Heavy Quarks on the lattice

Rainer Sommer

NIC, DESY, A Research Centre of the Helmholtz Association

• 3 >

< 17 ▶

Lectures at HISS school, September 2011

Plan

Introduction

Naive HQ on the lattice Continuum HQET

Action Propagator

Symmetries

Renormalizability

Lattice HQET

Action

Propagator Renormalization and matching

Perturbative matching Structure of the 1/M expansion

Toy model HQET at order 1/m Non-perturbative HQET

Tests Non-perturbative matching Large volume

Some results

arXiv:1008.0710

and Les Houches school 2009 Oxford University Press look there for more references

(日) (日) (日) (日) (日)

æ

Introduction: Particle Physics

- **Observations** $(e, \mu, \dots, Z, \dots, t, \text{ Lorenz invariance } \dots)$
 - + Principles (Unitarity, Causality, Renormalizability)
 - + theory calculations including lattice QCD (spectrum, F_{π})
- **Standard Model of Particle Physics**

local Quantum Field Theory (gauge theory) QED + Salam-Weinberg + QCD $_{+ \text{ GR}}$

・ 同 ト・ ・ ヨート・ ・ ヨート

- QED + Salam–Weinberg + QCD
- very constrained: 3 coupling constants

enormous predictivity

< 国 → (< 国 →

- QED + Salam–Weinberg + QCD
- very constrained: 3 coupling constants

- enormous predictivity
- top mass from loops = top mass from Tevatron

- QED + Salam–Weinberg + QCD
- very constrained: 3 coupling constants
- + masses of elementary fields + CKM-matrix
- enormous predictivity
- top mass from loops = top mass from Tevatron

- QED + Salam–Weinberg + QCD
- very constrained: 3 coupling constants
- + masses of elementary fields + CKM-matrix
- enormous predictivity
- top mass from loops = top mass from Tevatron

Introduction: the incomplete Standard Model

But from other sources we know that there are missing pieces

- dark matter
- too little CP-violation for the observed matter / antimatter asymmetry

 There is an intense search for deviations from the Standard Model in particle physics experiments

Two Frontiers

- to search for missing pieces
 - High Energy
 - Tevatron
 - LHC

High Intensity

Yutaka Ushiroda, May 2008

(D) (A) (A)

High Intensity Frontier

Less tested interactions: quark-flavour changing interactions

$$\mathscr{L}_{\mathrm{int}} = \dots \mathsf{g}_{\mathrm{weak}} \mathsf{W}^+_\mu ar{U} \gamma_\mu (1-\gamma_5) \mathsf{D}' \dots$$

B-decays

$$D' = \underbrace{\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix}}_{\text{weak int.}} = V_{\text{CKM}} \underbrace{\begin{pmatrix} d \\ s \\ b \end{pmatrix}}_{\text{block}} = V_{\text{CKM}} D$$

$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Confinement: V_{ij} are *not* directly measurable. QCD matrix elements (or assumptions/approximations) are needed.

- "clean" transitions: $B = b\bar{u} \rightarrow W \rightarrow l\nu$
- 1. inclusive: $B \rightarrow X_u l \nu$

optical theorem + heavy quark expansion \rightarrow perturbatively calculable: (accuracy?) double expansion in $\alpha_s(m_b) \approx 0.2$, $\Lambda_{QCD}/m_b \approx 0.1$

2. semileptonic: $B \rightarrow \pi I \nu$

(three-body, form factor)

3. leptonic: $B \rightarrow l\nu$ (decay constant)

A (1) > (1) > (1)

► V_{ub} "puzzle"

・ロン ・四マ ・ヨン ・ヨン

æ

► V_{ub} "puzzle"

G. Isidori - Quark flavour mixing with right-handed currents

Euroflavour2010, Munich

2

Motivation

Exp. side: RH currents provide a natural solution to the "Vub puzzle"

► V_{ub} "puzzle"

G. Isidori - Quark flavour mixing with right-handed currents

Euroflavour2010, Munich

3

Motivation

Exp. side: RH currents provide a natural solution to the "Vub puzzle"

► V_{ub} "puzzle"

Precise & reliable lattice calculations are needed to check whether such puzzles are for real or others are there.

► V_{ub} "puzzle"

- Precise & reliable lattice calculations are needed to check whether such puzzles are for real or others are there.
- V_{ub} is one example. Others such as $B\bar{B}$ oscillations....

multiple scale problem always difficult for a numerical treatment

æ

≣ ▶

multiple scale problem always difficult for a numerical treatment light strange charm beauty * * * * * 100 1000 m_{ps}[MeV]

• E >

æ

≣ ▶

lattice cutoffs:

$$\Lambda_{\rm UV} = a^{-1}$$
$$\Lambda_{\rm IR} = L^{-1}$$

multiple scale problemlightstrangecharmbeautyalways difficult*****for a numerical treatment1001000mps [MeV]

lattice cutoffs:

$$\Lambda_{\rm UV} = a^{-1}$$
$$\Lambda_{\rm IR} = L^{-1}$$

$$egin{array}{rcl} L^{-1} &\ll m_{\pi}\,,\,\ldots\,,m_{
m D}\,,m_{
m B} &\ll a^{-1} &&&&\\ {
m O}({
m e}^{-Lm_{\pi}}) &&m_{
m D}\,a \lesssim 1/2 &&&& \downarrow &&\\ &\downarrow &&&\downarrow &&& \downarrow && \\ L\gtrsim 4/m_{\pi}\sim 6\,{
m fm} &≈ 0.05\,{
m fm} &&&&& \end{array}$$

 $L/a \gtrsim 120$

• > •

æ

≣ ▶

multiple scale problemlightstrangecharmbeautyalways difficult*****for a numerical treatment1001000mps [MeV]

lattice cutoffs:

$$\Lambda_{\rm UV} = a^{-1}$$
$$\Lambda_{\rm IR} = L^{-1}$$

$$egin{array}{rcl} \mathcal{L}^{-1} &\ll m_{\pi}\,,\,\ldots\,,m_{
m D}\,,m_{
m B} &\ll a^{-1} &&&& \ {
m O}({
m e}^{-\mathcal{L}m_{\pi}}) &&&& m_{
m D}a \lesssim 1/2 &&& \downarrow && \ &\downarrow &&& \downarrow && \ \mathcal{L}\gtrsim 4/m_{\pi}\sim 6\,{
m fm} &&&& approx 0.05\,{
m fm} \end{array}$$

 $L/a\gtrsim 120$

beauty not yet accomodated: we'll discuss what to do

< (T) >

< 注→ < 注→

The issue is

cutoff effects = discretization errors = lattice artefacts

The issue is

cutoff effects = discretization errors = lattice artefacts

Look at a simple one: Dispersion relation, free fermion, Wilson discretization

The issue is

cutoff effects = discretization errors = lattice artefacts

- Look at a simple one: Dispersion relation, free fermion, Wilson discretization
- continuum:

$$E^2 = m^2 + \mathbf{p}^2$$

- The issue is cutoff effects = discretization errors = lattice artefacts
- Look at a simple one: Dispersion relation, free fermion, Wilson discretization
- lattice

$$E^2 = m^2 + \mathbf{p}^2 + O(a^2)$$

• 3 > 1

- The issue is cutoff effects = discretization errors = lattice artefacts
- Look at a simple one: Dispersion relation, free fermion, Wilson discretization

lattice

$$E^{2} = m^{2} + \mathbf{p}^{2} + \mathcal{O}(a^{2})$$

$$\uparrow$$
enhanced by $m \gg |\mathbf{p}|$

- 4 E b - 4 E b

• Wilson fermion action $\left[\partial_{\mu}^{*}f(x) = \frac{1}{a}(f(x) - f(x - a\hat{\mu}))\right]$

$$S_{\text{lat}} = a^{4} \sum_{x} \overline{\psi}(x) \left\{ m_{0} + \frac{\partial_{\mu} + \partial_{\mu}^{*}}{2} \gamma_{\mu} - a \frac{\partial_{\mu}^{*} \partial_{\mu}}{2} \right\} \psi(x)$$
$$= \int_{-\pi/a}^{\pi/a} d^{4} p \, \tilde{\overline{\psi}}(p) \left\{ m_{0} + i \tilde{p}_{\mu} \gamma_{\mu} + \frac{a}{2} \hat{p}^{2} \right\} \tilde{\psi}(p)$$

$$\tilde{p}_{\mu} = \frac{1}{a} \sin(p_{\mu}a), \quad \hat{p}^2 = \sum_{\mu} (\hat{p}_{\mu})^2, \quad \hat{p}_{\mu} = \frac{2}{a} \sin(\frac{ap_{\mu}}{2})$$

- ◆ 臣 ▶ - ◆ 臣 ▶

• Wilson fermion action $\left[\partial_{\mu}^{*}f(x) = \frac{1}{a}(f(x) - f(x - a\hat{\mu}))\right]$

$$\begin{split} S_{\text{lat}} &= a^{4} \sum_{x} \overline{\psi}(x) \left\{ m_{0} + \frac{\partial_{\mu} + \partial_{\mu}^{*}}{2} \gamma_{\mu} - a \frac{\partial_{\mu}^{*} \partial_{\mu}}{2} \right\} \psi(x) \\ &= \int_{-\pi/a}^{\pi/a} \mathrm{d}^{4} p \, \tilde{\overline{\psi}}(p) \left\{ m_{0} + i \tilde{p}_{\mu} \gamma_{\mu} + \frac{a}{2} \hat{p}^{2} \right\} \tilde{\psi}(p) \end{split}$$

$$\tilde{p}_{\mu} = rac{1}{a}\sin(p_{\mu}a), \quad \hat{p}^2 = \sum_{\mu}(\hat{p}_{\mu})^2, \quad \hat{p}_{\mu} = rac{2}{a}\sin(rac{ap_{\mu}}{2})$$

propagator

$$G_W(p) = \frac{(m_0 + \frac{a}{2}\hat{p}^2) - i\tilde{p}_{\mu}\gamma_{\mu}}{(m_0 + \frac{a}{2}\hat{p}^2)^2 + \tilde{p}^2}$$

- ◆ 臣 ▶ - ◆ 臣 ▶

• Wilson fermion action $\left[\partial_{\mu}^{*}f(x) = \frac{1}{a}(f(x) - f(x - a\hat{\mu}))\right]$

$$\begin{split} S_{\text{lat}} &= a^{4} \sum_{x} \overline{\psi}(x) \left\{ m_{0} + \frac{\partial_{\mu} + \partial_{\mu}^{*}}{2} \gamma_{\mu} - a \frac{\partial_{\mu}^{*} \partial_{\mu}}{2} \right\} \psi(x) \\ &= \int_{-\pi/a}^{\pi/a} d^{4} p \, \tilde{\overline{\psi}}(p) \left\{ m_{0} + i \tilde{p}_{\mu} \gamma_{\mu} + \frac{a}{2} \hat{p}^{2} \right\} \tilde{\psi}(p) \end{split}$$

$$\tilde{p}_{\mu} = rac{1}{a}\sin(p_{\mu}a), \quad \hat{p}^2 = \sum_{\mu}(\hat{p}_{\mu})^2, \quad \hat{p}_{\mu} = rac{2}{a}\sin(rac{ap_{\mu}}{2})$$

propagator

$$G_W(p) = \frac{(m_0 + \frac{a}{2}\hat{p}^2) - i\tilde{p}_{\mu}\gamma_{\mu}}{(m_0 + \frac{a}{2}\hat{p}^2)^2 + \tilde{p}^2}$$

★ E ► < E ►</p>

Transfer matrix representation for euclidean correlation functions, $\langle \ . \ \rangle :$ – generally

$$\langle O(x_0)O(0)\rangle \overset{x_0\to\infty}{\sim} B\mathrm{e}^{-Ex_0}$$

- here (free theory) expect

$$\begin{array}{lll} G(x_0,\mathbf{p}) &=& \langle \tilde{\psi}_{\alpha}(x_0,\mathbf{p})\tilde{\overline{\psi}}_{\beta}(0,-\mathbf{p})\rangle \\ &=& B_{\alpha\beta}\,\mathrm{e}^{-Ex_0}\,, \qquad \tilde{\psi}_{\alpha}(x_0,\mathbf{p}) = a^3\sum_{\mathbf{x}}\psi_{\alpha}(x)\mathrm{e}^{i\mathbf{p}\mathbf{x}} \end{array}$$

▲圖→ ▲ 国→ ▲ 国→

Transfer matrix representation for euclidean correlation functions, $\langle \ . \ \rangle :$ – generally

$$\langle O(x_0)O(0)\rangle \overset{x_0\to\infty}{\sim} B\mathrm{e}^{-Ex_0}$$

- here (free theory) expect

$$\begin{split} G(x_0,\mathbf{p}) &= \langle \tilde{\psi}_{\alpha}(x_0,\mathbf{p}) \tilde{\overline{\psi}}_{\beta}(0,-\mathbf{p}) \rangle \\ &= B_{\alpha\beta} e^{-Ex_0} , \qquad \tilde{\psi}_{\alpha}(x_0,\mathbf{p}) = a^3 \sum_{\mathbf{x}} \psi_{\alpha}(x) e^{i\mathbf{p}\mathbf{x}} \end{split}$$

$$G_W(x_0,\mathbf{p}) = \int_{-\pi/a}^{\pi/a} \mathrm{d}p_0 \,\mathrm{e}^{ip_0x_0} \,\,G_W(p)$$

<ロ> (四) (四) (三) (三) (三)

Transfer matrix representation for euclidean correlation functions, $\langle \ . \ \rangle :$ – generally

$$\langle O(x_0)O(0)\rangle \overset{x_0\to\infty}{\sim} B\mathrm{e}^{-Ex_0}$$

- here (free theory) expect

$$G(x_{0},\mathbf{p}) = \langle \tilde{\psi}_{\alpha}(x_{0},\mathbf{p}) \frac{\tilde{\psi}_{\beta}(0,-\mathbf{p}) \rangle}{\tilde{\psi}_{\beta}(x_{0},\mathbf{p})} = a^{3} \sum_{\mathbf{x}} \psi_{\alpha}(\mathbf{x}) e^{i\mathbf{p}\mathbf{x}}$$

$$G_{W}(x_{0},\mathbf{p}) = \int_{-\pi/a}^{\pi/a} dp_{0} e^{ip_{0}x_{0}} G_{W}(p)$$

 $G_W(x_0,\mathbf{p}) = \int_{-\pi/a}^{\pi/a} \mathrm{d}p_0 \,\mathrm{e}^{ip_0x_0} \,\,G_W(p)$

 $E(\mathbf{p})$ from $G_W(p)^{-1} = 0 : \Downarrow$ Exercise

$$2\cosh(Ea) = \frac{1 + a^2 \tilde{\mathbf{p}}^2}{A} + A, \ A = 1 + am_0 + \frac{a^2}{2} \hat{\mathbf{p}}^2$$

Interpretation:

Dispersion relation

1. Renormalization (in the free theory!)

$$\mathbf{p} = 0: e^{aE} + e^{-aE} = A + \frac{1}{A} \to E = \frac{1}{a} \log(1 + am_0) \equiv m_{\mathrm{R}}$$

Now expand in *a*: $2 \cosh(Ea) = 2 + a^2 E^2 + \frac{1}{12} a^4 E^4 + \dots$

 $\log(1 + am_0) \equiv m_{\mathbf{R}} \text{ and expand in } a:$ $2\cosh(Ea) = 2 + a^2 E^2 + \frac{1}{12}a^4 E^4 + \dots$ f: a.d.

$$E^{2} = \mathbf{p}^{2} + m_{\mathrm{R}}^{2} - \left(\frac{1}{3}\mathbf{p}^{4} + \frac{2}{3}m_{\mathrm{R}}^{2}\mathbf{p}^{2} + \frac{1}{3}\sum_{k}p_{k}^{4}\right)\mathbf{a}^{2} + \mathrm{O}(\mathbf{a}^{4})$$

・ロン ・御と ・ヨン ・ヨン

3

 $log(1 + am_0) \equiv m_{\mathbf{R}} \text{ and expand in } a:$ $2 \cosh(Ea) = 2 + a^2 E^2 + \frac{1}{12} a^4 E^4 + \dots$ find:

$$E^{2} = \mathbf{p}^{2} + m_{\mathrm{R}}^{2} - \left(\frac{1}{3}\mathbf{p}^{4} + \frac{2}{3}m_{\mathrm{R}}^{2}\mathbf{p}^{2} + \frac{1}{3}\sum_{k}p_{k}^{4}\right)\mathbf{a}^{2} + \mathrm{O}(\mathbf{a}^{4})$$

cutoff effects are

- enhanced by large m_R
- ▶ O(a²) (in the free Wilson theory automatically)
- break O(3) symmetry (not H(3))

< ロ > (四 > (三 > (三 >)))

Numerical example, relevant for B-physics:

・ロト ・回ト ・ヨト ・ヨト

Numerical example, relevant for B-physics:

- ▶ asymptotics (*a*²-behavior needs *am* < 1/2)
- ▶ am = 1/2...1/4 needed; therefore: charm: yes, beauty: no

< E ▶ < E ▶</p>
Relativistic heavy quark action

El Khadra, Kronfeld, Mackenzie; Aoki, Kuramashi; Christ, Li, Lin

$$S_{\text{lat}} = a^{4} \sum_{x} \overline{\psi}(x) \left\{ m_{0} + \frac{\partial_{0} + \partial_{0}^{*}}{2} \gamma_{0} + \xi \frac{\partial_{k} + \partial_{k}^{*}}{2} \gamma_{k} - a \frac{\partial_{\mu}^{*} \partial_{\mu}}{2} \right\} \psi(x)$$

$$\xi = \xi(am_{0})$$

$$|\mathbf{p}| = 0.5 \text{GeV}$$

$$a = \frac{1}{2 \text{GeV}} \dots \frac{1}{4 \text{GeV}}$$

$$m_{\text{R}} = 4 \text{GeV}$$

$$E^{2} = \mathbf{p}^{2} + m_{\text{R}}^{2}$$

$$-\left(\frac{1}{3}\mathbf{p}^{4} + \frac{1}{3}\sum_{k} p_{k}^{4}\right) a^{2}$$

$$+O(a^{4})$$

Relativistic heavy quark action

El Khadra, Kronfeld, Mackenzie; Aoki, Kuramashi; Christ, Li, Lin

$$S_{\text{lat}} = a^{4} \sum_{x} \overline{\psi}(x) \left\{ m_{0} + \frac{\partial_{0} + \partial_{0}^{*}}{2} \gamma_{0} + \xi \frac{\partial_{k} + \partial_{k}^{*}}{2} \gamma_{k} - a \frac{\partial_{\mu}^{*} \partial_{\mu}}{2} \right\} \psi(x)$$

$$\xi = \xi(am_{0})$$

Options to do B-physics on the lattice

"relativistic heavy quark actions"

extrapolations in the quark mass

effective theories: expansions in Λ/m_b
 Heavy Quark Effective Theory
 Nonrelativistic QCD

Options to do B-physics on the lattice

- "relativistic heavy quark actions" consistent beyond tree-level? at the non-perturbative level?
- extrapolations in the quark mass
- effective theories: expansions in Λ/m_b
 Heavy Quark Effective Theory
 Nonrelativistic QCD

Options to do B-physics on the lattice

- "relativistic heavy quark actions" consistent beyond tree-level? at the non-perturbative level?
- extrapolations in the quark mass need continuum limit before the extrapolation
- effective theories: expansions in $\Lambda/m_{\rm b}$

Heavy Quark Effective Theory

Nonrelativistic QCD

Lattice

Plan

Introduction

Naive HQ on the lattice Continuum HQET

Action Propagator

Symmetries

Renormalizability

Lattice HQET

Action

Propagator Renormalization and matching

Perturbative matching Structure of the 1/M expansion

Toy model HQET at order 1/m Non-perturbative HQET

Tests Non-perturbative matching Large volume

Some results

arXiv:1008.0710

and Les Houches school 2009 Oxford University Press look there for more references

(日) (日) (日) (日) (日)

æ

On continuum HQET

Want to describe hadrons with a single very heavy quark e.g. a B-meson

like a hydrogen atom

hydrogen atom	:	heavy proton	+	light electron
B-meson	:	heavy b-quark	+	light anti-quark
b-baryons	:	heavy b-quark	+	two light quarks

 $m_{
m b}
ightarrow \infty$

• Rest-frame of $B \leftrightarrow$ rest-frame of b (quark)

antiquarks can't be created

$$D_k\psi=0$$

<ロ> (四) (四) (三) (三)

-2

On continuum HQET

Dirac Lagrangian:

$$\begin{split} \overline{\psi} \{ D_{\mu} \gamma_{\mu} + m \} \psi \stackrel{D_{k} \psi = 0}{\longrightarrow} \overline{\psi} \{ D_{0} \gamma_{0} + m \} \psi &= \mathscr{L}_{h}^{\text{stat}} + \underbrace{\mathscr{L}_{h}^{\text{stat}}}_{\text{anti-quark}} \\ \mathscr{L}_{h}^{\text{stat}} &= \overline{\psi}_{h} (m + D_{0}) \psi_{h} \,, \quad P_{+} \psi_{h} = \psi_{h} \,, \quad \overline{\psi}_{h} P_{+} = \overline{\psi}_{h} \,, \quad P_{\pm} = \frac{1 \pm \gamma_{0}}{2} \end{split}$$

Corrections

by treating $D_k \gamma_k$ perturbatively: $D_k \psi \ll m \psi$ Couple quark and anti-quark fields.

(문) (문)

-2

"Deriving" the form of the continuum HQET Lagrangian

Decouple by Fouldy Wouthuysen-Tani (FTW) transformations

$$\begin{array}{ll} \psi & \to & \psi' = \mathrm{e}^{\mathsf{S}'} \mathrm{e}^{\mathsf{S}} \psi \,, \quad \mathsf{S} = \frac{1}{2m} D_k \gamma_k = -\mathsf{S}^{\dagger} \,, \mathsf{S}' = \frac{1}{4m^2} \gamma_0 \gamma_k \mathsf{F}_{k0} \\ \\ \overline{\psi} & \to & \overline{\psi}' = \overline{\psi} \mathrm{e}^{\mathsf{S}} \mathrm{e}^{\mathsf{S}'} \end{array}$$

 $\dots \text{ rename } \psi' \to \psi$

$$\begin{split} \mathscr{L} &= \mathscr{L}_{\mathrm{h}}^{\mathrm{stat}} + \frac{1}{2m} \mathscr{L}_{\mathrm{h}}^{(1)} + \mathscr{L}_{\mathrm{h}}^{\mathrm{stat}} + \frac{1}{2m} \mathscr{L}_{\overline{\mathrm{h}}}^{(1)} + \mathrm{O}(\frac{1}{m^{2}}) \\ \mathscr{L}_{\mathrm{h}}^{(1)} &= -(\mathcal{O}_{\mathrm{kin}} + \mathcal{O}_{\mathrm{spin}}), \quad \mathscr{L}_{\overline{\mathrm{h}}}^{(1)} = -(\bar{\mathcal{O}}_{\mathrm{kin}} + \bar{\mathcal{O}}_{\mathrm{spin}}), \\ \mathcal{O}_{\mathrm{kin}}(x) = \overline{\psi}_{\mathrm{h}}(x) \, \mathbf{D}^{2} \, \psi_{\mathrm{h}}(x), \quad \mathcal{O}_{\mathrm{spin}}(x) = \overline{\psi}_{\mathrm{h}}(x) \, \boldsymbol{\sigma} \cdot \mathbf{B}(x) \, \psi_{\mathrm{h}}(x), \\ \sigma_{k} = \frac{1}{2} \epsilon_{ijk} \sigma_{ij}, \quad B_{k} = i \frac{1}{2} \epsilon_{ijk} F_{ij}, \end{split}$$

< E ▶
 < E ▶

Comments on the "Derivation"

- ▶ It is classical: in a path integral $D_k \psi \ll m \psi$ is not satisfied. All momentum components are integrated over.
- Have not "integrated out any components"
- The derivation is order by order in 1/m
- We now have the classical effective Lagrangian. Its renormalization could need more terms. → to be discussed.

< 🗇 🕨

- - E - - - E - -

Comments on the "Derivation"

- ▶ It is classical: in a path integral $D_k \psi \ll m \psi$ is not satisfied. All momentum components are integrated over.
- Have not "integrated out any components"
- The derivation is order by order in 1/m
- We now have the classical effective Lagrangian. Its renormalization could need more terms.
 → to be discussed.
- ► Lagrangian for a b-hadron at rest. $B \rightarrow l\nu, B \rightarrow \pi l\nu, B \leftrightarrow \overline{B}, \ldots$: ok

・ 同・ ・ ヨ・ ・ ヨ・

The static quark propagator

The propagator $G_h(x, y)$ satisfies

$$(\partial_{x_0} + A_0(x) + m)G_h(x,y) = \delta(x-y)P_+$$

Solution

$$G_{\rm h}(x,y) = \theta(x_0 - y_0) \exp(-m(x_0 - y_0)) \,\delta(\mathbf{x} - \mathbf{y}) P_+$$
$$\cdot \mathcal{P} \exp\left\{-\int_{y_0}^{x_0} \mathrm{d}z_0 A_0(z_0, \mathbf{x})\right\}$$

 $\mathcal{P}: \mbox{ path ordering }$

explicit solution (check it as an exercise)

• $\delta(\mathbf{x} - \mathbf{y})$: static

< 17 ×

(E) < E)</p>

æ

Mass dependence

$$\begin{aligned} G_{\rm h}(\mathbf{x}, \mathbf{y}) &= \theta(\mathbf{x}_0 - \mathbf{y}_0) \exp(-m(\mathbf{x}_0 - \mathbf{y}_0)) \,\delta(\mathbf{x} - \mathbf{y}) \, P_+ \\ &\cdot \mathcal{P} \exp\left\{-\int_{\mathbf{y}_0}^{\mathbf{x}_0} \mathrm{d}\mathbf{z}_0 A_0(\mathbf{z}_0, \mathbf{x})\right\} \end{aligned}$$

explicit factor $\exp(-m|x_0 - y_0|)$ for any gauge field also after path integration over the gauge fields

$$C_{\rm h}(x,y;m) = C_{\rm h}(x,y;0) \exp(-m(x_0 - y_0)).$$

example:

$$C_{\mathrm{h}}^{\mathrm{PP}}(x,y;m) = \langle \overline{\psi}_{\mathrm{l}}(x)\gamma_{5}\psi_{\mathrm{h}}(x) \ \overline{\psi}_{\mathrm{h}}(y)\gamma_{5}\psi_{\mathrm{l}}(y) \rangle,$$

 $\psi_1(x)$: a light-quark fermion field

remove *m* from Lagrangian

all energies are shifted by m

 $\mathscr{L}_{\mathrm{h}}^{\mathrm{stat}} = \overline{\psi}_{\mathrm{h}}(D_0 + \epsilon)\psi_{\mathrm{h}}$

$$\begin{split} \mathscr{L}_{ar{\mathrm{h}}}^{\mathrm{stat}} &= \overline{\psi}_{ar{\mathrm{h}}} (-D_0 + \epsilon) \psi_{ar{\mathrm{h}}} \ E_{\mathrm{h}/ar{\mathrm{h}}}^{\mathrm{QCD}} &= E_{\mathrm{h}/ar{\mathrm{h}}}^{\mathrm{stat}} + m \end{split}$$

물 / 제품 / 문문

Heavy Quark Symmetries

1. Flavor

F heavy quarks

$$\begin{array}{lll} \psi_{\rm h} & \rightarrow & \psi_{\rm h} = (\psi_{\rm h\, 1}, \ldots, \psi_{\rm h\, {\it F}})^{{\it T}} \\ \mathscr{L}_{\rm h}^{\rm stat} & = & \overline{\psi}_{\rm h} (D_0 + \epsilon) \psi_{\rm h} \, . \end{array}$$

symmetry

$$\psi_{
m h}(x) o V \, \psi_{
m h}(x) \,, \quad \overline{\psi}_{
m h}(x) o \overline{\psi}_{
m h}(x) V^{\dagger} \,, \qquad V \in {
m SU}(F)$$
emerges as ($F = 2$)

 $m_{
m b}-m_{
m c}=c imes\Lambda_{
m QCD}\,, \quad {
m or} \quad m_{
m b}/m_{
m c}=c'\,, \quad m_{
m b}
ightarrow\infty$

 $c \text{ or } c' \text{ fixed when taking } m_{\mathrm{b}} \to \infty$

Heavy Quark Symmetries

2. Spin

$$\psi_{\mathrm{h}}(x)
ightarrow \mathrm{e}^{i lpha_k \sigma_k} \, \psi_{\mathrm{h}}(x) \,, \qquad \overline{\psi}_{\mathrm{h}}(x)
ightarrow \overline{\psi}_{\mathrm{h}}(x) \mathrm{e}^{-i lpha_k \sigma_k} \,,$$

$$\sigma_k = \frac{1}{2} \epsilon_{ijk} \sigma_{ij} \equiv \begin{pmatrix} \sigma_k & 0 \\ 0 & \sigma_k \end{pmatrix} ,$$

in Dirac representation where

$$\gamma_0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ P_+ = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \ P_- = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

▲御▶ ▲臣▶ ★臣▶

4

Heavy Quark Symmetries

3. Local Flavor-number

$$\psi_{\mathrm{h}}(\mathbf{x})
ightarrow \mathrm{e}^{i\eta(\mathbf{x})} \psi_{\mathrm{h}}(\mathbf{x}) \,, \qquad \overline{\psi}_{\mathrm{h}}(\mathbf{x})
ightarrow \overline{\psi}_{\mathrm{h}}(\mathbf{x}) \mathrm{e}^{-i\eta(\mathbf{x})} \,,$$

is a symmetry for any local phase $\eta(\mathbf{x})$.

For every point \mathbf{x} there is a corresponding Noether charge

$$\begin{aligned} Q_{\rm h}(x) &= \overline{\psi}_{\rm h}(x)\psi_{\rm h}(x) \left[=\overline{\psi}_{\rm h}(x)\gamma_0\psi_{\rm h}(x)\right] \\ \partial_0 Q_{\rm h}(x) &= 0 \; \forall x \end{aligned}$$

 $Q_{\rm h}(x)$: local (heavy) Flavor number

All heavy quark symmetries are broken at order 1/m.
 But it is essential to have them at the lowest order.

Summary first lecture

- B-physics is interesting for searching for deviations from the standard model
- $m_{
 m b} \ll a^{-1}$ impossible to realize for a while to come
- Expansion in $\Lambda/m_{
 m b} \sim 1/10$
- Lowest order Term

$$\mathscr{L}_{\rm h}^{\rm stat} = \overline{\psi}_{\rm h} (D_0 + \epsilon) \psi_{\rm h} \,, \quad P_+ \psi_{\rm h} = \psi_{\rm h}$$

 $m_{\rm b}$ scale is removed

Symmetries SU(2) Flavor (for $m_{\rm b} \to \infty$ and $m_{\rm c} \to \infty$) spin symmetry local flavor number

(日) (日) (日)

Renormalizability of the static theory

 $\mathscr{L}_{\mathrm{h}}^{\mathrm{stat}} = \overline{\psi}_{\mathrm{h}}(D_0 + \epsilon)\psi_{\mathrm{h}}$

local Lagrangian with field

$$\mathcal{O}_1(x) = \overline{\psi}_{h}(x)D_0\psi_{h}(x), \quad [\mathcal{O}_1] = 4$$

 \blacktriangleright standard wisdom: renormalized by adding all local fields with $[\mathcal{O}_j] \leq 4$

$$\mathcal{O}_2(x) = \overline{\psi}_{\mathrm{h}}(x)\psi_{\mathrm{h}}(x), \quad [\mathcal{O}_2] = 3$$

no other fields compatible with the symmetries

complete renormalized Lagrangian

$$\begin{aligned} \mathscr{L}_{\mathrm{h}}^{\mathrm{stat}} &= \overline{\psi}_{\mathrm{h}}(D_{0} + \delta m + \epsilon)\psi_{\mathrm{h}} \\ \delta m &= (e_{1}g_{0}^{2} + e_{2}g_{0}^{4} + \ldots)\Lambda_{\mathrm{cut}} \end{aligned}$$

- δm given for massless light quarks
- $1 \times \mathcal{O}_1(x)$ possible by choosing wave function renormalization
- Energies of any state are

$$E_{h/\bar{h}}^{QCD} = E_{h/\bar{h}}^{stat}\Big|_{\delta m=0} + \frac{\delta m}{m} + \frac{m}{m} = E_{h/\bar{h}}^{stat}\Big|_{\delta m=0} + \frac{m}{bare}$$

Renormalizability of the static theory

Note: none of this is proven (e.g. to all orders of $\mathsf{PT}),$ but

- worked out in PT so far
- NP tests (later)

(E) < E)</p>

æ

Predictions (if charm is heavy enough)

$$E_{\mathrm{h}/\bar{\mathrm{h}}}^{\mathrm{QCD}} = E_{\mathrm{h}/\bar{\mathrm{h}}}^{\mathrm{stat}}\Big|_{\delta m=0} + \frac{\delta m + m_{\mathrm{f}}}{m_{\mathrm{f}}} = E_{\mathrm{h}/\bar{\mathrm{h}}}^{\mathrm{stat}}\Big|_{\delta m=0} + m_{\mathrm{bare}}^{\mathrm{f}}$$

Considering different levels (e.g. radial excitations or different angular momentum:

$$E_{
m b}^\prime - E_{
m b} = E_{
m c}^\prime - E_{
m c} + {
m O}(\Lambda_{
m QCD}/m_{
m c})$$

Also predictions for decays:

 $B \to \tau \bar{\nu}_{\tau}$

$$\begin{array}{ll} \text{amplitude} & \propto & \langle 0 | \bar{u}(x) \gamma_{\mu} \gamma_{5} b(x) | B(p) \rangle = p_{\mu} \mathrm{e}^{i p x} F_{\mathrm{B}} \\ \mathbf{p} = 0 : & & \langle 0 | \bar{u}(0) \gamma_{0} \gamma_{5} b(0) | B(p) \rangle = m_{\mathrm{B}} F_{\mathrm{B}} \end{array}$$

Normalization of states, scaling of decay constants

relativistic normalization of states

$$\langle \mathbf{p} | \mathbf{p}' \rangle_{\mathrm{rel}} = (2\pi)^3 \, 2 E(\mathbf{p}) \, \delta(\mathbf{p} - \mathbf{p}') \, .$$

The factor $E(\mathbf{p})$ introduces a spurious mass-dependence. non-relativistic normalization is

$$\begin{split} \langle \mathbf{p} | \mathbf{p}' \rangle_{\mathrm{NR}} &\equiv \langle \mathbf{p} | \mathbf{p}' \rangle = 2 \left(2\pi \right)^3 \delta(\mathbf{p} - \mathbf{p}') \\ | \mathbf{p} \rangle_{\mathrm{rel}} &= \sqrt{\mathcal{E}(\mathbf{p})} | \mathbf{p} \rangle \,. \end{split}$$

To lowest order in $1/m_{\rm b}$ the FTW transformation is trivial:

$$\begin{aligned} \mathcal{A}_0^{\mathrm{HQET}}(x) &= \mathcal{A}_0^{\mathrm{stat}}(x) + \mathrm{O}(1/m_{\mathrm{b}}), \ \mathcal{A}_0^{\mathrm{stat}}(x) = \bar{u}(x)\gamma_0\gamma_5\psi_{\mathrm{h}}(x) \,. \\ \rightarrow & \langle 0|\mathcal{A}_0^{\mathrm{stat}}(0)|B^-(\mathbf{p}=0)\rangle = \underbrace{\Phi^{\mathrm{stat}}_{\mathrm{mass-independent}}}_{\mathrm{mass-independent}} \\ \Phi^{\mathrm{stat}} &= m_{\mathrm{B}}^{-1/2}\, p_0\, F_{\mathrm{B}} = m_{\mathrm{B}}^{1/2}F_{\mathrm{B}} = m_{\mathrm{D}}^{1/2}F_{\mathrm{D}} \end{aligned}$$

in the limit $m_{\rm b} \to \infty, m_{\rm c} \to \infty$; rather doubtful for charm. also up to logarithmic corrections (see later)

イロト イポト イヨト イヨト

Static action on the lattice

- no chiral symmetry for a static quark
- discretize à la Wilson (with r = 1)

$$D_0\gamma_0 \quad \rightarrow \quad \frac{1}{2}\{(\nabla_0+\nabla_0^*)\gamma_0-a\nabla_0^*\nabla_0\}\,,$$

$$\left(\nabla^*_{\mu}\psi(x) = \frac{1}{a}[\psi(x) - \psi(x - a\hat{\mu})], \quad \nabla_{\mu}\psi(x) = \frac{1}{a}[\psi(x + a\hat{\mu}) - \psi(x)]\right)$$

with ${\it P}_+\psi_{\rm h}=\psi_{\rm h}\,,\;{\it P}_-\psi_{\rm \bar{h}}=\psi_{\rm \bar{h}},$ get lattice identities

$$D_0 \psi_{\mathrm{h}}(x) =
abla^*_0 \psi_{\mathrm{h}}(x), \quad D_0 \psi_{\overline{\mathrm{h}}}(x) =
abla_0 \psi_{\overline{\mathrm{h}}}(x).$$

 \blacktriangleright convenient normalization factor \rightarrow

$$\begin{aligned} \mathscr{L}_{\mathrm{h}} &= \frac{1}{1+a\delta m} \overline{\psi}_{\mathrm{h}}(x) [\nabla_{0}^{*}+\delta m] \psi_{\mathrm{h}}(x) \,, \\ \mathscr{L}_{\overline{\mathrm{h}}} &= \frac{1}{1+a\delta m} \overline{\psi}_{\overline{\mathrm{h}}}(x) [-\nabla_{0}+\delta m] \psi_{\overline{\mathrm{h}}}(x) \,. \end{aligned}$$

▲圖→ ▲屋→ ▲屋→

Static action on the lattice

The following points are worth noting.

- Formally, this is just a one-dimensional Wilson fermion replicated for all space points x
- No doubler modes
- Positive hermitian transfer matrix for Wilson fermions can be taken over
- The choice of the backward derivative for the quark and the forward derivative for the anti-quark is selected by the Wilson term. Selects forward/backward propagation; an *ϵ*-prescription is not needed
- First written down by Eichten and Hill.
- Preserves all the continuum heavy quark symmetries

・ 同 ト・ ・ ヨート・ ・ ヨート

Propagator

$$\frac{1}{1+a\,\delta m}(\nabla_0^*+\delta m)G_{\rm h}(x,y)=\delta(x-y)P_+\equiv a^{-4}\prod_{\mu}\delta_{\frac{x_{\mu}}{a}\frac{y_{\mu}}{a}}P_+\,.$$

Writing

$$G_{\rm h}(x,y) = g(n_0,k_0;{\bf x})\delta({\bf x}-{\bf y})P_+\,,\quad x_0=an_0\,,\;y_0=ak_0$$

simple recursion for $g(n_0 + 1, k_0; \mathbf{x})$ in terms of $g(n_0, k_0; \mathbf{x})$ solution

$$\begin{aligned} g(n_0, k_0; \mathbf{x}) &= \theta(n_0 - k_0)(1 + a\delta m)^{-(n_0 - k_0)} \mathcal{P}(y, x; 0)^{\dagger}, \\ \mathcal{P}(x, x; 0) &= 1, \quad \mathcal{P}(x, y + a\hat{0}; 0) = \mathcal{P}(x, y; 0) U(y, 0), \end{aligned}$$

where

$$\theta(n_0 - k_0) = \begin{cases} 0 & n_0 < k_0 \\ 1 & n_0 \ge k_0 . \end{cases}$$

$$G_{\rm h}(x,y) = \theta(x_0 - y_0) \,\delta(\mathbf{x} - \mathbf{y}) \,\exp\left(-\widehat{\delta m} (x_0 - y_0)\right) \,\mathcal{P}(y,x;0)^{\dagger} \,P_+ \,,$$

$$\widehat{\delta m} = \frac{1}{a} \ln(1 + a\delta m) \,.$$

・ロン ・御と ・ヨン ・ヨン

æ

Propagator

$$G_{\rm h}(x,y) = \theta(x_0 - y_0) \,\delta(\mathbf{x} - \mathbf{y}) \,\exp\left(-\widehat{\delta m} (x_0 - y_0)\right) \,\mathcal{P}(y,x;0)^{\dagger} \,P_+ \,,$$

$$\widehat{\delta m} = \frac{1}{a} \ln(1 + a\delta m) \,.$$

•
$$\theta(0) = 1$$
 for the lattice θ -function

mass counter term δm just yields an energy shift on the lattice:

$$E_{\mathrm{h}/\bar{\mathrm{h}}}^{\mathrm{QCD}} = E_{\mathrm{h}/\bar{\mathrm{h}}}^{\mathrm{stat}}\Big|_{\delta m=0} + m_{\mathrm{bare}}, \quad m_{\mathrm{bare}} = \widehat{\delta m} + m.$$

the split between δm and the finite *m* is convention dependent

<ロ> (四) (四) (注) (注) ()

3

Symanzik analysis of cutoff effects

I do not derive it here ... result:

- automatic O(a) improvement of the action, energy levels O(a²) cutoff effects
- O(a) improvement term for currents, eg.

$$\begin{array}{lll} A_0^{\rm stat} & = & \overline{\psi}_1 \gamma_0 \gamma_5 \psi_{\rm h} \\ (A_{\rm R}^{\rm stat})_0 & = & Z_{\rm A}^{\rm stat} (A_0^{\rm stat} + {\it ac}_{\rm A}^{\rm stat}(g_0) \, \delta A_0^{\rm stat}) \end{array}$$

irrespective of the light-quark action

other (components) of currents, similarly

• = > •

Numerical test of the renormalizability

$$f_{1}^{\text{stat}}(\theta) = -\frac{a^{12}}{2L^{6}} \sum_{\mathbf{u}, \mathbf{v}, \mathbf{y}, \mathbf{z}} \left\langle \overline{\zeta}_{1} \,'(\mathbf{u}) \gamma_{5} \zeta_{h} \,'(\mathbf{v}) \, \overline{\zeta}_{h}(\mathbf{y}) \gamma_{5} \zeta_{l}(\mathbf{z}) \right\rangle \quad : \qquad \underbrace{\qquad}_{\mathbf{x}_{0}=0} \quad \mathsf{T}$$

In a Schrödinger functional . Double lines are static quark propagators. θ angle in spatial BC's.

Renormalization according to standard wisdom

$$\begin{bmatrix} f_{\rm A}^{\rm stat} \end{bmatrix}_{\rm R} = Z_{\rm A}^{\rm stat} Z_{\zeta_{\rm h}} Z_{\zeta} f_{\rm A}^{\rm stat}, \quad \begin{bmatrix} f_{1}^{\rm stat} \end{bmatrix}_{\rm R} = Z_{\zeta_{\rm h}}^{2} Z_{\zeta}^{2} f_{1}^{\rm stat}, \quad \begin{bmatrix} f_{1}^{\rm hh} \end{bmatrix}_{\rm R} = Z_{\zeta_{\rm h}}^{4} f_{1}^{\rm hh}.$$
Rainer Sommer
Heavy Quarks on the lattice

Numerical test of the renormalizability [Della Morte, Shindler, S., 2005]

Beyond the classical theory: Renormalization and Matching a matrix element of A₀:

QCDHQET in static approx. $Z_A \langle f | A_0(x) | i \rangle_{QCD}$ $Z_A^{stat}(\mu) \langle f | A_0^{stat}(x) | i \rangle_{stat}$ $\Phi^{QCD}(m)$ $\Phi(\mu)$

- m: mass of heavy quark (b) in some definition (all other masses zero for simplicity)
- μ : arbitrary renormalization scale
- matching (equivalence):

$$\begin{split} \Phi^{\rm QCD}(m) &= \widetilde{C}_{\rm match}(m,\mu) \times \Phi(\mu) + {\rm O}(1/m) \\ \widetilde{C}_{\rm match}(m,\mu) &= 1 + \underbrace{c_1(m/\mu)}_{\gamma_0 \log(\mu/m) + {\rm const.}} \bar{g}^2(\mu) + \dots \end{split}$$

 M, Λ, Φ_{RGI} : Renormalization Group Invariants

Beyond the classical theory: Renormalization and Matching a matrix element of A₀:

QCDHQET in static approx. $Z_{\rm A} \langle f | A_0(x) | i \rangle_{\rm QCD}$ $Z_{\rm A}^{\rm stat}(\mu) \langle f | A_0^{\rm stat}(x) | i \rangle_{\rm stat}$ $\Phi^{\rm QCD}(m)$ $\Phi(\mu)$

- m: mass of heavy quark (b) in some definition (all other masses zero for simplicity)
- μ : arbitrary renormalization scale
- matching (equivalence):

$$\begin{split} \Phi^{\rm QCD}(m) &= \widetilde{C}_{\rm match}(m,\mu) \times \Phi(\mu) + {\rm O}(1/m) \\ \widetilde{C}_{\rm match}(m,\mu) &= 1 + \underbrace{c_1(m/\mu)}_{\gamma_0 \log(\mu/m) + {\rm const.}} \bar{g}^2(\mu) + \dots \\ &= C_{\rm PS}(M/\Lambda) \, \Phi_{\rm RGI} \end{split}$$

 M, Λ, Φ_{RGI} : Renormalization Group Invariants

- (同) (注) (注)

The nature of the expansion

- QFT \rightarrow divergencies, log(M)
- Strongly interacting:
 - non-perturbative in α perturbative in 1/M
- A toy model with the essential features

$$\Phi^{\rm QCD}(\beta) = \underbrace{\mathcal{C}(M/\Lambda)}_{M} \quad \Phi_0(\beta) + \frac{c_1}{M} \Phi_1(\beta) + \frac{c_2}{M^2} \Phi_2(\beta) + \dots$$

$$\begin{split} \Phi^{\rm QCD:} & \mbox{(renormalized) observable} \\ & \mbox{energy level} \\ & \mbox{decay constant } (F_{\rm B}\sqrt{m_{\rm B}}) \\ \beta: \mbox{ Quantum number (e.g. pseudo-scalar vector)} \\ M: \mbox{ the mass of the quark (RGI)} \end{split}$$

イロト イヨト イヨト イヨト

The nature of the expansion

- QFT \rightarrow divergencies, log(*M*)
- Strongly interacting:
 - non-perturbative in α perturbative in 1/M
- A toy model with the essential features

$$\Phi^{\text{QCD}}(\beta) = \underbrace{\mathcal{C}(M/\Lambda)}_{\substack{(\log(M/\Lambda))^r\\1+k[\log(M/\Lambda)]^{-1}}} \Phi_0(\beta) + \frac{c_1}{M} \Phi_1(\beta) + \frac{c_2}{M^2} \Phi_2(\beta) + \dots$$

 $\Phi^{
m QCD}$: a (renormalized) observable energy level decay constant ($F_{
m B}\sqrt{m_{
m B}}$)

- β : Quantum number (e.g. pseudo-scalar vector)
- M: the mass of the quark (RGI)
- C(M/Λ) not constant; not a naive expansion!

as just discussed:

- from renormalization of HQET and matching to QCD [Eichten, Hill]
- from QCD mass dependence at large masses [Shifmann, Voloshin; Politzer, Wise]

(D) (A) (A)

The nature of the expansion

$$\Phi^{\text{QCD}}(\beta) = \Phi_0(\beta) \underbrace{\frac{(\log(M/\Lambda))^r}{1+k[\log(M/\Lambda)]^{-1}}}_{C(M/\Lambda)} + \Phi_1(\beta) \frac{c_1}{M} + \Phi_2(\beta) \frac{c_2}{M^2} + \dots$$

$$[\log(M/\Lambda)]^{-1} \sim \alpha(M)$$

$$C(M/\Lambda) = (\log(M/\Lambda))^r \left[1 + \sum_{l \ge 1} (-k)^l (\log(M/\Lambda))^{-l}\right]$$

$$= \alpha(M)^{-r} \left[1 + \sum_{l \ge 1} (-k)^l \alpha(M)^l\right]$$

simplified:

- summable, finite radius of convergence (not in real QCD)
- neglected log-corrections and mixing in M^{-n} terms
- r given by anomalous dimension in HQET (γ_0)

Image: A math

The standard approach

[log(M/Λ)]⁻¹ ~ α(M) ≪ 1
 "matching (computation of the coefficients) can be done in perturbation theory"
 "Wilson coefficients can be computed in perturbation theory"

in our model this means

$$C(M/\Lambda) = \alpha(M)^{-r} \left[1 + \sum_{l=1}^{L} (-k)^{l} \alpha(M)^{l} \right] \pm \Delta[C(M/\Lambda)]$$

= $(\log(M/\Lambda))^{r} \left[1 + \sum_{l=1}^{L} (-k)^{l} (\log(M/\Lambda))^{-l} \right] \pm \Delta[C(M/\Lambda)]$
error : $\frac{\Delta[C(M/\Lambda)]}{C(M/\Lambda)} = O\left(\alpha(M)^{L+1}\right)$

fine for leading term in 1/M if pertubration theory is well behaved
 but including M⁻¹-term is theoretically ill defined

$$\log(M/\Lambda)^{-L-1} \gg \Lambda/M$$
 for $M \to \infty$

・ロト ・ 日 ・ ・ ヨ ・ ・ モ ト

-2

The standard approach

[log(M/Λ)]⁻¹ ~ α(M) ≪ 1 "matching (computation of the coefficients) can be done in perturbation theory" " Wilson coefficients can be computed in perturbation theory"

in our model this means

$$C(M/\Lambda) = \alpha(M)^{-r} \left[1 + \sum_{l=1}^{L} (-k)^{l} \alpha(M)^{l} \right] \pm \Delta[C(M/\Lambda)]$$

= $(\log(M/\Lambda))^{r} \left[1 + \sum_{l=1}^{L} (-k)^{l} (\log(M/\Lambda))^{-l} \right] \pm \Delta[C(M/\Lambda)]$
error : $\frac{\Delta[C(M/\Lambda)]}{C(M/\Lambda)} = O\left(\alpha(M)^{L+1}\right)$

fine for leading term in 1/M if pertubration theory is well behaved
 but including M⁻¹-term is theoretically ill defined

$$\log(M/\Lambda)^{-L-1} \gg \Lambda/M$$
 for $M \to \infty$

▶ Need $C(M/\Lambda)$, c_1 , c_2 non-perturbatively

The standard approach

[log(M/Λ)]⁻¹ ~ α(M) ≪ 1
 "matching (computation of the coefficients) can be done in perturbation theory"
 "Wilson coefficients can be computed in perturbation theory"

in our model this means

$$C(M/\Lambda) = \alpha(M)^{-r} \left[1 + \sum_{l=1}^{L} (-k)^{l} \alpha(M)^{l} \right] \pm \Delta[C(M/\Lambda)]$$

= $(\log(M/\Lambda))^{r} \left[1 + \sum_{l=1}^{L} (-k)^{l} (\log(M/\Lambda))^{-l} \right] \pm \Delta[C(M/\Lambda)]$
error : $\frac{\Delta[C(M/\Lambda)]}{C(M/\Lambda)} = O\left(\alpha(M)^{L+1}\right)$

fine for leading term in 1/M if pertubration theory is well behaved
 but including M⁻¹-term is theoretically ill defined

$$\log(M/\Lambda)^{-L-1} \gg \Lambda/M$$
 for $M \to \infty$

- Need $C(M/\Lambda)$, c_1 , c_2 non-perturbatively
- ► Also matching QCD → HQET on the lattice
Including $1/m_{\rm b}$ corrections ($O(1/m_{\rm b}^2)$ dropped without notice)

$$\mathscr{L}_{\mathrm{h}}^{(1)}(x) = -(\omega_{\mathrm{kin}} \mathcal{O}_{\mathrm{kin}}(x) + \omega_{\mathrm{spin}} \mathcal{O}_{\mathrm{spin}}(x)).$$

NRQCD path integral weight:

$$W_{
m NRQCD} \propto \exp(-a^4\sum_x [\mathscr{L}_{
m light}(x) + \mathscr{L}_{
m h}^{
m stat}(x) + \mathscr{L}_{
m h}^{(1)}(x)])$$

non-renormalizable ($[\mathcal{O}_{\rm kin}]=[\mathcal{O}_{\rm spin}]=5)$, no continuum limit the real trouble is not the effective theory, but that at the same time we want non-perturbative results: not a finite number of loops

HQET path integral weight:

$$W_{\mathrm{HQET}} \equiv \exp(-a^4 \sum_{x} [\mathscr{L}_{\mathrm{light}}(x) + \mathscr{L}_{\mathrm{h}}^{\mathrm{stat}}(x)]) \left\{ 1 - a^4 \sum_{x} \mathscr{L}_{\mathrm{h}}^{(1)}(x) \right\}$$

part of the definition of HQET

$$\begin{split} \mathcal{W}_{\mathrm{HQET}} &\equiv & \exp(-a^{4}\sum_{x}[\mathscr{L}_{\mathrm{light}}(x) + \mathscr{L}_{\mathrm{h}}^{\mathrm{stat}}(x)]) \\ & \times \left\{1 + a^{4}\sum_{x}(\omega_{\mathrm{kin}}\,\mathcal{O}_{\mathrm{kin}}(x) + \omega_{\mathrm{spin}}\,\mathcal{O}_{\mathrm{spin}}(x))\right\} \end{split}$$

This yields

$$\begin{split} \langle \mathcal{O} \rangle &= \langle \mathcal{O} \rangle_{\rm stat} + \omega_{\rm kin} a^4 \sum_{x} \langle \mathcal{O} \mathcal{O}_{\rm kin}(x) \rangle_{\rm stat} + \omega_{\rm spin} a^4 \sum_{x} \langle \mathcal{O} \mathcal{O}_{\rm spin}(x) \rangle_{\rm stat} \\ &\equiv \langle \mathcal{O} \rangle_{\rm stat} + \omega_{\rm kin} \langle \mathcal{O} \rangle_{\rm kin} + \omega_{\rm spin} \langle \mathcal{O} \rangle_{\rm spin} \,, \end{split}$$

with

$$\langle \mathcal{O} \rangle_{\text{stat}} = \frac{1}{\mathcal{Z}} \int_{\text{fields}} \mathcal{O} \exp(-a^4 \sum_x [\mathcal{L}_{\text{light}}(x) + \mathcal{L}_{\text{h}}^{\text{stat}}(x)])$$

< 🗇 >

▲ 문 → ▲ 문 →

4

$$\langle \mathcal{O} \rangle = \langle \mathcal{O} \rangle_{\text{stat}} + \omega_{\text{kin}} \langle \mathcal{O} \rangle_{\text{kin}} + \omega_{\text{spin}} \langle \mathcal{O} \rangle_{\text{spin}} ,$$

one more point: also fields in correlation functions need to be expanded:

$$\begin{split} \mathcal{O}_{\rm QCD} &= A_0(x) A_0^{\dagger}(0) \\ A_0(x) &\to A_0^{\rm HQET}(x) = Z_A^{\rm HQET} \left[A_0^{\rm stat}(x) + \sum_{i=1}^2 c_A^{(i)} A_0^{(i)}(x) \right], \\ &\qquad A_0^{(1)}(x) = \overline{\psi}_1(x) \frac{1}{2} \gamma_5 \gamma_i (\nabla_i^{\rm S} - \overleftarrow{\nabla}_i^{\rm S}) \psi_{\rm h}(x), \quad A_0^{(2)}(x) = -\widetilde{\partial}_i \, A_i^{\rm stat}, \\ &\qquad c_A^{(i)} = O(1/m) \quad [A_0^{(i)}(x)] = 4 \end{split}$$

symmetric derivatives:

$$\widetilde{\partial_i} = \frac{1}{2} (\partial_i + \partial_i^*), \quad \overleftarrow{\nabla_i}^{\rm S} = \frac{1}{2} (\overleftarrow{\nabla}_i + \overleftarrow{\nabla}_i^*), \quad \nabla_i^{\rm S} = \frac{1}{2} (\nabla_i + \nabla_i^*).$$

▲□▶ ▲ 国▶ ▲ 国▶

-2

Example

$$C_{\mathrm{AA,R}}^{\mathrm{QCD}}(x_0) = Z_{\mathrm{A}}^2 a^3 \sum_{\mathbf{x}} \left\langle \mathcal{A}_0(x) \mathcal{A}_0^{\dagger}(0) \right\rangle_{\mathrm{QCD}}$$

its HQET expansion

$$\begin{split} C_{AA}^{\rm QCD}(x_0) &= e^{-mx_0} (Z_A^{\rm HQET})^2 \left[C_{AA}^{\rm stat}(x_0) + c_A^{(1)} C_{\delta AA}^{\rm stat}(x_0) \right. \\ &+ \omega_{\rm kin} C_{AA}^{\rm kin}(x_0) + \omega_{\rm spin} C_{AA}^{\rm spin}(x_0) \right] \\ &\equiv e^{-mx_0} (Z_A^{\rm HQET})^2 C_{AA}^{\rm stat}(x_0) \left[1 + c_A^{(1)} R_{\delta A}^{\rm stat}(x_0) \right. \\ &+ \omega_{\rm kin} R_{AA}^{\rm kin}(x_0) + \omega_{\rm spin} R_{AA}^{\rm spin}(x_0) \right] \end{split}$$

with

$$\begin{split} C^{\rm stat}_{\delta AA}(x_0) &= a^3 \sum_{\mathbf{x}} \langle A^{\rm stat}_0(x) (A^{(1)}_0(0))^{\dagger} \rangle_{\rm stat} + a^3 \sum_{\mathbf{x}} \langle A^{(1)}_0(x) (A^{\rm stat}_0(0))^{\dagger} \rangle_{\rm stat} \,, \\ C^{\rm kin}_{AA}(x_0) &= a^3 \sum_{\mathbf{x}} \langle A^{\rm stat}_0(x) (A^{\rm stat}_0(0))^{\dagger} \rangle_{\rm kin} \\ C^{\rm spin}_{AA}(x_0) &= a^3 \sum_{\mathbf{x}} \langle A^{\rm stat}_0(x) (A^{\rm stat}_0(0))^{\dagger} \rangle_{\rm spin} \,. \end{split}$$

$$\begin{split} C_{\mathrm{AA}}^{\mathrm{QCD}}(x_0) &= \mathrm{e}^{-m\,x_0}(Z_{\mathrm{A}}^{\mathrm{HQET}})^2 \left[C_{\mathrm{AA}}^{\mathrm{stat}}(x_0) + c_{\mathrm{A}}^{(1)} \, C_{\delta \mathrm{AA}}^{\mathrm{stat}}(x_0) \right. \\ &+ \omega_{\mathrm{kin}} \, C_{\mathrm{AA}}^{\mathrm{kin}}(x_0) + \omega_{\mathrm{spin}} \, C_{\mathrm{AA}}^{\mathrm{spin}}(x_0) \right] \end{split}$$

parameters in the effective theory

$$(\omega_1, \dots \omega_5) = (m_{\text{bare}} = m + \delta m, \ln(Z_A^{\text{HQET}}), c_A^{(1)}, \omega_{\text{kin}}, \omega_{\text{spin}})$$

 $\omega_i = \omega_i(g_0, aM_b)$ bare parameters

renormalization

all terms needed for the renormalization of the correlation functions with insertions of $\mathcal{O}_{kin}, \mathcal{O}_{spin}$ are present in the expression

 ω_i are the necessary free coefficients

keep $M_{\rm b}$ fixed change $g_0 \rightarrow 0, \ a \rightarrow 0$: all divergences (logarithmic and power) absorbed in ω_i

a more detailed explanation in [R.S., arXiv:1008.0710]

matching

finite parts of the ω_i by matching to QCD

(more precisiely later)

$$\Phi_i^{\mathrm{HQET}}(\{\omega_i\}) = \Phi_i^{\mathrm{QCD}}(M_{\mathrm{b}})$$

Expansion of energies...

$$\begin{split} m_{\rm B} &= -\lim_{x_0 \to \infty} \widetilde{\partial_0} \ln C_{\rm AA}^{\rm QCD}(x_0) \\ &= m_{\rm bare} - \lim_{x_0 \to \infty} \widetilde{\partial_0} \big[\ln C_{\rm AA}^{\rm stat}(x_0) + c_{\rm A}^{(1)} R_{\delta A}^{\rm stat}(x_0) + \\ &+ \omega_{\rm kin} R_{\rm AA}^{\rm kin}(x_0) + \omega_{\rm spin} R_{\rm AA}^{\rm spin}(x_0) \big]_{\delta m = 0} \\ &= m_{\rm bare} + E^{\rm stat} + \omega_{\rm kin} E^{\rm kin} + \omega_{\rm spin} E^{\rm spin} \,, \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ >

Expansion of energies...

$$\begin{split} m_{\rm B} &= -\lim_{x_0 \to \infty} \widetilde{\partial_0} \ln C_{\rm AA}^{\rm QCD}(x_0) \\ &= m_{\rm bare} - \lim_{x_0 \to \infty} \widetilde{\partial_0} \big[\ln C_{\rm AA}^{\rm stat}(x_0) + c_{\rm A}^{(1)} R_{\delta A}^{\rm stat}(x_0) + \\ &+ \omega_{\rm kin} R_{\rm AA}^{\rm kin}(x_0) + \omega_{\rm spin} R_{\rm AA}^{\rm spin}(x_0) \big]_{\delta m = 0} \\ &= m_{\rm bare} + E^{\rm stat} + \omega_{\rm kin} E^{\rm kin} + \omega_{\rm spin} E^{\rm spin} \,, \end{split}$$

$$\begin{split} E^{\mathrm{stat}} &= -\lim_{x_0 \to \infty} \widetilde{\partial_0} \, \ln C_{\mathrm{AA}}^{\mathrm{stat}}(x_0) \Big|_{\delta m = 0} \,, \\ E^{\mathrm{kin}} &= -\lim_{x_0 \to \infty} \widetilde{\partial_0} \, R_{\mathrm{AA}}^{\mathrm{kin}}(x_0) \\ &= -\frac{1}{2L^3} \langle B | a^3 \sum_{\mathbf{z}} \mathcal{O}_{\mathrm{kin}}(0, \mathbf{z}) | B \rangle_{\mathrm{stat}} = -\frac{1}{2} \langle B | \mathcal{O}_{\mathrm{kin}}(0) | B \rangle_{\mathrm{stat}} \\ E^{\mathrm{spin}} &= -\lim_{x_0 \to \infty} \widetilde{\partial_0} \, R_{\mathrm{AA}}^{\mathrm{spin}}(x_0) = -\frac{1}{2} \langle B | \mathcal{O}_{\mathrm{spin}}(0) | B \rangle_{\mathrm{stat}} \,, \\ 0 &= \lim_{x_0 \to \infty} \widetilde{\partial_0} R_{\delta A}^{\mathrm{stat}}(x_0) \,. \end{split}$$

<ロ> (四) (四) (三) (三) (三)

... and matrix elements

$$\begin{split} F_{\rm B}\sqrt{m_{\rm B}} &= \lim_{x_0 \to \infty} \left\{ 2 \exp(m_{\rm B} x_0) \, C_{\rm AA}^{\rm QCD}(x_0) \right\}^{1/2} \\ &= Z_{\rm A}^{\rm HQET} \, \Phi^{\rm stat} \lim_{x_0 \to \infty} \left\{ 1 + \frac{1}{2} x_0 \big[\omega_{\rm kin} E^{\rm kin} + \omega_{\rm spin} E^{\rm spin} \big] \right. \\ &+ \frac{1}{2} c_{\rm A}^{(1)} R_{\delta A}^{\rm stat}(x_0) + \frac{1}{2} \omega_{\rm kin} R_{\rm AA}^{\rm kin}(x_0) + \frac{1}{2} \omega_{\rm spin} R_{\rm AA}^{\rm spin}(x_0) \right\}, \\ \Phi^{\rm stat} &= \lim_{x_0 \to \infty} \left\{ 2 \exp(E^{\rm stat} x_0) \, C_{\rm AA}^{\rm stat}(x_0) \right\}^{1/2}. \end{split}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶

... and matrix elements

$$\begin{split} F_{\rm B}\sqrt{m_{\rm B}} &= \lim_{x_0 \to \infty} \left\{ 2 \exp(m_{\rm B} x_0) \, C_{\rm AA}^{\rm QCD}(x_0) \right\}^{1/2} \\ &= Z_{\rm A}^{\rm HQET} \, \Phi^{\rm stat} \lim_{x_0 \to \infty} \left\{ 1 + \frac{1}{2} x_0 \big[\omega_{\rm kin} E^{\rm kin} + \omega_{\rm spin} E^{\rm spin} \big] \right. \\ &+ \frac{1}{2} c_{\rm A}^{(1)} R_{\delta A}^{\rm stat}(x_0) + \frac{1}{2} \omega_{\rm kin} R_{\rm AA}^{\rm kin}(x_0) + \frac{1}{2} \omega_{\rm spin} R_{\rm AA}^{\rm spin}(x_0) \right\}, \\ \Phi^{\rm stat} &= \lim_{x_0 \to \infty} \left\{ 2 \exp(E^{\rm stat} x_0) \, C_{\rm AA}^{\rm stat}(x_0) \right\}^{1/2}. \end{split}$$

always a strict expansion

$$\begin{array}{lll} (c_{\mathrm{A}}^{(1)},\omega_{\mathrm{kin}},\omega_{\mathrm{spin}}) &=& \mathrm{O}(1/m_{\mathrm{b}}) \\ & Z_{\mathrm{A}}^{\mathrm{HQET}}\omega_{\mathrm{kin}} &\equiv& Z_{\mathrm{A}}^{\mathrm{stat}}\omega_{\mathrm{kin}} \\ & \neq& (Z_{\mathrm{A}}^{\mathrm{stat}}+Z_{\mathrm{A}}^{(1/m)})\,\omega_{\mathrm{kin}} \end{array}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Tests of HQET [Fritzsch, Jüttner, Heitger, S., Wennekers]

Example: SF boundary-to-boundary correlators

spin averaged

Tests of HQET [Fritzsch, Jüttner, Heitger, S., Wennekers]

Example: SF boundary-to-boundary correlators

spin symmetry violating

< 17 ×

• E •

static parameters

$$\omega^{\text{stat}} = (m_{\text{bare}}^{\text{stat}}, [\ln(Z_{\text{A}})]^{\text{stat}})^{t}, N_{\text{HQET}} = 2$$

parameters at first order

$$\begin{split} \omega^{\mathrm{HQET}} &= (m_{\mathrm{bare}}, \, \ln(Z_{\mathrm{A}}^{\mathrm{HQET}}), \, c_{\mathrm{A}}^{(1)}, \, \omega_{\mathrm{kin}}, \, \omega_{\mathrm{spin}})^{t} \quad N_{\mathrm{HQET}} = 5\\ \omega^{(1/m)} &= \omega^{\mathrm{HQET}} - \omega^{\mathrm{stat}} \end{split}$$

matching: $L_1 \approx 0.5 \, \text{fm}$

$$\Phi_i(L_1, M, a) = \Phi_i^{ ext{QCD}}(L_1, M, 0), \ i = 1 \dots N_{ ext{HQET}}.$$

Why $L_1 = 0.5 \text{fm}$?

a = 0.012...0.025fm is accessible
 b-quark can be simulated, continuum limit can be taken

・ 同・ ・ ヨ・ ・ ヨ・

 $L_1 = 0.5$ fm: $a = 0.012 \dots 0.025$ fm:

b-quark can be simulated, continuum limit can be taken

three different z

 $L_1 = 0.5 \text{fm}: a = 0.012 \dots 0.025 \text{fm}:$

b-quark can be simulated, continuum limit can be taken

$$\Phi_i(L_1, M, a) = \Phi_i^{\text{QCD}}(L_1, M, 0), \ i = 1 \dots N_{\text{HQET}}.$$

natural:

$$\begin{split} \Phi_1 &= L\Gamma^{\mathrm{P}} \equiv -L\widetilde{\partial_0}\ln(-f_{\mathrm{A}}(x_0))_{x_0=L/2} \stackrel{L\to\infty}{\sim} Lm_{\mathrm{B}} \\ \Phi_2 &= \ln(Z_{\mathrm{A}}\frac{-f_{\mathrm{A}}}{\sqrt{f_1}}) \stackrel{L\to\infty}{\sim} \ln(L^{3/2}F_{\mathrm{B}}\sqrt{m_{\mathrm{B}}/2}) \,, \end{split}$$

HQET expansion

$$\begin{split} \Phi_1 &= L\left[m_{\rm bare} + \Gamma^{\rm stat}\right] + {\rm O}(1/m_{\rm b}) \\ \Phi_2 &= \ln(Z_{\rm A}^{\rm stat}) + \zeta_{\rm A} + {\rm O}(1/m_{\rm b}) \end{split}$$

in general

$$\Phi(L, M, a) = \eta(L, a) + \phi(L, a) \omega(M, a)$$

$$\eta = \begin{pmatrix} \Gamma^{\text{stat}} \\ \zeta_A \\ \dots \end{pmatrix}, \quad \phi = \begin{pmatrix} L & 0 & \dots \\ 0 & 1 & \dots \\ \dots & \dots \end{pmatrix}$$

Full strategy to determine $\omega(M_{ m b}, a)$, $a = 0.05 { m fm} \dots 0.1 { m fm}$

Rainer Sommer

Heavy Quarks on the lattice

 $a=0.025\,\mathrm{fm}\dots0.012\,\mathrm{fm}$

$$\Phi_i^{\text{QCD}}(L_1, M, 0) = \lim_{a/L_1 \to 0} \Phi_i^{\text{QCD}}(L_1, M, a),$$

(2a) HQET parameters

 $a=0.05\,\mathrm{fm}\dots0.025\,\mathrm{fm}$

4

(日) (日) (日) (日) (日)

$$\begin{split} \tilde{\omega}(M,a) &\equiv \phi^{-1}(L_1,a) \left[\Phi(L_1,M,0) - \eta(L_1,a) \right] \\ &= \begin{pmatrix} L_1^{-1} \Phi_1(L_1,M,0) - \Gamma^{\text{stat}}(L_1,a) \\ \Phi_2(L_1,M,0) - \zeta_A(L_1,a) \\ \dots \end{pmatrix} \\ L_1/a \gg 1, \quad aM_{\text{b}} \text{ irrelevant} \end{split}$$

Full strategy

(2b) step scaling to $L_2 = 2L_1 a = 0.05 \text{ fm} \dots 0.025 \text{ fm}$ Insert $\tilde{\omega}$ into $\Phi(L_2, M, a)$

$$\Phi(L_{2}, M, 0) = \lim_{a/L_{2} \to 0} \{\eta(L_{2}, a) + \phi(L_{2}, a) \tilde{\omega}(M, a)\}$$

$$= \lim_{a/L_{2} \to 0} \begin{pmatrix} L_{2}\Gamma^{\text{stat}}(L_{2}, a) + \frac{L_{2}}{L_{1}}\Phi_{1}(L_{1}, M, 0) - L_{2}\Gamma^{\text{stat}}(L_{1}, a) \\ \zeta_{A}(L_{2}, a) + \Phi_{2}(L_{1}, M, 0) - \zeta_{A}(L_{1}, a) \end{pmatrix}$$

$$= \lim_{a/L_{2} \to 0} \underbrace{\begin{pmatrix} L_{2}[\Gamma^{\text{stat}}(L_{2}, a) - \Gamma^{\text{stat}}(L_{1}, a)] \\ \zeta_{A}(L_{2}, a) - \zeta_{A}(L_{1}, a) \\ \vdots \\ \vdots \\ finite \ \text{HQET SSF's} \end{pmatrix}}_{\text{GCD, mass dependence}} \Phi(L_{2}, M, 0) = I_{2} \Phi(L_{2}, M, 0) = I_{2} \Phi(L_{2}, M, 0) + I_{2} \Phi(L_{2}, M, 0) = I_{2} \Phi(L_{2}, M, 0) + I_{2} \Phi(L_{2}, M, 0) = I_{2} \Phi(L_{2}, M, 0) + I_{2} \Phi(L_{2}, M, 0) = I_{2} \Phi(L_{2}, M, 0) + I_{2} \Phi(L_{2}, M, 0) = I_{2} \Phi(L_{2}, M, 0) + I_{2} \Phi(L_{2}, M, 0) = I_{2} \Phi(L_{2}, M, 0) + I_{2} \Phi(L_{2}, M, 0) = I_{2} \Phi(L_{2}, M, 0) + I_{2} \Phi(L_{2}, M, 0) = I_{2} \Phi(L_{2}, M, 0) + I_{2} \Phi(L_{2}, M, 0) = I_{2} \Phi(L_{2}, M, 0) + I_{2} \Phi(L_{2}, M, 0) = I_{2} \Phi(L_{2}, M, 0) + I_{2} \Phi(L_{2}, M, 0) = I_{2} \Phi(L_{2}, M, 0) + I_{2} \Phi(L_{2}, M, 0) = I_{2} \Phi(L_{2}, M, 0) + I_{2} \Phi(L_{2}, M, 0) = I_{2} \Phi(L_{2}, M, 0) + I_{2} \Phi(L_{2}, M, 0)$$

Full strategy

(3.) Repeat (2a.) for $L_1 \rightarrow L_2$:

$$\omega(\boldsymbol{M},\boldsymbol{a}) \equiv \phi^{-1}(\boldsymbol{L}_2,\boldsymbol{a}) \left[\Phi(\boldsymbol{L}_2,\boldsymbol{M},\boldsymbol{0}) - \eta(\boldsymbol{L}_2,\boldsymbol{a}) \right].$$

With same resolutions $L_2/a = 10...20$ now a = 0.1 fm ... 0.05 fm(4.) insert ω into the expansion of large volume observables, e.g.

$$m_{\rm B} = \omega_1 + E^{\rm stat}$$

from above: $m_{
m B} = m_{
m B}(M_{
m b})
ightarrow$ determine $M_{
m b}$

イロト イヨト イヨト イヨト

Full strategy

$$m_{
m B} = m_{
m B}(M_{
m b})
ightarrow$$
 determine $M_{
m b}$ explicitly in static approximation

$$\begin{split} m_{\rm B} &= \\ & \lim_{a \to 0} [E^{\rm stat} - \Gamma^{\rm stat}(L_2, a)] & a = 0.1 {\rm fm} \dots 0.05 {\rm fm} & [S_4, S_5] \\ & + \lim_{a \to 0} [\Gamma^{\rm stat}(L_2, a) - \Gamma^{\rm stat}(L_1, a)] & a = 0.05 {\rm fm} \dots 0.025 {\rm fm} & [S_2, S_3] \\ & + \frac{1}{L_1} \lim_{a \to 0} \Phi_1(L_1, M_{\rm b}, a) & a = 0.025 {\rm fm} \dots 0.012 {\rm fm} & [S_1] \,. \end{split}$$

æ

<ロ> (四) (四) (注) (日) (日)

Large volume

statistical and systematic precision

▶ statistical [Della Morte, Shindler, S., 2005; Hasenfratz & Knechtli, 2001] self energy: signal/noise becomes worse as $a \rightarrow 0$ change action: HYP-smearing

イロト イヨト イヨト イヨト

Large volume

statistical and systematic precision

statistical [Della Morte, Shindler, S., 2005; Hasenfratz & Knechtli, 2001] self energy: signal/noise becomes worse as a → 0 change action: HYP-smearing

systematic

$$F_{\rm B}\sqrt{m_{\rm B}} = \lim_{x_0 \to \infty} \left\{ 2 \exp(m_{\rm B}x_0) C_{\rm AA}^{\rm QCD}(x_0) \right\}^{1/2}$$

excited state contaminations typically non-negligible at $a \approx 0.7 \text{fm}$ a common problem, e.g. nucleon structure

▶ the GEVP helps: an operator \hat{Q}_n^{eff} can be constructed such that (rigorous [Blossier, Della Morte, von Hippel, Mendes & S., 2009]))

$$\begin{array}{lll} \langle 0 | \hat{\mathcal{Q}}_{n}^{\mathrm{eff}} \mathrm{e}^{-\hat{H}t} \hat{\mathcal{P}} \mathrm{e}^{-\hat{H}t} (\hat{\mathcal{Q}}_{n'}^{\mathrm{eff}})^{\dagger} | 0 \rangle & = & \langle \mathcal{Q}_{n}^{\mathrm{eff}} (2t) \mathcal{P}(t) (\mathcal{Q}_{n'}^{\mathrm{eff}} (0))^{*} \rangle \\ & = & \langle n | \hat{\mathcal{P}} | n' \rangle + \mathrm{O}(\mathrm{e}^{-[\underline{E}_{N+1} - \underline{E}_{n}] t_{0}}) \end{array}$$

e.g. $t = t_0 + a$

Examples of results: $M_{\rm b}$ [Blossier, Della Morte, Garron, Mendes, Papinutto, Simma, S.]

static approximation

$$egin{aligned} &m_{\mathrm{B}} = \ &\lim_{a o 0} [E^{\mathrm{stat}} - \Gamma^{\mathrm{stat}}(L_2, a)] \ &+ \lim_{a o 0} [\Gamma^{\mathrm{stat}}(L_2, a) - \Gamma^{\mathrm{stat}}(L_1, a)] \ &+ rac{1}{L_1} \lim_{a o 0} \Phi_1(L_1, M_{\mathrm{b}}, a) \end{aligned}$$

 $a = 0.1 \text{fm} \dots 0.05 \text{fm}$ [S₄, S₅]

$$a = 0.05 \text{fm} \dots 0.025 \text{fm}$$
 [S₂, S₃]

$$a = 0.025 \, \text{fm} \dots 0.012 \, \text{fm}$$
 [S₁].

Examples of results: $M_{\rm b}$

	LO (static)NLO (static + $O(1/m)$)				
		$(\theta_1, \theta_2) = (0, 0.5)$	$(\theta_1,\theta_2)=(0.5,1)$	$(\theta_1,\theta_2)=(0,1)$	
$\theta_0 = 0$	17.1 ± 0.2	17.1 ± 0.2	17.1 ± 0.2	17.1 ± 0.2	
$\theta_0 = 0.5$	17.2 ± 0.2	17.2 ± 0.2	17.2 ± 0.2	17.1 ± 0.2	
$ heta_0 = 1$	17.2 ± 0.2	17.3 ± 0.3	17.3 ± 0.3	17.3 ± 0.3	

Table: Dimensionless b-quark mass, $r_0 M_{\rm b}$, obtained from the $B_{\rm s}$ meson mass, for different values of θ_i .

b small $1/m_{\rm b}$ corrections

weak dependence on matching conditions

★ Ξ >

Examples of results: quenched $F_{\rm B_s}\sqrt{m_{\rm B_s}}$

static limit $\Phi_{\rm RGI}$

< 🗇 🕨

12 ►

Examples of results: quenched $F_{\rm B_s}\sqrt{m_{\rm B_s}}$

	LO (static)	NLO (static $+ O(1/m)$)			
		$(\theta_1, \theta_2) = (0, 0.5)$	$(\theta_1,\theta_2)=(0.5,1)$	$(\theta_1,\theta_2)=(0,1)$	
$\theta_0 = 0$	233 ± 6	220 ± 9	218 ± 9	218 ± 9	
$\theta_0 = 0.5$	229 ± 7	221 ± 9	219 ± 8	219 ± 9	
$ heta_0=1$	219 ± 6	223 ± 9	221 ± 8	222 ± 8	

Table: Pseudo-scalar heavy-light decay constant $f_{\rm B_s}$ in MeV, for different values of θ_i .

- **>** small $1/m_{\rm b}$ corrections
- weak dependence on matching conditions

- - E - - - E - -

Comparison to relativistic (not so) heavy quarks

surprisingly consistent picture

 $C_{\rm PS}$ inserted from perturbation theory (unclear theoretical status)

Examples of results: quenched level splittings

Static results for splittings are in agreement with [T. Burch et al.] Also ratio of ground state / excited state decay constant

Example of a results for $N_{\rm f} = 2$ (Lattice 2011) [$\mathbb{A}_{\rm LPMA}$]

(D) (A) (A)

Example of a results for $N_{\rm f} = 2$ (Lattice 2011) [$\mathbb{A}_{\rm LPMA}$]

V_{ub} becomes slightly more puzzling

- We are at the beginning of applications
- Lots of work remaining to be done ... and phenomenology waiting to be explored