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Outline

1 Hamiltonian Monte Carlo: the basics

2 Speeding up the HMC for Lattice QCD

3 Tutorials with Pavel Buividovic
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Lectures and Tutorials

1 Lectures: introduce the Theory
• basic HMC algorithm and Schwinger model

• algorithm improvements

• recent developments

2 Tutorials with Pavel Buividovic: you can practice
• example: Schwinger model

• template code provided

• online tutorial with step-by-step instructions

• based on the lecture
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Motivation

• Lattice QCD: solve high dimensional integral

ZQCD =

∫

DU Dψ̄ Dψ e−SG[U]−ψ̄ D[U] ψ ∝
∫

DU det(D[U])e−SG [U]

• determinant can be represented by bosonic fields:

det(D) ∝
∫

Dφ† Dφ e−φ† D−1 φ

φ fields also called pseudo-fermion fields

• can deal with D−1 φ, but: non-local
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Markov-Chain Monte Carlo

• stochastic method to solve the generic integral

〈 O 〉 =

∫

Dx O(x) e−S(x)

• by generating a Markov-Chain {x1, x2, ...} distributed as

e−S(x)

• then

〈 O 〉 ≈ 1
N

N
∑

i=1

O(xi)

with statistical error:
δO ∝ 1/

√
N

• how to generate such a chain {x1, x2, ...}?
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Metropolis Algorithm

Metropolis Monte-Carlo algorithm

1 start with arbitrary x

2 chose a test x ′ with probability P(x ′)
P(x) > 0 ∀x

3 accept x ′ with probability

PA(x → x ′) = min{1, exp[−∆S = −(S(x ′) − S(x))]}

4 continue with step 2

Fulfils detailed balance condition (easy exercise)

exp(−S(x))P(x → x ′) = exp(−S(x ′))P(x ′ → x)
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Metropolis Monte Carlo

• how to generate the proposal x ′?
1 chose x ′ randomly

completely uncorrelated to previous x

⇒ expect large ∆S ⇒ low acceptance ⇒ large autocorrelation

2 use x ′ = x + δx with random but small δx
δx can be tuned for ∆S to be small

⇒ large autocorrelation

• if computation of ∆S is very expensive (like for QCD)
both choices turn out to be not feasible

• desired: a global update combined with large acceptance
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The Hamiltonian Monte Carlo (Hybrid Monte Carlo)
[Duane, Kennedy, Pendleton, Roweth, 1987]

• Introduce pi conjugate to fundamental fields xi and a Hamiltonian

H =
1
2

∑

i

p2
i + S(x)

• H is conserved under Hamilton’s EoM

ẋi =
∂H
∂pi

= pi , ṗi = −∂H
∂xi

= − ∂S
∂xi

⇒ use Hamilton’s EoM for global update (molucular dynamics):

(p, x) → (p′, x ′)

• Accept with probability

PA(H → H′) = min{1, exp(H(p, x) −H(p′, x ′)}

• Energy conservation guarantees large acceptance!
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Detailed Balance for HMC

• Need to proof detailed balance

e−S(x)P(x → x ′) = e−S(x′)P(x ′ → x)

• P(x → x ′) is a convolution of

P(x → x ′) =

∫

Dp Dp′ PG(p) PMD[(x , p) → (x ′, p′)]PA(H → H′)

with (x ′, p′) fixed given (x , p) and

PG(p) = exp

{

−
∑

i

p2
i

}

, PG(p) e−S(x) = e−H(x,p)

• we require molecular dynamics (MD) integration to be reversible

PMD[(x , p) → (x ′, p′)] = PMD[(x ′,−p′) → (x ,−p)]
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Detailed Balance for HMC

• H is quadratic in p

H(x , p) = H(x ,−p)

• and we have the identity

exp(−H)PA[(x , p) → (x ′, p′)] = exp(−H) min{1, exp(H−H′)}
= min{exp(−H), exp(−H′)}
= exp(−H′) min{exp(H′ −H), 1}
= exp(−H′)PA[(x ′, p′) → (x , p)]
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Detailed Balance for HMC

• using all these we obtain

e−S(x) P(x → x ′) =

=

∫

Dp Dp′ e−H(x,p) PMD[(x , p) → (x ′, p′)]PA(H → H′)

=

∫

Dp Dp′ e−H(x′,−p′) PMD[(x ′,−p′) → (x ,−p)]×

× PA(H(x ′,−p′) → H(x ,−p))

• change of variables −p′ → p′ and −p → p

e−S(x) P(x → x ′) =

∫

Dp Dp′ e−H(x′,p′) PMD[(x ′, p′) → (x , p)]×

× PA(H′ → H)

=e−S(x′) P(x ′ → x) q.e.d.
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Detailed Balance for HMC

from the proof one learns

• MD must be reversible

• measure must invariant

Dp ×Dp′ = D(−p) ×D(−p′)

(area preserving)

• if H is conserved, the PA = 1

in practice we use

• a numerical integration scheme

• accept/reject step corrects for discretisation errors

⇒ need to find a reversible and area preserving integration scheme
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Symplectic Integrators

• by linking together x and p in z = (x , p) we can write

ż = J · ∂H(z)

∂z

• with symplectic matrix

J =

(

0 1
−1 0

)

• symplectic mans intertwined (see J)

• time evolution z(t0) → z(t) represents a canonical transformation
A(t0, t)

z(t) = A · z(t0)
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Symplectic Integrators

• such a transformation conserves the energy

• but the symplectic form

s(z1, z2) ≡ zT
1 J z2

is conserved under this mapping

• geometrically:
the area of the parallelogram spanned by z1,2 is preserved

• for the harmonic oscillator you can easily show

z1(t0)T J z2(t0) = z1(t)T J z2(t)

by writing down the mapping A.

⇒ s is conserved if AT JA = J

14 Introduction to the HMC



Symplectic Integrators

• is this useful for a numerical integration scheme?

• yes! (surprise) one can show:
symplectic integrators do conserve a Hamiltonian Hs different
from, but close to the given Hamiltonian H

⇒ consequence: ∆H = Hs −H depends only on step size ∆τ ,
not on the length of the integration

• simplest example and exercise for you:

xn+1 = xn + ∆τ pn pn+1 = pn − ∆τ
∂H
∂xn+1

is symplectic and conserves for the harmonic oscillator

Hs = p2/2 + x2/2 + ∆τ p x/2

exactly!
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Symplectic Integrators

• however, the simple example is not reversible

• but the leap-frog integration scheme

• Discrete updates for time step ∆τ

Tx(∆τ) : x → x ′ = x + ∆τp

Tp(∆τ) : p → p′ = p − ∆τ
∂H
∂x

• basic Leap Frog time evolution step

T = Tp(∆τ/2) Tx(∆τ) Tp(∆τ/2)

• trajectory of length τ : NMD = τ/∆τ successive applications of T

• ∆H independent of τ !
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Symplectic Integrators
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Integration Errors

• how does ∆H scale with ∆τ?

• introduce time evolution operator exp{∆τĤ} with

Ĥ f (p, q) ≡ −{H, f} =
∂H
∂p

∂f
∂x

− ∂H
∂x

∂f
∂p

• write H = T (p) + S(x)

• the leap-frog scheme has time evolution

e∆τ/2 Ŝ e∆τ T̂ e∆τ/2 Ŝ =

= exp{∆τ(Ĥ + ∆τ2([[Ŝ, T̂ ], Ŝ] + [[Ŝ, T̂ ], T̂ ]) + O(∆τ3)}

using the Baker-Campbell-Hausdorff formula

⇒ ∆H = O(∆τ2)
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Summary basic HMC algorithm

1 generate momenta pi randomly from Gaussian distribution

P ∼ e−p2/2

and compute initial Hamiltonian H.

2 Integrate the equations of motion

ẋi =
∂H
∂pi

= pi ṗi = −∂H
∂xi

= −∂S
∂xi

∀i

by means of the leap-frog integration scheme

3 the Hamiltonian is conserved up to O(∆τ2)

4 compute final Hamiltonian H′ and accept/reject

PA = min{1, exp(−∆H)

to correct for discretisation errors
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Some Diagnostics

Things one can use to test an implementation

• if you get acceptance something must be correct
unless ∆τ too small

• check that ∆H scales with ∆τ2

• perform a reversibility test
by integrating forward and backward (reverse time)

• one can show
〈exp(−∆H)〉 = 1

useful to check
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Some Diagnostics

• when to start measuring?
• N → ∞ is not possible

⇒ we have to equilibrate Ntherm updates

• there is no sound theoretical tool for Ntherm

• Ntherm is different for different observables!

• start from several initial configurations until they merge

⇒ expensive

• monitor the moving average until it does not change

• monitor history
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Bad Example

This is not just in theory...! Take care!

12
3 × 24, β = 5.2, κ = 0.1717, aµ = 0.01

〈P 〉

tHMC

12008004000

0.55

0.53

0.51

0.49

[Farchioni et. al, Eur.Phys.J. C39 (2005)]
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Schwinger Model

• our model for the tutorials:
QED in 2 dimensions with Nf = 2 dynamical fermions

• we use a two-dimensional lattice with extend Lx × Lt

• label the sites with n = t ∗ Lx + x

• we use periodic boundary conditions for fermion and gauge
fields in both directions (for simplicity only)

⇒ the fermionic fields should have anti-periodic b.c.

• the link variables Un,µ connect sites n and n + µ̂

• they are U(1) phase factors

Un,µ = exp{iAn,µ} , An,µ ∈ [−π, π[
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Schwinger Model

• lattice action looks identical to QCD

S = β
∑

P

[

1 − 1
2

(UP − U†
P)

]

+ φ†
1

MM†
φ = SG + SF

• with plaquette variable

UP ≡ Un,µUn+µ̂,νU†
n+ν̂,νU†

n,ν

• n is site index and µ, ν ∈ {x , t} the directions

• M is the Wilson Dirac operator
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Wilson Fermions

• the Wilson Dirac operator

Mnα,mβ =(m0 + 2r)δnmδαβ

− 1
2

∑

µ

[

(r − γµ)αβUn,µδn,m − µ̂+ (r + γµ)αβU†
m,µδn,m+µ̂

]

• in d = 2 dimensions the γ-matrices are

γ1 = σ1 , γ2 = σ2 , γ5 = σ3

with Pauli matrices σi

• they fulfil
{γµ, γν} = 2δµν

• M is γ5 hermitian
M† = γ5Mγ5
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HMC for the Schwinger Model

• with Nf = 2 flavours of Wilson fermions

det
(

M 0
0 M

)

= det(MM) = det(Mγ5Mγ5) = det(MM†)

⇒ MM† ≡ Q2 is positive definite (with Q = Mγ5 and Q = Q†)

⇒ fermionic action is real

• and fermion weight is Gaussian

exp{−φ† 1
Q2φ} = exp{R†R} , φ = QR

⇒ Can generate R from Gaussian distribution and compute φ by
applying Q
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HMC for the Schwinger Model

• what about the derivative with respect to An,µ?

• ∂SG/∂An,µ is simple

• the pseudo-fermion action is slightly more involved

• the variation for an inverse matrix

δ(A−1) = A−1δ(A)A−1

⇒ so, for SF

δSF = φ†
1

Q2 δ(Q
2)

1
Q2φ ≡ η†δ(Q2)η

• with

η ≡ 1
Q2φ
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HMC for the Schwinger Model
introduce conjugate momenta pn,µ for every angle An,µ

1 generate pn,µ Gaussian distributed

2 generate R Gaussian distributed

3 compute φ = Q R

4 MD update with EoM

η = (Q2)−1φ

Ȧn,µ = pn,µ

ṗn,µ = − ∂SG

∂An,µ
+ η†

∂(Q2)

∂An,µ
η

using the leap-frog algorithm (φ unchanged)

5 accept/reject step with

H(A′, p′) =
∑

p2/2 + SG(A) + R†R

H(A′, p′) =
∑

p2/2 + SG(A′) + R′†R′ , R′ = (Q(A′))−1φ
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HMC for the Schwinger Model

• Q2 or Q must be inverted on a source
• in each timestep for η = (Q2)−1φ

• in the acceptance step for R′ = (Q(A′))−1φ

• so in total NMD inversions per trajectory

• typically the conjugate gradient (CG) method is used

⇒ requires O(1000) applications of Q2 per inversion
(depending on lattice spacing, mass, etc...)
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Exercises

• for the symplectic integrator (see before!) use

H(x , p) = p2/2 + x2/2

and show that the integrator is symplectic and Hs is conserved

• show that

η†
∂(Q2)

∂An,µ
η = 2Re

[

η†
∂Q
∂An,µ

Qη
]

• compute
∂Q
∂An,µ

explicitly
• the slides are available at
http://www.itkp.uni-bonn.de/~urbach/urbach1.pdf
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