Introduction to the HMC

KAPCTEH YPbAX

Helmholtz-Institut für Strahlen- und Kernphysik Universität Bonn

Helmholtz-School Dubna 2011

(1) Hamiltonian Monte Carlo: the basics
(2) Speeding up the HMC for Lattice QCD
(3) Tutorials with Pavel Buividovic

Lectures and Tutorials

(1) Lectures: introduce the Theory

- basic HMC algorithm and Schwinger model
- algorithm improvements
- recent developments
(2) Tutorials with Pavel Buividovic: you can practice
- example: Schwinger model
- template code provided
- online tutorial with step-by-step instructions
- based on the lecture
- Lattice QCD: solve high dimensional integral

$$
\mathcal{Z}_{\mathrm{QCD}}=\int \mathcal{D} U \mathcal{D} \bar{\psi} \mathcal{D} \psi e^{-\mathcal{S}_{G}[U]-\bar{\psi} D[U] \psi} \propto \int \mathcal{D} U \operatorname{det}(D[U]) e^{-\mathcal{S}_{G}[U]}
$$

- determinant can be represented by bosonic fields:

$$
\operatorname{det}(D) \propto \int \mathcal{D} \phi^{\dagger} \mathcal{D} \phi e^{-\phi^{\dagger} D^{-1} \phi}
$$

ϕ fields also called pseudo-fermion fields

- can deal with $D^{-1} \phi$, but: non-local

Markov-Chain Monte Carlo

- stochastic method to solve the generic integral

$$
\langle O\rangle=\int \mathcal{D} x O(x) e^{-S(x)}
$$

- by generating a Markov-Chain $\left\{x_{1}, x_{2}, \ldots\right\}$ distributed as

$$
e^{-S(x)}
$$

- then

$$
\langle O\rangle \approx \frac{1}{N} \sum_{i=1}^{N} O\left(x_{i}\right)
$$

with statistical error:

$$
\delta O \propto 1 / \sqrt{N}
$$

- how to generate such a chain $\left\{x_{1}, x_{2}, \ldots\right\}$?

Metropolis Algorithm

Metropolis Monte-Carlo algorithm
(1) start with arbitrary x
(2) chose a test x^{\prime} with probability $P\left(x^{\prime}\right)$

$$
P(x)>0 \forall x
$$

(3) accept x^{\prime} with probability

$$
P_{A}\left(x \rightarrow x^{\prime}\right)=\min \left\{1, \exp \left[-\Delta S=-\left(S\left(x^{\prime}\right)-S(x)\right)\right]\right\}
$$

(4) continue with step 2

Fulfils detailed balance condition (easy exercise)

$$
\exp (-S(x)) P\left(x \rightarrow x^{\prime}\right)=\exp \left(-S\left(x^{\prime}\right)\right) P\left(x^{\prime} \rightarrow x\right)
$$

Metropolis Monte Carlo

- how to generate the proposal x^{\prime} ?
(1) chose x^{\prime} randomly completely uncorrelated to previous x
\Rightarrow expect large $\Delta S \Rightarrow$ low acceptance \Rightarrow large autocorrelation
(2) use $x^{\prime}=x+\delta x$ with random but small δx δx can be tuned for ΔS to be small
\Rightarrow large autocorrelation
- if computation of ΔS is very expensive (like for QCD) both choices turn out to be not feasible
- desired: a global update combined with large acceptance

The Hamiltonian Monte Carlo (Hybrid Monte Carlo)

[Duane, Kennedy, Pendleton, Roweth, 1987]

- Introduce p_{i} conjugate to fundamental fields x_{i} and a Hamiltonian

$$
\mathcal{H}=\frac{1}{2} \sum_{i} p_{i}^{2}+S(x)
$$

- \mathcal{H} is conserved under Hamilton's EoM

$$
\dot{x}_{i}=\frac{\partial \mathcal{H}}{\partial p_{i}}=p_{i}, \quad \dot{p}_{i}=-\frac{\partial \mathcal{H}}{\partial x_{i}}=-\frac{\partial \mathcal{S}}{\partial x_{i}}
$$

\Rightarrow use Hamilton's EoM for global update (molucular dynamics):

$$
(p, x) \quad \rightarrow \quad\left(p^{\prime}, x^{\prime}\right)
$$

- Accept with probability

$$
P_{A}\left(\mathcal{H} \rightarrow \mathcal{H}^{\prime}\right)=\min \left\{1, \exp \left(\mathcal{H}(p, x)-\mathcal{H}\left(p^{\prime}, x^{\prime}\right)\right\}\right.
$$

- Energy conservation guarantees large acceptance!

Detailed Balance for HMC

- Need to proof detailed balance

$$
e^{-S(x)} P\left(x \rightarrow x^{\prime}\right)=e^{-S\left(x^{\prime}\right)} P\left(x^{\prime} \rightarrow x\right)
$$

- $P\left(x \rightarrow x^{\prime}\right)$ is a convolution of

$$
P\left(x \rightarrow x^{\prime}\right)=\int \mathcal{D} p \mathcal{D} p^{\prime} P_{\mathrm{G}}(p) P_{\mathrm{MD}}\left[(x, p) \rightarrow\left(x^{\prime}, p^{\prime}\right)\right] P_{A}\left(\mathcal{H} \rightarrow \mathcal{H}^{\prime}\right)
$$

with $\left(x^{\prime}, p^{\prime}\right)$ fixed given (x, p) and

$$
P_{\mathrm{G}}(p)=\exp \left\{-\sum_{i} p_{i}^{2}\right\}, \quad P_{\mathrm{G}}(p) e^{-S(x)}=e^{-\mathcal{H}(x, p)}
$$

- we require molecular dynamics (MD) integration to be reversible

$$
P_{\mathrm{MD}}\left[(x, p) \rightarrow\left(x^{\prime}, p^{\prime}\right)\right]=P_{\mathrm{MD}}\left[\left(x^{\prime},-p^{\prime}\right) \rightarrow(x,-p)\right]
$$

Detailed Balance for HMC

- \mathcal{H} is quadratic in p

$$
\mathcal{H}(x, p)=\mathcal{H}(x,-p)
$$

- and we have the identity

$$
\begin{aligned}
\exp (-\mathcal{H}) & P_{A}\left[(x, p) \rightarrow\left(x^{\prime}, p^{\prime}\right)\right]=\exp (-\mathcal{H}) \min \left\{1, \exp \left(\mathcal{H}-\mathcal{H}^{\prime}\right)\right\} \\
& =\min \left\{\exp (-\mathcal{H}), \exp \left(-\mathcal{H}^{\prime}\right)\right\} \\
& =\exp \left(-\mathcal{H}^{\prime}\right) \min \left\{\exp \left(\mathcal{H}^{\prime}-\mathcal{H}\right), 1\right\} \\
& =\exp \left(-\mathcal{H}^{\prime}\right) P_{A}\left[\left(x^{\prime}, p^{\prime}\right) \rightarrow(x, p)\right]
\end{aligned}
$$

Detailed Balance for HMC

- using all these we obtain

$$
\begin{aligned}
e^{-S(x)} & P\left(x \rightarrow x^{\prime}\right)= \\
= & \int \mathcal{D} p \mathcal{D} p^{\prime} e^{-\mathcal{H}(x, p)} P_{\mathrm{MD}}\left[(x, p) \rightarrow\left(x^{\prime}, p^{\prime}\right)\right] P_{A}\left(\mathcal{H} \rightarrow \mathcal{H}^{\prime}\right) \\
= & \int \mathcal{D} p \mathcal{D} p^{\prime} e^{-\mathcal{H}\left(x^{\prime},-p^{\prime}\right)} P_{\mathrm{MD}}\left[\left(x^{\prime},-p^{\prime}\right) \rightarrow(x,-p)\right] \times \\
& \times P_{A}\left(\mathcal{H}\left(x^{\prime},-p^{\prime}\right) \rightarrow \mathcal{H}(x,-p)\right)
\end{aligned}
$$

- change of variables $-p^{\prime} \rightarrow p^{\prime}$ and $-p \rightarrow p$

$$
\begin{align*}
e^{-S(x)} P\left(x \rightarrow x^{\prime}\right)= & \int \mathcal{D} p \mathcal{D} p^{\prime} e^{-\mathcal{H}\left(x^{\prime}, p^{\prime}\right)} P_{\mathrm{MD}}\left[\left(x^{\prime}, p^{\prime}\right) \rightarrow(x, p)\right] \times \\
& \times P_{A}\left(\mathcal{H}^{\prime} \rightarrow \mathcal{H}\right) \\
= & e^{-S\left(x^{\prime}\right)} P\left(x^{\prime} \rightarrow x\right) \quad \quad \text { q.e.d. }
\end{align*}
$$

Detailed Balance for HMC

from the proof one learns

- MD must be reversible
- measure must invariant

$$
\mathcal{D} p \times \mathcal{D} p^{\prime}=\mathcal{D}(-p) \times \mathcal{D}\left(-p^{\prime}\right)
$$

(area preserving)

- if \mathcal{H} is conserved, the $P_{A}=1$
in practice we use
- a numerical integration scheme
- accept/reject step corrects for discretisation errors
\Rightarrow need to find a reversible and area preserving integration scheme

Symplectic Integrators

- by linking together x and p in $z=(x, p)$ we can write

$$
\dot{z}=\mathbf{J} \cdot \frac{\partial \mathcal{H}(z)}{\partial z}
$$

- with symplectic matrix

$$
\mathbf{J}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

- symplectic mans intertwined (see J)
- time evolution $z\left(t_{0}\right) \rightarrow z(t)$ represents a canonical transformation $\mathbf{A}\left(t_{0}, t\right)$

$$
z(t)=\mathbf{A} \cdot z\left(t_{0}\right)
$$

Symplectic Integrators

- such a transformation conserves the energy
- but the symplectic form

$$
s\left(z_{1}, z_{2}\right) \equiv z_{1}^{T} \mathbf{J} z_{2}
$$

is conserved under this mapping

- geometrically: the area of the parallelogram spanned by $z_{1,2}$ is preserved
- for the harmonic oscillator you can easily show

$$
z_{1}\left(t_{0}\right)^{T} \mathbf{J} z_{2}\left(t_{0}\right)=z_{1}(t)^{T} \mathbf{J} z_{2}(t)
$$

by writing down the mapping \mathbf{A}.
$\Rightarrow s$ is conserved if $\mathbf{A}^{\top} \mathbf{J A}=\mathbf{J}$

Symplectic Integrators

- is this useful for a numerical integration scheme?
- yes! (surprise) one can show:
symplectic integrators do conserve a Hamiltonian \mathcal{H}_{s} different from, but close to the given Hamiltonian \mathcal{H}
\Rightarrow consequence: $\Delta \mathcal{H}=\mathcal{H}_{s}-\mathcal{H}$ depends only on step size $\Delta \tau$, not on the length of the integration
- simplest example and exercise for you:

$$
x_{n+1}=x_{n}+\Delta \tau p_{n} \quad p_{n+1}=p_{n}-\Delta \tau \frac{\partial \mathcal{H}}{\partial x_{n+1}}
$$

is symplectic and conserves for the harmonic oscillator

$$
\mathcal{H}_{s}=p^{2} / 2+x^{2} / 2+\Delta \tau p x / 2
$$

exactly!

Symplectic Integrators

- however, the simple example is not reversible
- but the leap-frog integration scheme
- Discrete updates for time step $\Delta \tau$

$$
\begin{aligned}
& T_{\mathrm{x}}(\Delta \tau): \quad x \quad \rightarrow \quad x^{\prime}=x+\Delta \tau p \\
& T_{\mathrm{p}}(\Delta \tau): \quad p \quad \rightarrow \quad p^{\prime}=p-\Delta \tau \frac{\partial \mathcal{H}}{\partial x}
\end{aligned}
$$

- basic Leap Frog time evolution step

$$
T=T_{\mathrm{p}}(\Delta \tau / 2) T_{\mathrm{x}}(\Delta \tau) T_{\mathrm{p}}(\Delta \tau / 2)
$$

- trajectory of length τ : $N_{\mathrm{MD}}=\tau / \Delta \tau$ successive applications of T
- $\Delta \mathcal{H}$ independent of τ !

Symplectic Integrators

Integration Errors

- how does $\Delta \mathcal{H}$ scale with $\Delta \tau$?
- introduce time evolution operator $\exp \{\Delta \tau \hat{\mathcal{H}}\}$ with

$$
\hat{\mathcal{H}} f(p, q) \equiv-\{\mathcal{H}, f\}=\frac{\partial \mathcal{H}}{\partial p} \frac{\partial f}{\partial x}-\frac{\partial \mathcal{H}}{\partial x} \frac{\partial f}{\partial p}
$$

- write $\mathcal{H}=T(p)+S(x)$
- the leap-frog scheme has time evolution

$$
\begin{aligned}
& e^{\Delta \tau / 2 \hat{S}} e^{\Delta \tau \hat{T}} e^{\Delta \tau / 2 \hat{S}}= \\
& =\exp \left\{\Delta \tau\left(\hat{\mathcal{H}}+\Delta \tau^{2}([[\hat{S}, \hat{T}], \hat{S}]+[[\hat{S}, \hat{T}], \hat{T}])+\mathcal{O}\left(\Delta \tau^{3}\right)\right\}\right.
\end{aligned}
$$

using the Baker-Campbell-Hausdorff formula
$\Rightarrow \Delta \mathcal{H}=\mathcal{O}\left(\Delta \tau^{2}\right)$

Summary basic HMC algorithm

(1) generate momenta p_{i} randomly from Gaussian distribution

$$
P \sim e^{-p^{2} / 2}
$$

and compute initial Hamiltonian \mathcal{H}.
(2) Integrate the equations of motion

$$
\dot{x}_{i}=\frac{\partial \mathcal{H}}{\partial p_{i}}=p_{i} \quad \dot{p}_{i}=-\frac{\partial \mathcal{H}}{\partial x_{i}}=-\frac{\partial S}{\partial x_{i}} \quad \forall i
$$

by means of the leap-frog integration scheme
(3) the Hamiltonian is conserved up to $\mathcal{O}\left(\Delta \tau^{2}\right)$
(4) compute final Hamiltonian \mathcal{H}^{\prime} and accept/reject

$$
P_{A}=\min \{1, \exp (-\Delta \mathcal{H})
$$

to correct for discretisation errors

Some Diagnostics

Things one can use to test an implementation

- if you get acceptance something must be correct unless $\Delta \tau$ too small
- check that $\Delta \mathcal{H}$ scales with $\Delta \tau^{2}$
- perform a reversibility test by integrating forward and backward (reverse time)
- one can show

$$
\langle\exp (-\Delta \mathcal{H})\rangle=1
$$

useful to check

Some Diagnostics

- when to start measuring?
- $N \rightarrow \infty$ is not possible
\Rightarrow we have to equilibrate $N_{\text {therm }}$ updates
- there is no sound theoretical tool for $N_{\text {therm }}$
- $N_{\text {therm }}$ is different for different observables!
- start from several initial configurations until they merge
\Rightarrow expensive
- monitor the moving average until it does not change
- monitor history

Bad Example

This is not just in theory...! Take care!

[Farchioni et. al, Eur.Phys.J. C39 (2005)]

Schwinger Model

- our model for the tutorials:

QED in 2 dimensions with $N_{f}=2$ dynamical fermions

- we use a two-dimensional lattice with extend $L_{x} \times L_{t}$
- label the sites with $n=t * L_{x}+x$
- we use periodic boundary conditions for fermion and gauge fields in both directions (for simplicity only)
\Rightarrow the fermionic fields should have anti-periodic b.c.
- the link variables $U_{n, \mu}$ connect sites n and $n+\hat{\mu}$
- they are $U(1)$ phase factors

$$
U_{n, \mu}=\exp \left\{i A_{n, \mu}\right\}, \quad A_{n, \mu} \in[-\pi, \pi[
$$

Schwinger Model

- lattice action looks identical to QCD

$$
S=\beta \sum_{P}\left[1-\frac{1}{2}\left(U_{P}-U_{P}^{\dagger}\right)\right]+\phi^{\dagger} \frac{1}{M M^{\dagger}} \phi=S_{G}+S_{F}
$$

- with plaquette variable

$$
U_{P} \equiv U_{n, \mu} U_{n+\hat{\mu}, \nu} U_{n+\hat{\nu}, \nu}^{\dagger} U_{n, \nu}^{\dagger}
$$

- n is site index and $\mu, \nu \in\{x, t\}$ the directions
- M is the Wilson Dirac operator

Wilson Fermions

- the Wilson Dirac operator

$$
\begin{aligned}
M_{n \alpha, m \beta}= & \left(m_{0}+2 r\right) \delta_{n m} \delta_{\alpha \beta} \\
& -\frac{1}{2} \sum_{\mu}\left[\left(r-\gamma_{\mu}\right)_{\alpha \beta} U_{n, \mu} \delta n, m-\hat{\mu}+\left(r+\gamma_{\mu}\right)_{\alpha \beta} U_{m, \mu}^{\dagger} \delta_{n, m+\hat{\mu}}\right]
\end{aligned}
$$

- in $d=2$ dimensions the γ-matrices are

$$
\gamma_{1}=\sigma_{1}, \quad \gamma_{2}=\sigma_{2}, \quad \gamma_{5}=\sigma_{3}
$$

with Pauli matrices σ_{i}

- they fulfil

$$
\left\{\gamma_{\mu}, \gamma_{\nu}\right\}=2 \delta_{\mu \nu}
$$

- M is γ_{5} hermitian

$$
M^{\dagger}=\gamma_{5} M \gamma_{5}
$$

HMC for the Schwinger Model

- with $N_{f}=2$ flavours of Wilson fermions

$$
\operatorname{det}\left(\begin{array}{cc}
M & 0 \\
0 & M
\end{array}\right)=\operatorname{det}(M M)=\operatorname{det}\left(M \gamma_{5} M \gamma_{5}\right)=\operatorname{det}\left(M M^{\dagger}\right)
$$

$\Rightarrow M M^{\dagger} \equiv Q^{2}$ is positive definite (with $Q=M \gamma_{5}$ and $Q=Q^{\dagger}$)
\Rightarrow fermionic action is real

- and fermion weight is Gaussian

$$
\exp \left\{-\phi^{\dagger} \frac{1}{Q^{2}} \phi\right\}=\exp \left\{R^{\dagger} R\right\}, \quad \phi=Q R
$$

\Rightarrow Can generate R from Gaussian distribution and compute ϕ by applying Q

HMC for the Schwinger Model

- what about the derivative with respect to $A_{n, \mu}$?
- $\partial S_{G} / \partial A_{n, \mu}$ is simple
- the pseudo-fermion action is slightly more involved
- the variation for an inverse matrix

$$
\delta\left(A^{-1}\right)=A^{-1} \delta(A) A^{-1}
$$

$\Rightarrow \mathrm{so}$, for S_{F}

$$
\delta S_{F}=\phi^{\dagger} \frac{1}{Q^{2}} \delta\left(Q^{2}\right) \frac{1}{Q^{2}} \phi \equiv \eta^{\dagger} \delta\left(Q^{2}\right) \eta
$$

- with

$$
\eta \equiv \frac{1}{Q^{2}} \phi
$$

HMC for the Schwinger Model

introduce conjugate momenta $p_{n, \mu}$ for every angle $A_{n, \mu}$
(1) generate $p_{n, \mu}$ Gaussian distributed
(2) generate R Gaussian distributed
(3) compute $\phi=Q R$
(4) MD update with EoM

$$
\begin{aligned}
\eta & =\left(Q^{2}\right)^{-1} \phi \\
\dot{A}_{n, \mu} & =p_{n, \mu} \\
\dot{p}_{n, \mu} & =-\frac{\partial S_{G}}{\partial A_{n, \mu}}+\eta^{\dagger} \frac{\partial\left(Q^{2}\right)}{\partial A_{n, \mu}} \eta
\end{aligned}
$$

using the leap-frog algorithm (ϕ unchanged)
(5) accept/reject step with

$$
\begin{aligned}
& \mathcal{H}\left(A^{\prime}, p^{\prime}\right)=\sum p^{2} / 2+S_{G}(A)+R^{\dagger} R \\
& \mathcal{H}\left(A^{\prime}, p^{\prime}\right)=\sum p^{2} / 2+S_{G}\left(A^{\prime}\right)+R^{\prime \dagger} R^{\prime}, \quad R^{\prime}=\left(Q\left(A^{\prime}\right)\right)^{-1} \phi
\end{aligned}
$$

HMC for the Schwinger Model

- Q^{2} or Q must be inverted on a source
- in each timestep for $\eta=\left(Q^{2}\right)^{-1} \phi$
- in the acceptance step for $R^{\prime}=\left(Q\left(A^{\prime}\right)\right)^{-1} \phi$
- so in total N_{MD} inversions per trajectory
- typically the conjugate gradient (CG) method is used
\Rightarrow requires $\mathcal{O}(1000)$ applications of Q^{2} per inversion (depending on lattice spacing, mass, etc...)

Exercises

- for the symplectic integrator (see before!) use

$$
\mathcal{H}(x, p)=p^{2} / 2+x^{2} / 2
$$

and show that the integrator is symplectic and \mathcal{H}_{s} is conserved

- show that

$$
\eta^{\dagger} \frac{\partial\left(Q^{2}\right)}{\partial A_{n, \mu}} \eta=2 \operatorname{Re}\left[\eta^{\dagger} \frac{\partial Q}{\partial A_{n, \mu}} Q \eta\right]
$$

- compute

$$
\frac{\partial Q}{\partial A_{n, \mu}}
$$

explicitly

- the slides are available at
http://www.itkp.uni-bonn.de/~urbach/urbach1.pdf

