_1} = \frac{1}{2\pi}Q^2 \frac{s_1 - s_0}{(s_1 + Q^2)(s_0 + Q^2)}$$

Content of Anomaly Sum Rule ("triple point")

Figure 1: Relative contributions of π (blue line) and a_1 (orange line) mesons, intervals of duality are $s_0 = 0.7 \ GeV^2$ and $s_1 - s_0 = 1.8 \ GeV^2$ respectively, and continuum (black line), continuum threshold is $s_1 = 2.5 \ GeV^2$

ASR and BaBar data

- In the BaBar(2009) region main contribution comes from the continuum
- Small relative correction to continuum –due to exactness of ASR must be compensated by large relative contributions to lower states!
- Amplification of corrections

$$\frac{\delta I_{cont}/I_{cont}^0}{\delta I_{\pi}/I_{\pi}^0} = \frac{s_0}{Q^2} \simeq \frac{1}{30} \quad Q^2 = 20 \ GeV^2, \ s_0 = 0.7 \ GeV^2$$

 Smaller for eta because of larger duality interval (supported by BaBar)

Corrections to Continuum

- Perturbative zero at 2 loops level (massive-Pasechnik&OT – however cf Melnikov; massless-Jegerlehner&Tarasov)
- Non-perturbative (e.g. instantons)
- The general properties of ASR require decrease at asymptotically large Q² (and Q²=0)
- Corresponds to logarithmic $I_{cont} = \frac{1}{2\pi} \frac{Q^2}{s_0 + Q^2} cs_0 \frac{\ln(Q^2/s_0) + b}{Q^2}$, contribution (cf Radyushkin, $I_{\pi} = \frac{1}{2\pi} \frac{s_0}{s_0 + Q^2} + cs_0 \frac{\ln(Q^2/s_0) + b}{Q^2}$. Polyakov, Dorokhov).

Modelling of corrections

Continuum vs pion

Fit b = -2.74, c = 0.045.

 Continuum contribution similar for Radyushkin's approach

Interplay of pion with lower resonances

- Small (NP) corrections to continuum interplay of pion with higher states
- A1 decouples for real photons
- Relation between transition FF's of pion and A1 (testable!)

Generalization for eta(')

Octet channel sum rule (gluon anomaly free)
0.20

Conclusions/Discussion-I

- New manifetsation of Axial Anomaly Anomaly Sum Rule exact NPQCD tool- do not require QCD factorization
- Anomaly for virtual photons collective effect (with fast excitation of collective mode)
- Exactness of ASR very unusual situation when small pion contribution can be studied on the top of large continuum – amplification of corrections to continuum
- BaBar data small negative correction to continuum
- If continuum is precisely described by Born term— interplay with A1 (TO BE STUDIED THEORETICALLY AND EXPERIMENTALLY)
- Similar collective effect is expected for finite temperature and/or chemical potential

Anomaly in Heavy Ion Collisions -Chiral Magnetic Effect (D. Kharzeev)

From QCD back to electrodynamics: Maxwell-Chern-Simons theory $\mathcal{L}_{MCS} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} - A_{\mu} J^{\mu} + \frac{c}{4} P_{\mu} J^{\mu}_{CS}.$ Axial current of quarks $J_{CS}^{\mu} = \epsilon^{\mu\nu\rho\sigma} A_{\nu} F_{\rho\sigma}$ $P_{\mu} = \partial_{\mu}\theta = (M, \vec{P})$ $\vec{\nabla} \times \vec{B} - \frac{\partial \vec{E}}{\partial t} = \vec{J} + c \left(M \vec{B} - \vec{P} \times \vec{E} \right),$ $\vec{\nabla}\cdot\vec{E}=\rho+c\vec{P}\cdot\vec{B},$ $\vec{\nabla} \times \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0,$ Photons $\vec{\nabla} \cdot \vec{B} = 0$, 17

Comparison of magnetic fields

The Earths magnetic field	0.6 Gauss
A common, hand-held magnet	100 Gauss
The strongest steady magnetic fields achieved so far in the laboratory	4.5 x 10⁵ Gauss
The strongest man-made fields ever achieved, if only briefly	10 ⁷ Gauss
Typical surface, polar magnetic fields of radio pulsars	10 ¹³ Gauss
Surface field of Magnetars	10 ¹⁵ Gauss
http://solomon.as.utexas.edu/~duncan/magnetar.html	

At BNL we beat them all!

Off central Gold-Gold Collisions at 100 GeV per nucleon $e B(\tau = 0.2 \text{ fm}) = 10^3 \sim 10^4 \text{ MeV}^2 \sim 10^{17} \text{ Gauss}$

Induced current for (heavy - with respect to magnetic field strength) strange quarks

Effective Lagrangian

 $L = c(F\widetilde{F})(G\widetilde{G})/m^4 + d(FF)(GG)/m^4$

- Current and charge density from c (~7/45) term $j^{\mu} = 2c \tilde{F}^{\mu\nu} \partial_{\nu} (G\tilde{G}) / m^4$
- $\rho \sim \vec{H}\vec{\nabla}\theta$ (multiscale medium!) $\theta \sim (G\tilde{G})/m^4 \rightarrow \int d^4x G\tilde{G}$
- Light quarks -> matching with D. Kharzeev et al' -> correlation of density of electric charge with a gradient of topological one (Lattice ?)

Properties of perturbative charge separation

- Current carriers are obvious strange quarks -> matching -> light quarks?
- No relation to topology (also pure QED effect exists)
- Effect for strange quarks is of the same order as for the light ones if topological charge is localized on the distances $\sim 1/m_s$, strongly (4th power!) depends on the numerical factor : Ratio of strange/light sensitive probe of correlation length
- Universality of strange and charm quarks separation charm separation suppressed as $(m_s / m_c)^4 \sim 0.0001$
- Charm production is also suppressed relative effects may be comparable at moderate energies (NICA?) – but low statistics

Anomaly in medium – new external lines in VVA graph Gauge field -> velocity CME -> CV(ortical)E Kharzeev, θ Zhitnitsky (07) – **EM** current Straightforward g i μ_i generalization: jα V_{β} any (e.g. baryonic) current – neutron asymmetries@NICA -Rogachevsky, Sorin, OT - Phys.Rev.C82:054910,2010.

Baryon charge with neutrons – (Generalized) Chiral Vortical Effect

- Coupling: $e_j A_\alpha J^\alpha \Rightarrow \mu_j V_\alpha J^\alpha$
- Current: $J_e^{\gamma} = \frac{N_c}{4\pi^2 N_f} \varepsilon^{\gamma\beta\alpha\rho} \partial_{\alpha} V_{\rho} \partial_{\beta} (\theta \sum_j e_j \mu_j)$
- Uniform chemical potentials: $J_i^{\nu} = \frac{\sum_j g_{i(j)} \mu_j}{\sum_i e_j \mu_i} J_e^{\nu}$
- Rapidly (and similarly) changing chemical potentials:

$$J_i^0 = \frac{\left|\vec{\nabla}\sum_j g_{i(j)}\mu_j\right|}{\left|\vec{\nabla}\sum_j e_j\mu_j\right|} \ J_e^0$$

Comparing CME and CVE

- Orbital Angular Momentum and magnetic moment are proportional – Larmor theorem
- CME for 3 flavours no baryon charge separation (2/3-1/3-1/3=0!) (Kharzeev, Son) - but strange mass!
- Same scale as magnetic field

Observation of chiral effects

- Sign of topological field fluctuations unknown
 need quadratic (in induced current) effects
- CME like-sign and opposite-sign correlations – S. Voloshin
- No antineutrons, but like-sign baryonic charge correlations possible
- Look for neutron pairs correlations!
- MPD@NICA (lecture of A. Sorin) may be well suited for neutrons!

RHIC data for CME

Figure 2. (Taken from [17]) STAR results compared to simulations for 200 GeV Au+Au. Blue symbols mark oppositecharge correlations, and red are same-The shaded bands show the charge. systematic error due to uncertainty in v_2 In simulations the true measurements. reaction plane from the generated event was used. Thick solid lighter colored lines represent non reaction-plane dependent contribution as estimated by HIJING. Corresponding estimates from UrQMD are about factor of two smaller.

Estimates of statistical accuracy at NICA MPD (months of running)

- UrQMD model : Au + Au at $\sqrt{s_{NN}} = 9$ GeV
- 2-particles -> 3-particles correlations no necessity to fix $(\cos(\phi_{\alpha} + \phi_{\beta} - 2\phi_{c}))$ the event plane $(\cos(\phi_{\alpha} + \phi_{\beta} - 2\phi_{c}))$
- 2 neutrons from
 mid-rapidity (|η| < 1)
- +1 from ZDC ($|\eta| > 3$)

Background effects

Can correlations be simulated by UrQMD generator?

Other sources of quadratic effects

- Quadratic effect of induced currents not necessary involve (C)P-violation
- May emerge also as C&P even quantity
- Complementary probes of two-current correlators desirable
- Natural probe dilepton angular distributions

Observational effects of current correlators in medium

- McLerran Toimela'85 $W^{\mu\nu} = \int d^4x \, e^{-iq \cdot x} \langle J^{\mu}(x) J^{\nu}(0) \rangle$
- Dileptons production rate

$$\frac{d(R/V)}{d^4q \, d^3p \, d^3p'} = -\frac{1}{E_p E_{p'}} e^4 \frac{1}{(2\pi)^6} \times \delta^{(4)}(p+p'-q) L^{\mu\nu}(p,p')$$

 $\times (1/q^4) W_{\mu\nu}(q)$.

 Structures –similar to DIS F1, F2 (p ->v) Tensor polarization of in-medium vector mesons (Bratkovskaya, Toneev, OT'95)

- Hadronic in-medium tensor – analogs of spin-averaged structure functions: p -> v
- Only polar angle dependence
- Tests for production mechanisms - recently performed by HADES in Ar+KCl at 1.75 A GeV !

$$W^{\mu\nu} = W_1(q^2, vq) (g^{\mu\nu} - \frac{q^{\mu}q^{\nu}}{q^2}) + W_2(q^2, vq) (v^{\mu} - q^{\mu}\frac{vq}{q^2})(v^{\nu} - q^{\nu}\frac{vq}{q^2}) \frac{d\sigma}{d\cos\theta} \sim 1 + \frac{|v|^2}{2W_1/W_2 + 1 - (vq)^2/q^2}\cos^2\theta \frac{1.2}{0.8} 0.4 0.4$$

General hadronic tensor and dilepton angular distribution

Angular distribution

 $d\sigma \propto 1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{\nu}{2} \sin^2 \theta \cos 2\phi + \rho \sin 2\theta \sin \phi + \sigma \sin^2 \theta \sin 2\phi$

 Positivity of the matrix (= hadronic tensor in dilepton rest frame)

 $\begin{pmatrix} \frac{1-\lambda}{2} & \mu & \rho \\ \mu & \frac{1+\lambda+\nu}{2} & \sigma \\ \rho & \sigma & \frac{1+\lambda-\nu}{2} \end{pmatrix} |\lambda| \le 1, \ |\nu| \le 1+\lambda, \ \mu^2 \le \frac{(1-\lambda)(1+\lambda-\nu)}{4} \\ \rho^2 \le \frac{(1-\lambda)(1+\lambda+\nu)}{4}, \ \sigma^2 \le \frac{(1-\lambda)^2 - \nu^2}{4} \\ \bullet^2 \le \frac{(1-\lambda)(1+\lambda+\nu)}{4} \\ \bullet^2 \le \frac{$

1st line – Lam&Tung by SF method

Magnetic field conductivity and asymmetries

- zz-component of conductivity (~hadronic) tensor dominates
- λ =-1
- Longitudinal polarization with respect to magnetic field axis
- Effects of dilepton motion work in progress

Other signals of rotation

- Hyperons (in particular, Λ) polarization (self-analyzing in weak decay)
- Searched at RHIC (S. Voloshin et al.) oriented plane (slow neutrons) - no signal observed
- No tensor polarizations as well

Why rotation is not seen?

- Possible origin distributed orbital angular momentum and local spin-orbit coupling
- Only small amount of collective OAM is coupled to polarization
- The same should affect lepton polarization
- Global (pions) momenta correlations (handedness)

New sources of Λ polarization coupling to rotation

- Bilinear effect of vorticity generates quark axial current (Son, Surowka)
- Strange quarks should lead to Λ polarization
- Proportional to square of chemical potential – small at RHIC – may be probed at FAIR & NICA

$$j^{\mu}_{A} \sim \mu^{2} \left(1 - \frac{2 \mu n}{3 (\epsilon + P)}\right) \epsilon^{\mu\nu\lambda\rho} V_{\nu} \partial_{\lambda}V_{\rho}$$

Conclusions/Discussion - II

- Anomalous coupling to fluid vorticity new source of neutron asymmetries
- Related to the new notion of relativistic chaotic flows
- Two-current effects dilepton tensor polarization
- New source of hyperon polarization in heavy ions collisions