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Outline

@® Hamiltonian Monte Carlo: the basics

® Speeding up the HMC for Lattice QCD

® Tutorials with Pavel Buividovic
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Lectures and Tutorials

@ Lectures: introduce the Theory
e basic HMC algorithm and Schwinger model

e algorithm improvements

e recent developments

® Tutorials with Pavel Buividovic: you can practice
e example: Schwinger model

e template code provided
e online tutorial with step-by-step instructions

e based on the lecture
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Motivation

e Lattice QCD: solve high dimensional integral

Zocp = /DU Dy Dy e~ SelVl=¥ DUl & /DU det(D[U])e~SelV]

e determinant can be represented by bosonic fields:
det(D) « /Dqu Dpe *' D"
¢ fields also called pseudo-fermion fields

e can deal with D~ ¢, but: non-local
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Markov-Chain Monte Carlo

e stochastic method to solve the generic integral

(0) :/ Dx O(x) e~ S®
e by generating a Markov-Chain {x;, Xz, ...} distributed as

—-S(x)

e then

LN
<O>%NZO(Xi)

i=1

with statistical error:

50 x1/VN

¢ how to generate such a chain {x1, Xz, ...}?
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Metropolis Algorithm
Metropolis Monte-Carlo algorithm

@ start with arbitrary x

@ chose a test x’ with probability P(x’)
P(x) > 0Vx
© accept x’ with probability

Pa(x — x') = min{1,exp[-AS = —(S(x') — S(x))]}

@ continue with step 2

Fulfils detailed balance condition (easy exercise)

exp(=S(x))P(x — x) = exp(=S(x"))P(x" — x)
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Metropolis Monte Carlo

¢ how to generate the proposal x'?

@ chose x’ randomly
completely uncorrelated to previous x

= expect large AS = low acceptance = large autocorrelation

® use x’ = x + dx with random but small 5x
6x can be tuned for AS to be small
= large autocorrelation

o if computation of AS is very expensive (like for QCD)
both choices turn out to be not feasible

e desired: a global update combined with large acceptance
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The Hamiltonian Monte Carlo (Hybrid Monte Carlo)

[Duane, Kennedy, Pendleton, Roweth, 1987]

¢ Introduce p; conjugate to fundamental fields x; and a Hamiltonian
1 2
H=>5 Z p7 +S(x)

e H is conserved under Hamilton's EoM

OH . oH oS
=Pi; Pi=—5-=

X oxi O

' opi
= use Hamilton’s EoM for global update (molecular dynamics):
(p.x) — (p',X)
e Accept with probability
Pa(H — H') = min{1, exp(H(p, x) — H(p’,x")}
e Energy conservation guarantees large acceptance!
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Detailed Balance for HMC
e Need to proof detailed balance
e SMP(x — x') = e SKIP(x’ — x)
e P(x — x’) is a convolution of
P(x —x') = [ Dp PP’ Pe(p) Puol(x.p) — (x':pIPa(H — 1)

with (x’, p’) fixed given (x, p) and

¢ we require molecular dynamics (MD) integration to be reversible

PMD[(X7 p) - (X/’ p/)] = PMD[(X/’ _pl) - (X’ _p)]
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Detailed Balance for HMC

e H is quadratic in p

H(X’ p) = H(Xv _p)

¢ and we have the identity

exp(—H)Pal(x, p) — (', p)] = exp(—H) min{1,exp(H — H')}
= min{exp(—H),exp(—H')}
= exp(—H') min{exp(H' — H),1}
= exp(—H")Pa[(x’,p’) — (X, p)]

which is basically detailed balance for the Metropolis algorithm
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Detailed Balance for HMC

e using all these we obtain
e SO P(x - x') =
:/Dp Dp’ 7P Pyp|(x, p) — (X', p")IPa(H — H')
— [ Dp DR’ & ) B[, —p) — (x, ~p]x
x Pa(H(x', —p") — H(x, —p))
e change of variables —p’ — p’ and —p — p
e SMP(x —x') :/DP Dp’ e MR Pyp[(x’,p') — (X, p)]x

X PA(H/ — H)
—eS) P(x’ = x) g.ed.
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Detailed Balance for HMC

from the proof one learns
e MD must be reversible

e measure must invariant
Dp x Dp" = D(—p) x D(—p’)
(area preserving)
e if H is conserved, the P, =1
in practice we use
e a numerical integration scheme
e accept/reject step corrects for discretisation errors

= need to find a reversible and area preserving integration scheme
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Symplectic Integrators

e by linking together x and p in z = (x, p) we can write

OH(z)
oz

(5 o)

e symplectic mans intertwined (see J)

z=1

¢ with symplectic matrix

e time evolution z(ty) — z(t) represents a canonical transformation
A(to, 1)
z(t) =A-z(to)
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Symplectic Integrators

¢ such a transformation conserves the energy
e but the symplectic form
s(z1,22) = 2] J 25
is conserved under this mapping

e geometrically:
the area of the parallelogram spanned by z, , is preserved

o for the harmonic oscillator you can easily show
Zl(to)TJ Zz(to) = Zl(t)TJ Zz(t)
by writing down the mapping A.

= sis conserved if ATJA =]
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Symplectic Integrators

is this useful for a numerical integration scheme?

yes! (surprise) one can show:
symplectic integrators do conserve a Hamiltonian H different
from, but close to the given Hamiltonian H

consequence: AH = Hs — H depends only on step size Ar,
not on the length of the integration

simplest example and exercise for you:

OH
OXn+1

Xnt1 = Xn + A7 P Pni1 = Pn — AT

is symplectic and conserves for the harmonic oscillator
Hs = p?/2+x2/2 + Arpx/2

exactly!
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Symplectic Integrators

however, the simple example is not reversible

but the leap-frog integration scheme

Discrete updates for time step Ar

Tx(Ar): x — X' =x+Ap

oH
To(Ar): p — p'=p-— ATa—X

basic Leap Frog time evolution step

T =Tp(Ar/2) Tx(AT) Tp(Ar/2)

trajectory of length 7: Nyp = 7/Ar successive applications of T

AH independent of 7!
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Symplectic Integrators
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Integration Errors

how does AH scale with Ar?

introduce time evolution operator exp{ ArH} with

~ . _ OHoOf  OH Of
Hf(p,X) = _{Haf} - (9p IX IX (9p

write H = T(p) + S(x)

the leap-frog scheme has time evolution

em/zé emf em/zé _

= exp{&r(H + &r2([[S, T], 8] + [[S, T1, T]) + O(ar®)}
using the Baker-Campbell-Hausdorff formula

= AH = O(A&r?)
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Summary basic HMC algorithm
@ generate momenta p; randomly from Gaussian distribution
P~e /2
and compute initial Hamiltonian H.

® Integrate the equations of motion

. O _ 9H_ 0S

Xi—a_pi—pi pi__a_xi__a_xi vi

by means of the leap-frog integration scheme
® the Hamiltonian is conserved up to O(Ar?)
® compute final Hamiltonian 7+’ and accept/reject
Pa = min{1, exp(—AH)}
to correct for discretisation errors
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Some Diagnostics

Things one can use to test an implementation

e if you get acceptance something must be correct
unless Ar too small

o check that AH scales with Ar2

o perform a reversibility test
by integrating forward and backward (reverse time)

e one can show
(exp(~AH)) = 1

useful to check
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Some Diagnostics

¢ when to start measuring?

e N — oo is not possible
= we have to equilibrate Ninem updates

e there is no sound theoretical tool for Nierm

e Niuem is different for different observables!

o start from several initial configurations until they merge
= expensive

e monitor the moving average until it does not change

e monitor history
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Bad Example

This is not just in theory...! Take care!

0.55

0.53 |

3 /

0.51 -

0.49

[Farchioni et. al, Eur.Phys.J. C39 (2005)]
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Schwinger Model

e our model for the tutorials:
QED in 2 dimensions with Ny = 2 dynamical fermions

e we use a two-dimensional lattice with extend Ly x L;
e label the sites with n = tLy + x

e we use periodic boundary conditions for fermion and gauge
fields in both directions (for simplicity only)

= the fermionic fields should have anti-periodic b.c.

e the link variables U, , connect sites n and n + /i
o they are U(1) phase factors

Un,. = exp{iAn.}, Any € [—m, 7]
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Schwinger Model

lattice action looks identical to QCD

S = ﬁz[l——up—uf)]m* ¢ = Sa + Se

with plaquette variable

UP = Un,/LUn+ﬁ,uUT Urlg,u

n+o,v

n is site index and u, v € {x,t} the directions

M is the Wilson Dirac operator
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Wilson Fermions

o the Wilson Dirac operator

Mna,mﬁ :(mo + 2r)5nm5aﬁ
1

_ E |:(r — "m)aﬁUn’N(Sn, m — //)4 + (r + A/;,L)aﬁul:‘]—’],u(sn,m+ﬂ
m

e in d = 2 dimensions the y-matrices are
Y1 =01, 72=02, 75=03

with Pauli matrices o
o they fulfil
Vst =26

e M is v5 hermitian
Mt = 15Mys
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HMC for the Schwinger Model

e with Ny = 2 flavours of Wilson fermions

det <'\6' ISI) = det(MM) = det(M~sM~s) = det(MMT)

= MM' = Q? is positive definite (with Q = M~s and Q = Q)
= fermionic action is real

¢ and fermion weight is Gaussian
1
exp{—¢'m30} =exp{-R'R},  #=QR

= Can generate R from Gaussian distribution and compute ¢ by
applying Q
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HMC for the Schwinger Model

o what about the derivative with respect to A, ,,?
e 0Sg/0An,,, is simple
o the pseudo-fermion action is slightly more involved
e the variation for an inverse matrix
S(ATH) = —A7tsa)At

= so, for Sg

1 1
0Sr = —0'550(Q) 30 = —n'(Q)

e with
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HMC for the Schwinger Model
introduce conjugate momenta p,, , for every angle A, ,,

@ generate p, , Gaussian distributed
® generate R Gaussian distributed
® compute p = QR

O MD update with EoM

n=(Q* ¢
An,u = Pn,p
. 0S 0(Q2
Pn,u = ° +nt @Q )77

~9An, A,

using the leap-frog algorithm (¢ unchanged)
@ accept/reject step with

H(A,p) =) _p?/2+Sc(A) +RIR
H(A ') =Y p?/2+Se(A) +RR", R =(Q(A)) ¢
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HMC for the Schwinger Model

e Q2 or Q must be inverted on a source
e in each time step for n = (Q%) !¢
e in the acceptance step for R’ = (Q(A')) ¢

e s0 in total Nyp inversions per trajectory

o typically the conjugate gradient (CG) method is used

= requires O(1000) applications of Q? per inversion
(depending on lattice spacing, mass, etc...)
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Exercises

for the symplectic integrator (see before!) use
H(x,p) = p?/2 +x?/2

and show that the integrator is symplectic and Hs is conserved
show that

+9(Q?) 9Q
77 8An N Tl N 2Re |: 8An N Qn
compute
9Q
A,
explicitly

the slides are available at
http://ww. i tkp. uni-bonn. de/ ~urbach/ urbachl. pdf
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Scaling of the HMC

Computer time for 1000 independent configurations
a ~ 0.08 fm, L ~ 2 fm, Wilson fermions

0

- Tflops - years

Ukawa

0.5

mps/my

e Cost x K(mps/mv)_6LSa_7

[Ukawa, 2001]

e arrow indicates physical
point

e even today not feasible

= Improvements needed!
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Scaling of the HMC

What is the source of the bad scaling?
e with decreasing quark mass
condition number k = Amax/Amin Of Q increases

= number of iterations in the CG increases with

= fermionic force increases with x
potentially magnified by noise from the one ¢-field

e need to reduce

e condition number x
o number of Q ~2 applications
e noise from pseudo-fermion fields
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Preconditioning

Most expensive part: fermion determinant

Precondition by factorisation (with suitable C and E):
detQ? = det(C) - det(E)

with C and E have both smaller « than Q2.

optimally C and E should be easy to implement and to handle

by using two independent ¢-fields for C and E fluctuations are
smoothed out
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n-root Trick

e use the following (exact) factorisation

detQ? = v/detQ2? - /det Q2
[Hasenbusch, Hasenbusch and Jansen, Sommer]

¢ in terms of condition numbers
K — 2VE
« of more general with n®-root
detQ? = [(detQ?)*/"]"

[Clark, de Forcrand, Kennedy (2006)]

¢ allows to significantly reduce x
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Hasenbusch Trick

e one particularly easy implementation of this idea:
= Mass or Hasenbusch preconditioning

o factorise as follows:
2 2 2 Q2
detQ* = det[Q + p } -det[m} )
[Hasenbusch, 2001]

e corresponding effective action:

1 Q2+ 2
Set = S + 0l 5501 + 0} Qz“

e can be extended to Npr > 2 pseudo-fermion fields

¢2 = Sc + Ser, + Spr, -

¢ tune p such that the two condition numbers become equal
exercise: show that this corresponds to the squareroot trick!
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Scaling of the HMC

What is the source of the bad scaling?
e with decreasing quark mass
condition number k = Amax/Amin Of Q increases

= number of iterations in the CG increases x 2

= fermionic force increases roughly « x
potentially magnified by noise from the one ¢-field

e need to reduce

e condition number & )
e number of Q2 applications  (v)
e noise from pseudo-fermion fields v
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Separating Scales

e recall Hasenbusch trick:

1 Q2+ 2
seff:se+¢IQ2+M2¢1+¢£ QZ“

¢2 = Sc + Ser, + Spr, -

e Spr, is cheap compared to Spr,
it involves only inversions of Q2 + 12

e 1 could be tuned such that Spe, has smaller  than Sgr,
= could try to integrate
e Spr, (cheap) with small Ar
¢ Spr, (expensive) with large A, > Am

= separation of Scales
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Multiple Time Scale Integration

[Sexton, Weingarten, 1992]
e assume: H = 3> p? + So(x) + S1(x)
e define (j =0, 1):
T(Ar): x — xX'=x+Ap
oS,

Ts(Ar): p — p':p—ATa—X

e and recursively:
To = TSD(A’TQ/Z) TX(AT()) TSD(AT()/Z) y

Ty = T, (A1 /2) [To]™ Ts,(Ar1/2)

« trajectory of length 7: [Ty ] Nt
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Multiple Time Scale Integration

e time steps must fulfil: Ny = 7/An , No = An /A

e Sp must be computed Np - N1 times
S; only N, times

e note the recursive structure!
N N
[T1] ™ = [Ts,(A71/2) [To]™ Ts,(Am1/2)] ™

o take
An||Fi|| = An||Fil] Vi,j

as a tuning guidline

o for a generalisation with N; relatively prime to N;
see [Kamleh, Peardon (2011)]
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Molecular Dynamics Forces

run with mps ~ 485 MeV: run with mps ~ 294 MeV:
-<HF(x7 Wl Average force = | -<HF(;L'y W) Average force = |
10 Maximal force = 10 Maximal force =
LE E 1E E
0.1 — 0.1 —
0.01 0.01
Fe F F Fy Fe F Fy F3
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Scaling of the HMC

What is the source of the bad scaling?
e with decreasing quark mass
condition number k = Amax/Amin Of Q increases

= number of iterations in the CG increases x 2

= fermionic force increases roughly « x
potentially magnified by noise from the one ¢-field

e need to reduce

e condition number x v
o number of Q2 applications v/
e noise from pseudo-fermion fields v
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Scaling of the HMC
Updated Berlin Wall plOt [Clark (2006)]

10 E 3
1 3
. F ]
@ r ]
g 0.1
= E E
= F ]
=] - B 4
b= N.=2+1DWF (L =
S ooy @ N=2+ =
;‘J g m N =2Wilson
F N, =2 Clover
|| A N=2TM
0.001 F| €« N;=2+1 Asqtad R 3
E N, =2+1 Asqtad RHMC Tl ;
H » N,=2+I Clover Tl B
0.0001 —— . ‘ : ‘ ; : S
' 0 0.2 0.4 0.6 0.8 1
m_/m
T P
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Preconditioning

There are alternatives to mass preconditioning

e domain decomposition

[Liischer (2005)]

o filtering with rational approximations

[Clark, Kennedy]

e polynomial filtering

[Kamleh, Peardon, (2006,2011)]
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2MN integration scheme

e Ar errors can be reduced by higher order integrators
e second order minimal norm (2MN) integration scheme
Toun = Ts(AAT) Tx(A7/2) Ts((1 — 2X) A7) Tx(Ar/2) Ts(AAT)

e trajectory of length 7: Nyp = 7/ successive applications of
Tomn

e )\ additional real tunable parameter
e choice A = 1/6 is called Sexton-Weingarten integration scheme

e )\~ 0.21 is known to be close to optimal

[Takaishi, De Forcrand, hep-lat/0505020]
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Other Knobs to twiddle

¢ vary the trajectory length
= longer trajectory length seems to be favourable

[Meyer et al. (2007)]

e reduced precision in the MD integration
looking at the detailed balance proof you'll notice the
e only reversibility and aread preserving properties are used
=- a guiding Hamiltonian Hgy can be used instead of H itself
e but reversibility must be monitored

e use of a chronological solver for better initial guesses for the CG
solver
[Brower et al, (1995,1997)]
= the history of solution is used
to create an optimal initial guess for the next inversion
e again reversibility must be monitored
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Variants of the HMC

¢ Polynomial HMC (PHMC)

[Frezzotti, Jansen (1999)]
detQ = det(P(Q?)™ 1)
with a polynomial approximation
Q-P@QY) =1

allows for simulations with odd flavours
allows for more improvements

vy

e Rational HMC (RHMC)
[Clark, de Forcrand, Kennedy (2006)]

like PHMC but with rational approximation

e Domain-decomposed HMC (DD-HMC)

[Luischer (2005)]
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Critical Slowing Down

o well known: algorithms show critical slowing down as a phase
transition is approached

= for QCD

Tint X a

Z, depending on algorithm and observable

e in QCD topological charge is serverly affected

[S. Schafer et al (2011)]

e possible solution: open boundary conditions

[Liischer, Schafer (2011)]

= still: something to think about for young and keen students!
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A Study-Case for the Tutorials

e Schwinger model in d = 2 dimensions has dimenisonful coupling

1
aze?

8=
e The mass spectrum contains a pion Iso-triplett
e m, can be determined from pseudo-scalar correlation function
e in the continuum one knows (m; = quark mass)

o for small masses 23
M= _ 5008 (ﬂ)
e

[Smilga (1997)]
o for large masses
m m 2/3
= =2163 ()
e e

[Gattringer (1995)]

e note, m; does not need renormalisation
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A Study-Case for the Tutorials

so, if you are keen and have time, you might want to look at

e continuum limit of m,. at fixed ms

= m,+/p as a function of 1/,/7 at fixed (m;+/3)%/% and L/\/B

e you can implement Wilson and Wilson-twisted mass fermions
and practice what you learned this week

e check the asymptotic formulae for m, in the continuum
o for details see:

[N. Christian et al, Nucl.Phys. B739 (2006) 60-84,
hep-1at/0510047]
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Have fun with the tutorial!

Tutorial at

http://ww. |l attice.itep.ru/~pbaivid/ dubna/

These slides can be found at

http://ww. itkp. uni-bonn. de/ ~urbach/ urbachl. pdf
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