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Motivation

Experiments at LHC
do not see the "Standard Higgs"yet
(masses from 145 to 450 GeV excluded)

Psychological pressure to consider alternatives to SM

Also, SM = pert. th, and perturbatively

δM2
H ∼ αΛ2

UV � M2
H

Generically,
non-perturbative alternatives to the SM are encouraged
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Higgses and lattice

Often overlooked:
Lattice is practically the only source of knowledge on
non-perturbative, Higgs-like scalars

Alternative title of the lecture:
scalar �elds in the lattice gluodynamics

Conclusions:
there are a few highly non-trivial observations on scalars on
the lattice meeting theorists' desires
but much more questions left open
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Outline

Con�nement and Scalar Fields

Abelian case

non-Abelian case

Con�nement and strings

Magnetic strings

Scalars living on the strings

Decon�nement and scalars

From 4d to 3d

From magnetic monopoles to dyons
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References

The lecture is rather theoretical.
We will try to summarize some theoretical ideas closely
related to interpretation of the lattice data
but in fact independent

The theoretical developments took many years and the
presentation is sketchy.

No particular lattice data are quoted. However, close
collaboration with the ITEP Lattice Group is gratefully
acknowledged.

No references here (turn to reviews for references)
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Abelian con�nement

Continuum theory

Abrikosov-Nielsen-Olesen vortex

Charged scalar coupled to electromagnetic �eld:

S =

∫
d4x

( 1
4e2 F 2

µν + |Dµφ|2 + V (φ)
)

where the potential

V (φ) =
(
|φ|2 − v2)2

There exists a static solution
with �nite energy per unit of length
called vortex
The pert. vacuum (φ = 0) is restored along the axis of the
vortex
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Abelian con�nement

Quantization of magnetic �ux

The solution is:

φ = φ(ρ)eiθ , Aθ = a(ρ)

with boundary conditions:

φ(ρ→∞) = v , φ(ρ = 0) = 0, a(∞) =
1
ρ

The magnetic �ux gets quantized:∫ 2π

0
dθ Aθ · ρ = 2π

The �ux is the same as for the Dirac magnetic monopole
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Abelian con�nement

Con�nement of the magnetic monopoles

The vortex can be closed or
end up with magnetic monopoles
For a large separation R of the monopoles

lim
R→∞

VMM̄ = σabrikosov · R

where σAbrikosov is energy of the vortex per unit length

σAbrikosov ∼ v2

in fact, physics of superconductors, well understood and
checked

Magnetic charges (monopoles) are con�ned
if a charged scalar is condensed
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Abelian con�nement

Dual superconductor model

To explain the con�nement of quarks one

interchanges electric and magnetic �elds assuming

In the physical vacuum, there is

magnetically charged scalar condensed

vmagn 6= 0

Then

lim
R→∞

VQQ̄ ∼ v2
magn

and there is con�nement of quarks

This idea dominates theory of con�nement for 35 years
The whole issue is what are the magnetic degree of
freedom, symmetry and so on
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Abelian con�nement

Mini-conclusion

So far we understood how con�nement is related to scalars,
in the Abelian case and classically

However, in YM case there are no elementary scalars.
Scalars should be made out of the glue.
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Abelian con�nement

Quantum, or lattice dual superconductor

Start with pure Abelian gauge �eld. In the continuum,

S =
1

4e2

∫
d4x(Fµν)2

The vacuum is probed by external heavy electric charges
The de�nition of the con�nement is:

< W > = < P exp
( ∫

C
idxµAµ

)
> ∼ exp (−σ · R · T )

In the lattice version there is con�nement of charges at

e2 > e2
crit ∼ 1

although there is no elementary scalar in the original action

To understand need elements of quantum geometry
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Abelian con�nement

Polymer representation of �eld theory

A touch of quantum geometry:
Start with classical action for a particle of mass M

Scl = M · L

Quantum propagator is given by the path integral

D(x , x
′
) = Σpathsexp

(
− Scl(path)

)
To enumerate the paths, discretize space-time
that is introduce lattice spacing a for pure theoretical needs
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Abelian con�nement

Polymer representation, cnt'd

The probablity to observe a particular path
is equal to the product of the action factor for each link,

exp(−Slink ) = exp(−M · a)

Since the number of steps is L/a

Wparticular trajectory = exp
(
− (M · a)L/a

)
where a is the lattice spacing
Next, account for the fact that there di�erent trajectories
of the same length L
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Abelian con�nement

Action vs entropy

At each step of constructing trajectory
we can choose one of 7 directions
without changing the whole length.
Total number is:

N(L) ≈ exp( ln7 · L/a)

As a result,

W (L) ∼ exp(−M · a + ln7)L/a

Two exponential factors pushing in opposite directions
Analogy:

(free energy) = (energy) − (entropy)

Both are divergent in the limit a→ 0
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Abelian con�nement

Mass renormalization

One can rewrite the equations above as statement
on mass renormalization.
Namely, actual (renormalized) mass is

m2
phys =

const
a

(
M(a)− ln7

a

)
Thus, we come back to the quadratic divergence in mass of
a scalar particla
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Abelian con�nement

Mini conclusion

Quantum geometry deals with geometrical objects changing
directions on the lattice spacing scale and provides with an
alternative to the standard �eld theory.
The problem of the quadratic divergence in the mass is
reproduced.
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Abelian con�nement

Abelian magnetic degree of freedom

How to match quantum geometry to physics.
Start with free Abelian gauge �eld

S =
1

4e2

∫
d4x(Fµν)2

There is a singular solution, magnetic monopole

H =
r
r 3 QM

where the magnetic charge QM is �xed in terms of charge e
by the condition that the Dirac string is invisible
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Abelian con�nement

Fine tuning in language of quantum geometry

The monopole mass

Mmonopole =
1

8π

∫ ∞

0
H2d3r

Mmonopole =
const
e2a

If
const

e2 = ln7 + O(m2
physa2)

then m2
monopole ≈ 0

Can get negative m2
phys once entropy enhancement prevails

over suppression due to the action (singular monopole bare
mass)
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Abelian con�nement

Symmetry breaking in geometrical terms

For m2
phys > 0 probability to have length L trajectory

W (L) ∼ exp(−m2
physL · a)

and there exist only �nite clusters of trajectories
If m2

phys < 0 then L→∞ is not suppressed
there appears an in�nite cluster
Most beautiful, in�nite cluster is dilute �rst:
Probability θ of a link to belong to the in�nite cluster:

θ(link) ∼ |m2
physa2|γ , γ > 0

Emergence of the in�nite cluster is
the spontaneous symmetry breaking
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Abelian con�nement

Relation to �eld theory

On the lattice, monopole trajectories are de�ned as
violations of the Bianchi identity:

∂µF̃µν ≡ jmonopole
ν

One can measure length of monopole trajectories for each
con�guration

< Lmonopole > ≡ ρmonopoleVtot

< φ2
magn > = (const)ρmonopole · a

If we count only trajectories in in�nite cluster

< φmagn >
2 = (const)ρinfinite

monopole · a
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Abelian con�nement

Trading singularity for a scalar �eld

Classically (Higgs model) we have both electromagnetic
�eld and charged scalar

Quantum mechanically, we start with free electromagnetic
�eld, keep singular (monopole) solutions and see that these
solutions can be traded for scalar �eld. Classically this is
the same Higgs model
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Abelian con�nement

Mini- conclusion

On the lattice, the monopole trajectories are uniquely
determined in terms of quantum �elds {Aµ(x)}. All the
theory predictions turn to be true.
The role of the condensate vmagn is played by the in�nite
cluster of the monopole trajectories.
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Abelian con�nement

Jump from Abelian to non-Abelian case?

Quark con�nement is non-Abelian
(
L = 1/4g2(Ga

µν)2
)

Would be nice to trade singularities of non-Abelian �elds
for a physical scalar �eld again

However, there is no direct generalization to non-Abelian

case:

no constant to tune: strong coupling runs,

it is not a constant

Monopoles are Abelian construct

quite a few further reasons

We will come back to this later
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Abelian con�nement

Naive generalization

The idea is to replace the original, non-Abelian �eld
con�gurations with the "closest"Abelian con�gurations.
First, use gauge-�xing to minimize the functional

R =
∑
lattice

[(A1
µ)2 + (A2

µ)2]

where indices 1,2 are color indices
Second, project non-Abelian component out:

Ā1,2
µ = 0, Ā3

µ 6= 0

De�ne monopoles in projected �elds:

∂βF̃βα ≡ (j)monopole
α
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Abelian con�nement

Numerical, but beautiful �ndings

The monopoles de�ned in terms of projected �elds exhibit

remarkable features. E.g.:

There exist both �nite and in�nite clusters of

monopole trajectories.

removal of the in�nite cluster destroys con�nement

Simple scaling laws:

ρinfinite
monopole − = (const)Λ3

QCD

This is highly nontrivial since ΛQCD is related to the

lattice spacing through 2-loop β-function
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Abelian con�nement

Mini conclusion

Empirically, the lattice monopoles in Yang-Mills case look
physical objects (know about ΛQCD)

The de�nition of the monopoles, however, looks rather
arbitrary since there are many di�erent Abelian projections.
The de�nition is in pure lattice terms, non-local.
No path to continuum theory visible.
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Abelian con�nement

Most beautiful of all

The total monopole density has two terms:

ρmonopole
tot =

(const)Λ2
QCD

a
+ (const)

′
Λ3

QCD

and depends explicitly on the lattice spacing. The �rst term
is due to �nite (small) clusters.
In terms of matrix element:

lim
a→0

< φ2
magn > Λ2

QCD

and is exactly what we would like to have for Higgs
Lattice monopoles provide �rst example of dynamical
solution of the hierarchy problem
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Abelian con�nement

Self-tuning

Matrix element < φ2
magn > does not depend on the

measuring procedure
We can also clarify the mechanism on the UV scale
It turns out that
non-Abelian action associated with the monopoles

Smon ≈ ln7
L
a

where L is the length of trajectory. The magic ln7 is hit
without any �ne tuning by hand
in Yang-Mills theory self-tuning of monopoles is observed
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Abelian con�nement

Monopoles and surfaces

An alternative way to express results

Monopoles cover densely a 2d surface

Just span smallest-area surface on the monopole
trajectories and get

(Area)tot ∼ VtotΛ
2
QCD

Actually these strings were de�ned and observed on the
lattice as the so called center vorteces. We skip this point.
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Abelian con�nement

Monopoles and strings

Surfaces in quantum geometry correspond to strings in the
continuum limit. Quite obvious.
Amusingly, For the string tension the resut for (Area)tot

implies
Tstring ∼ Λ2

QCD

Physics of monopoles, or scalars is physics of strings
Strings with physical tension in the vacuum seem to be
observed
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Abelian con�nement

Challenging observations

For the monopole condensate we get

< φmagn >
2 ∼ Λ3

QCD · a

that is, vanishing in the continuum limit

at the decon�nement phase transition

monopole trajectories become parallel to the

(Euclidean) time and continue to ensure con�nement

in the 3d YM (time slice of the 4d volume)



Lower-dimensional defects in lattice gluodynamics

Abelian con�nement

Thoughts and doubts

There can be no interesting singular �elds because of

the asymptotic freedom

It is known that there is no �ne-tuning procedure for

surfaces (strings)

there are provisional answers to this particular questions
(blackboard) but...
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Abelian con�nement

Further strategy

Imagine that by luck (!?) we did detect physical objects
through particular projection. How to go further without
having continuum theory de�nition of the object observed.

A possibility: guess which physical object it could be and
check the answers for observables which can be found
(calculated) in the lattice
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Abelian con�nement

Educated guess: magnetic strings

Magnetic string, by de�nition are closed in vacuum and can
be open on the so called 't Hooft line
This can be checked on the lattice (blackboard).
Fits well
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Abelian con�nement

Educated guess next generation: holographic

models

In modern language, strings living in extra dimensions are
considered.

Cigar-shape geometry (blackboard)

Prediction: magnetic strings are topologically charged
Can be checked on the lattice (blackboard) and works again
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Abelian con�nement

Gukov-Witten operator

Integral over surface from:

S = αGa
µνdσµν + βG̃a

µνdσµν

Where the color �eld is rotated in the Abelian directions.

This could be the right answer for the lattice strings
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Abelian con�nement

Mini conclusions

In recent years magnetic strings, as continuum-theory
defects, were understood much better in holographic
models. Some striking similarities to the lattice strings.

main problem: all oservations are rather unique, no
industry yet. therefore, it is not a mainstream yet.
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