Dubna International Advanced School of Theoretical Physics, Helmholtz International School **"Lattice QCD, Hadron Structure and Hadronic Matter"** September 5-17, 2011, JINR Dubna, Russia

Lattice methods for QCD at nonzero baryon number density

Christian Schmidt

FIAS Frankfurt Institute for Advanced Studies

and

Dubna International Advanced School of Theoretical Physics, Helmholtz International School "Lattice QCD, Hadron Structure and Hadronic Matter" September 5-17, 2011, JINR Dubna, Russia

QGP

2

LB

Overview:

***** Introduction and motivation thermodynamics of quarks and gluons (also covert by D. Blaschke, P. Petreczky, F. Karsch...)

Hadron-

gas

Lattice

- PQCD, effective theories **★** Lattice QCD at high T and nonzero density The sign problem, reweighting methods at small volume, extrapolation methods at large volumes
- \star Recent Results from the Taylor expansion method: Hadronic fluctuations and heavy ion collisions, the critical point

The phase diagram

Key questions

- What are the phases of strongly interacting matter and what role do they play in the cosmos ?
- What does QCD predict for the properties of strongly interacting matter ?
- What governs the transition from Quark and Gluons into Hadrons ?

The QCD phase diagram

Key questions

- What are the phases of strongly interacting matter and what role do they play in the cosmos ?
- What does QCD predict for the properties of strongly interacting matter ?
- What governs the transition from Quark and Gluons into Hadrons ?

Places to find QGP ?

- In the early universe
- In the laboratory: RHIC, LHC, FAIR
- In the cores of neutron stars ?

The phase diagram

→ determined by the Equation of State
→ exciting: critical Phenomena

e.g. critical opalescence:

The phase diagram

QCD on the lattice

perform lattice QCD: non perturbativ, ab inito

Lattice QCD (at $T, \mu > 0$)

perform lattice QCD: non perturbativ, ab inito

at nonzero chemical potential μ :

$$A_0
ightarrow A_0 - i \mu$$

or equivalently:

 $egin{array}{ll} U_0(x) &
ightarrow e^{a\mu} U_0(x) \ U_0^\dagger(x)
ightarrow e^{-a\mu} U_0^\dagger(x) \end{array}$

Hasenfratz, Karsch, PLB 125 (1983) 308.

• the QCD partition function:

$$egin{aligned} Z(V,T,ar{\mu}) &= \int \mathcal{D}A \; \mathcal{D}ar{\psi} \; \mathcal{D}\psi \; \exp\{-S_E\} \ S_E &= ar{\psi}_x M_{x,y} \psi_y + S_G \ M_{x,y} \; = \; am \; \delta_{x,y} + rac{1}{2} \sum_{\mu=1}^3 \gamma_\mu \left\{ U_\mu(x) \; \delta_{x+a\hat{\mu},y} - U^\dagger_\mu(y) \; \delta_{x-a\hat{\mu},y}
ight\} \ &+ rac{1}{2} \gamma_4 \left\{ e^{aar{\mu}} \; U_4(x) \; \delta_{x+a\hat{4},y} - e^{-aar{\mu}} \; U^\dagger_4(y) \; \delta_{x-a\hat{4},y}
ight\} \end{aligned}$$

• geometry of space time:

 $N_s^3 imes N_t$ (4d - torus)

note:

- only closed loops participate to the partition function
- only loops that wind around the torus in time direction \mathcal{W} -times pick up a μ -dependence:

 $\exp\{\mathcal{W}\mu/T\}$

→ alternatively (gauge-transformation):
 • choose a fixed time-slice on which all temporal links get a factor exp{±µ/T}

• integration over fermion fields

$$Z(V,T,\mu) = \int \mathcal{D}A\mathcal{D}\psi\mathcal{D}\bar{\psi} \exp\{S_F(A,\psi,\bar{\psi}) - \beta S_G(A)\}$$
$$= \int \mathcal{D}A \det[M](A,\mu) \exp\{-\beta S_G(A)\}$$

complex for $\mu > 0$

propabilistic interpretation necessary for Monte Carlo!

we find: $[\det M(\mu)]^* = \det M(-\mu^*)$ \longrightarrow determinant is real only for $\mu = 0$ or $\mu = i\mu_I$ 0

The sign problem

• properties of the fermion matrix and eigen-spectrum

$M^\dagger M$ is

- positive definite
- block diagonal in parity (even-odd) space, use even-odd preconditioning
- ullet regulated by the mass: $\lambda_{
 m min}=m^2$

 $M^\dagger M$ is

- not block diagonal in parity (even-odd) space
- \bullet not regulated, zero-modes possible for sufficiently large μ

• complex measure (d ω) needed to obtain correct physics example Polyakov Loop (L):

$$egin{aligned} &\langle \mathrm{Tr}(L)
angle &= \exp\{-rac{1}{T}F_q\} = \int \mathrm{Re}(\mathrm{Tr}(L)) \ \mathrm{Re}(\mathrm{d}\omega) - \mathrm{Im}(\mathrm{Tr}(L)) \ \mathrm{Im}(\mathrm{d}\omega) \ &\langle \mathrm{Tr}(L^*)
angle &= \exp\{-rac{1}{T}F_{ar{q}}\} = \int \mathrm{Re}(\mathrm{Tr}(L)) \ \mathrm{Re}(\mathrm{d}\omega) + \mathrm{Im}(\mathrm{Tr}(L)) \ \mathrm{Im}(\mathrm{d}\omega) \end{aligned}$$

demand different free energy for quark and anti-quark:

$$F_q \neq F_{\bar{q}} \Rightarrow \operatorname{Im}(\mathrm{d}\omega) \neq 0$$

The sign problem

• How to sample an oscillating partition function?

which are the dominant configurations in the path integral?

toy model:
$$Z(\lambda) = \int \mathrm{d}x \; \exp\{-\lambda x^2 + i\lambda x\}$$

cancelations between configurations
 with 'positive' and 'negative' weight are
 exponentially large:

 $Z(\lambda)/Z(0) = \exp\{-\lambda^2/4\}$

ightarrow constraining the integration interval to $x\in [-\lambda,\lambda]$ will give $\,\mathcal{O}(100\%)$ error

 \rightarrow all configurations are important

• How to sample an oscillating partition function?

toy model:
$$Z_f\equiv\int\mathrm{d}x\;f(x)$$
 , with $\;f(x)\in\mathbb{R}$, $\;f(x)
eq 0$

introduce auxiliary partition function:

$$Z_g\equiv\int \mathrm{d}x\;g(x)$$
 , with $\;g(x)\in\mathbb{R}\,,\;g(x)\geq 0$

calculate observable by reweighting:

$$\langle O
angle_f \equiv rac{1}{Z_f} \int \mathrm{d}x \; O(x) f(x) = rac{\int \mathrm{d}x \; O(x) rac{f(x)}{g(x)} g(x)}{\int \mathrm{d}x \; rac{f(x)}{g(x)} g(x)} = rac{\left\langle O rac{f}{g}
ight
angle_g}{\left\langle rac{f}{g}
ight
angle_g}$$

 $f/g \equiv R$ is the "reweighting factor"

$$\left< R \right>_g = Z_f/Z_g = \exp\{-rac{V}{T} \underbrace{\Delta \tilde{f}(\mu,T)}_{\text{difference of the free energy density}}$$

 \rightarrow reweighting factor is exponentially small for large V, small T, large $\Delta \tilde{f}$ \rightarrow **overlap problem**, i.e. the signal gets lost quickly! • How to sample an oscillating partition function?

toy model:
$$Z_f\equiv\int\mathrm{d}x\;f(x)$$
, with $\;f(x)\in\mathbb{R}$, $\;f(x)
eq 0$

introduce auxiliary partition function:

$$Z_g\equiv\int \mathrm{d}x\;g(x)$$
 , with $\;g(x)\in\mathbb{R}\,,\;g(x)\geq 0$

calculate observable by reweighting:

$$\langle O
angle_f \equiv rac{1}{Z_f} \int \mathrm{d}x \; O(x) f(x) = rac{\int \mathrm{d}x \; O(x) rac{f(x)}{g(x)} g(x)}{\int \mathrm{d}x \; rac{f(x)}{g(x)} g(x)} = rac{\left\langle O rac{f}{g}
ight
angle_g}{\left\langle rac{f}{g}
ight
angle_g}$$

• How to sample an oscillating partition function?

toy model:
$$Z_f \equiv \int \mathrm{d}x \; f(x)$$
, with $f(x) \in \mathbb{R}$, $f(x) \geq 0$

introduce auxiliary partition function:

$$Z_g\equiv\int \mathrm{d}x\;g(x)$$
 , with $\;g(x)\in\mathbb{R}\,,\;\;g(x)\geq 0$

calculate observable by reweighting:

$$\left\langle O
ight
angle_f \equiv rac{1}{Z_f} \int \mathrm{d}x \; O(x) f(x) = rac{\int \mathrm{d}x \; O(x) rac{f(x)}{g(x)} g(x)}{\int \mathrm{d}x \; rac{f(x)}{g(x)} g(x)} = rac{\left\langle O rac{f}{g}
ight
angle_g}{\left\langle rac{f}{g}
ight
angle_g}$$

How to chose g(x)?

 \rightarrow minimize $\operatorname{Var}(f/g)$

$$\longrightarrow$$
 solution: $g(x) = |f(x)|$ and $R \equiv f/g = \mathrm{sign}(f)$

de Frocrand, Kim, Takaishi, hep-lat 0209126

n \

• QCD partition function (for staggered fermions):

$$Z(\mu,eta) = \int \mathcal{D}U \; \left({
m det} M(U,\mu)
ight)^{N_f/4} e^{-eta ilde{S}_G}$$

factorize determinant into modulus and phase

$$Z(\mu, eta) = \int \mathcal{D}U \, \underbrace{\left| \det M(U, \mu) \right|^{N_f/4} e^{i\theta} e^{-eta \tilde{S}_G}}_{f}$$

optimal choice:

$$Z_g(\mu',eta') = \int \mathcal{D}U \, \left| \det M(U,\mu')
ight|^{N_f/4} |cos(heta)| e^{-eta' ilde{S}_G}$$

prohibitively inefficient, since heta has to be evaluated in each MC step!

other choice:

$$Z_g(\mu',eta') = \left | egin{array}{c} \mathcal{D}U \ \left | {
m det} M(U,\mu')
ight |^{N_f/4} e^{-eta' ilde{S}_G} \end{array}
ight .$$

"phase quenched" theory, for N_f even equivalent with non zero iso-spin chemical potential:

$$|\det M(\mu)|^{N_f} = \det M(+\mu)^{N_f/2} \times \det M(-\mu)^{N_f/2}$$

• QCD partition function (for staggered fermions):

$$Z(\mu,eta) = \int \mathcal{D}U \; \left({
m det} M(U,\mu)
ight)^{N_f/4} e^{-eta ilde{S}_G}$$

factorize determinant into modulus and phase

$$Z(\mu,eta) = \int \mathcal{D}U \; \underbrace{\left|\det M(U,\mu)
ight|^{N_f/4} e^{i heta} e^{-eta ilde{S}_G}}_{f}$$

→ standard reweighting approach:

$$Z_g = Z(0,eta') \quad \Rightarrow \quad f/g = \left|rac{\det M(\mu)}{\det M(0)}
ight|^{N_f/4} e^{i heta} \ e^{-(eta-eta') ilde{S}_G}$$

• standard reweighting approach:

$$Z_g = Z(0,eta') \quad \Rightarrow \quad f/g = \left|rac{\det M(\mu)}{\det M(0)}
ight|^{N_f/4} e^{i heta} \; e^{-(eta-eta') ilde{S}_G}$$

exact calculation of fermion determinant, respectively all eigenvalues is required

method by Fodor and Katz:

- \longrightarrow transform μ -dependence into 2 time-slices by similarity transformations
- \longrightarrow factorize the μ -dependence of the determinant

$$\det M(\mu) = e^{-3N_{\sigma}^3 N_{\tau}\mu} \det(P - e^{N_{\tau}\mu})$$
$$P \in \mathbb{C}^{2N_c N_s^3 \times 2N_c N_s^3}$$

"reduced fermion matrix"

 $\rightarrow \text{ calculate all eigenvalues of the reduced fermion matrix} \\ (\mathcal{O}(N^9_{\sigma}) \text{ operations, hard to parallelize efficiently }) \\ \det M(\mu) = e^{-3N^3_{\sigma}N_{\tau}\mu} \prod_{i=0}^{6N^3_{\sigma}} (e^{N_{\tau}\mu} - \lambda_i) \\ \end{bmatrix}$

Fodor, Katz, PLB 534 (2002) 87.

9

• standard reweighting approach:

$$Z_g = Z(0, eta') \quad \Rightarrow \quad f/g = \left| rac{\det M(\mu)}{\det M(0)}
ight|^{N_f/4} e^{i heta} \; e^{-(eta - eta') ilde{S}_G}$$

exact calculation of fermion determinant, respectively all eigenvalues is required

method by Fodor and Katz: important result ($N_{ au} = 4$, physical quark masses) by monitoring the $(\mu_a^{\text{CEP}}, T^{\text{CEP}}) = (120(13), 162(2)) \text{ MeV}$ first Lee-Yang zero: 165 0.003 quark-gluon plasma 0.002 164 ssover (MeV)Im β_0° 0.001 163 Е hadronic phase endpoin 0 162 -0.001order transition 100 300 200 400 0.12 0.14 0.16 0.18 0.2 0 0.1 $\mu_{\rm B}$ (MeV) Fodor, Katz, JHEP 0404 (2004) 050

• standard reweighting approach:

$$Z_g = Z(0,eta') \quad \Rightarrow \quad f/g = \left|rac{\det M(\mu)}{\det M(0)}
ight|^{N_f/4} e^{i heta} \ e^{-(eta-eta') ilde{S}_G}$$

exact calculation of fermion determinant, respectively all eigenvalues is required

- zeros of the partition function in the complex β -plane
- move onto the real axis in the thermodynamic limit

→ detect a 1st order transition on
a finite volume by studying the
pattern of the Lee-Yang zeros
$$\beta_I \sim C(2n+1)$$

Ejiri, PRD 73 (2006) 054502.

• break down of the reweighting:

standard jack-knife errors do **not** reflect the break down of the method!

 $\rightarrow \text{ study the phase factor directly} \\ \text{analytic results, valid in the microscopic} \\ \text{limit of QCD:} \left(m_{\pi}^2 \ll \frac{1}{\sqrt{V}} , \ \mu^2 \ll \frac{1}{\sqrt{V}} \right) \\ e^{2i\theta} = \left(1 - \frac{4\mu^2}{m_{\pi}^2} \right)^{N_f + 1} \\ \end{aligned}$

- \longrightarrow the sign problem is not severe for $\mu < m_\pi/2$
- → large difference in the fee energy densities of phase quenched and full theory

$$\left|\det M(\mu)\right|^{N_f} = \det M(+\mu)^{N_f/2} \times \det M(-\mu)^{N_f/2}$$

non zero iso-spin chemical potential

• break down of the reweighting:

standard jack-knife errors do **not** reflect the break down of the method!

 $\rightarrow \text{ study the phase factor directly} \\ \text{analytic results, valid in the microscopic} \\ \text{limit of QCD:} \left(m_{\pi}^2 \ll \frac{1}{\sqrt{V}} \right), \ \mu^2 \ll \frac{1}{\sqrt{V}} \right) \\ e^{2i\theta} = \left(1 - \frac{4\mu^2}{m_{\pi}^2} \right)^{N_f + 1} \\ \end{aligned}$

ightarrow the sign problem is not severe for $\mu < m_\pi/2$

→ large difference in the fee energy densities of phase quenched and full theory

$$\left|\det M(\mu)\right|^{N_f} = \det M(+\mu)^{N_f/2} \ imes \det M(-\mu)^{N_f/2}$$

non zero iso-spin chemical potential

• break down of the reweighting:

standard jack-knife errors do **not** reflect the break down of the method!

 \longrightarrow estimate the overlap measure 2α : α is the fraction of the configurations that contributes the fraction $1-\alpha$ to the weight; optimal is $\alpha = 50\%$

Csikor, et al., JEHP 0405 (2004) 046.

• "density of state" modification of the reweighting

$$Z_{g,O}(\mu',eta',x) = \int \mathcal{D}U \; \left| \det M(U,\mu')
ight|^{N_f/4} e^{-eta' ilde{S}_G} \delta(x-O)$$

- → improve accuracy of the tail by simulating at a fixed value of O. In practice: replace delta function by a strongly peaked gaussian.
- → enlargement of the parameter space, sample many *O*-values

from $Z_{
m GC}$ to $Z_{
m C}$

 \longrightarrow fix quark number by introducing: $\delta(\hat{N} - Q) = \int d\bar{\mu} \ e^{i\bar{\mu}(\hat{N} - Q)}$ \longrightarrow recognize $\bar{\mu}$ as imaginary chemical potential: $i\bar{\mu} = i\mu_I/T$

 \longrightarrow exploit $2\pi/3$ symmetry of the GC partition function in $i\mu_I/T$

canonical partition function:

$$egin{split} Z_{\mathrm{C}}(T,Q) &= rac{3}{2\pi} \int\limits_{-\pi/3}^{\pi/3} \mathrm{d}igg(rac{\mu_I}{T}igg) \; e^{-iQ\mu_I/T} Z_{\mathrm{GC}}(T,\mu_I) \ &= & \ Q &= & 3B \; rac{1}{2\pi} \int\limits_{-\pi}^{\pi} \mathrm{d}igg(rac{\mu_I}{T}igg) \; e^{-i3B\mu_I/T} Z_{\mathrm{GC}}(T,\mu_I) \end{split}$$

 $\longrightarrow Z_{
m C}(Q)$ are the coefficients in the Fourier expansion in $i\mu_I$ $\longrightarrow Z_{
m C}(Q)$ vanish for non integer baryon number B=Q/3

from $Z_{
m C}$ to $Z_{
m GC}$

 \rightarrow fugacity expansion (Laplace transformation)

$$egin{aligned} Z_{
m GC}(T,\mu) &= \int\limits_{V o \infty}^{\infty} {
m d}
ho \; e^{3V
ho \mu/T} Z_{
m C}(T,
ho) \ &= \int\limits_{-\infty}^{-\infty} {
m d}
ho \; e^{-V(f(T,
ho)-3
ho \mu)/T} \ &= \int\limits_{-\infty}^{\infty} {
m d}
ho \; e^{-V(f(T,
ho)-3
ho \mu)/T} \end{aligned}$$

with baryon density ho = B/Vand Helmholtz fee enery $f(T,
ho) = -\frac{T}{V} \log Z_C(T,
ho)$ \longrightarrow relation between ho and μ :

$$\begin{array}{ll} \underline{ fugacity \ expansion:} & \left\langle \rho \right\rangle (\mu) = \frac{1}{Z_{\rm GC}(T,\mu)} \int\limits_{-\infty}^{\infty} {\rm d}\rho \ \rho e^{3V\rho\mu/T} Z_{\rm C}(T,\rho) \\ \\ \underline{ saddle \ point \ approxn.:} & \mu(\rho) = \frac{1}{3} \frac{\partial f(T,\rho)}{\partial \rho} \end{array}$$

sampling strategy:

- \longrightarrow sample at fixed value of $i\mu_{I_0}$ (many ensembles can be combined by multi histogram reweighting)
- \longrightarrow calculate all eigenvalues of the reduced fermion matrix (cost $\sim N_{\sigma}^9$)
- \longrightarrow calculate ratio of partition functions as

$$\frac{Z_{\rm C}(\beta, B)}{Z_{\rm GC}(\beta, \mu)} = \left\langle \frac{\hat{Z}_{\rm C}(\beta, B)}{\det M(i\mu_{I_0})} \right\rangle_{\beta, i\mu_{I_0}} \longrightarrow \begin{array}{c} \text{overlap problem} \\ \text{for large } B \end{array}$$

 $\hat{Z}_{\mathbf{C}}$ Fourier coefficients of the determinant, calculated by matching term by term in

$$\det M(\mu) = e^{-3N_{\sigma}^{3}\mu a N_{\tau}} \prod_{i=0}^{6N_{\sigma}^{3}} (e^{\mu a N_{\tau}} - \lambda_{i}) = \sum_{Q=-3N_{\sigma}^{3}}^{3N_{\sigma}^{3}} \hat{Z}_{C} e^{-Q\mu a N_{\tau}}$$

progress:

de Forcrand, Kratochvila

- ightarrow Fourier transformation of $\log {
 m det} M$ K.F. Liu et al., Gattringer
- → reduced matrix also for Wilson quarks

Wenger, Gattringer, Nakamura

results:

$$\rightarrow \text{ consider } F(B) \equiv -T \log \left(\frac{Z_{C}(B)}{Z_{C}(0)} \right)$$

$$fugacity \text{ expansion:} \quad \rho(\mu) \equiv \frac{\langle B(\mu) \rangle}{V} = \frac{1}{V} \frac{\sum_{B=-V}^{V} BZ_{C}(B) e^{B3\mu/T}}{\sum_{B=-V}^{V} Z_{C}(B) e^{B3\mu/T}}$$

$$saddle \text{ point approxn.:} \quad \mu(B) \approx F(B) - F(B-1) = \log \left(\frac{Z_{C}(B)}{Z_{C}(B-1)} \right)$$

results:

$$\rightarrow$$
 consider $F(B) \equiv -T \log \left(\frac{Z_{\rm C}(B)}{Z_{\rm C}(0)} \right)$

 \rightarrow perform Maxwell construction:

$$\frac{1}{T} \int_{\rho_1}^{\rho_2} \mathrm{d}\rho \, (f'(\rho) - \mu) = 0 \quad \Rightarrow \quad f(\rho_1) - \rho_1 \mu = f(\rho_2) - \rho_2 \mu$$

r On

results:

$$\rightarrow$$
 consider $F(B) \equiv -T \log \left(\frac{Z_{\rm C}(B)}{Z_{\rm C}(0)} \right)$

 \rightarrow perform Maxwell construction:

$$\frac{1}{T} \int_{\rho_1}^{\rho_2} d\rho \, (f'(\rho) - \mu) = 0 \quad \Rightarrow \quad f(\rho_1) - \rho_1 \mu = f(\rho_2) - \rho_2 \mu$$

results:

$$ightarrow ext{consider} F(B) \equiv -T \log \left(rac{Z_{ ext{C}}(B)}{Z_{ ext{C}}(0)}
ight)$$

 \rightarrow perform Maxwell construction

ightarrow obtain the phase diagram

results:

$$ightarrow ext{consider} F(B) \equiv -T \log \left(rac{Z_{ ext{C}}(B)}{Z_{ ext{C}}(0)}
ight)$$

 \longrightarrow perform Maxwell construction

 \rightarrow obtain the phase diagram

- change of strategy:
 - → Reweighting is expensive and has a conceptional problem in the thermodynamic limit, but is "exact" at small volumes. Its reliability is, however, hard to access.

→ confidence?

- → consider approximation methods, that have no problems in the thermodynamic limit:
 - → imaginary chemical potential + fit + analytic continuations

ightarrow systematic expansion around $\mu=0$

Extrapolation methods

- imaginary chemical potential: the method:
 - •perform HMC for $\mu^2 < 0$
 - extrapolate to $\mu^2 > 0$ by fitting data to an a appropriate Ansatz and perform analytic continuation
 - note: fitting range is limited by the periodicity of the partition function $\mu_I/T < 2\pi/3$
 - complex phase structure in the complex plane: Roberge, Weiss, NPB 275 (1986) 734
 - Roberge-Weiss transition may also govern QCD thermodynamics at $\operatorname{Re}(\mu) > 0$ Philipsen, de Forcand, PRL 105 (2011) 152001.

some lattice studies:

Philipsen, Forcrand, JHEP 0811 (2008) 012; Philipsen, Forcrand, JHEP 0701 (2007) 077; Philipsen, Forcrand, NPB 673 (2003) 170; D'Elia et al., PRD 76 (2007) 114509; D'Elia et al., PRD 70 (2004) 074509 ; D'Elia et al., PRD 67(2003)014505 .

36

• imaginary chemical potential:

results:

 \longrightarrow consider the Binder cumulant:

$$B_{4} = \frac{\left\langle \left(\delta \bar{\psi} \psi\right)^{4} \right\rangle}{\left\langle \left(\delta \bar{\psi} \psi\right)^{2} \right\rangle^{2}} \bigg|_{T=T_{c}, m=m_{c}} = \begin{cases} 3 & \text{crossover} \\ 1.604 & \text{2nd order} \\ 1 & \text{Ist order} \end{cases} Z(2)$$

→ universal, volume independent value at the critical point Ansatz:

$$B_4(m,\mu) = 1.604 + B N_{\sigma}^{1/\nu}((m-m_c) + A \mu^2)$$

obtain the curvature of the critical surface as

$$\frac{\mathrm{d}m_c}{\mathrm{d}\mu^2} = -\frac{\partial B_4}{\partial\mu^2} \left(\frac{\partial B_4}{\partial m}\right)^{-1}$$

Extrapolation methods

• imaginary chemical potential:

results:

$$\frac{m_c(\mu)}{m_c(0)} = 1 - \frac{3.3(3)}{\pi T} \left(\frac{\mu}{\pi T}\right)^2 - \frac{47(20)}{\pi T} \left(\frac{\mu}{\pi T}\right)^4 + \mathcal{O}(\mu^6) \quad (N_f = 3)$$

$$\frac{m_c^{u,d}(\mu)}{m_c^{u,d}(0)} = 1 - \frac{39(8)}{\pi T} \left(\frac{\mu}{\pi T}\right)^2 + \mathcal{O}(\mu^4)$$

$$(N_f=2+1)$$

Part I:

- complex fermion determinant as origin of sign problem
- possible strategy is <u>reweighting</u> (includes canonical ensemble approach): shortcomings are the overlap problem, bad control over the break down of the method, problems with the thermodynamic limit and rather large costs
- simulations at pure *imaginary chemical potential* are feasible and can be analytically continued to real chemical potential
- <u>discussed results</u>: detection of a critical point for Nf=2+1 from standard reweighting and for Nf=3 for from the canonical approach, absence of critical point from imaginary chemical potential (for small values of the chemical potential)

- Taylor expansion:
 - start from Taylor expansion of the pressure,

$$\frac{p}{T^4} = \frac{1}{VT^3} \ln Z(V, T, \mu_u, \mu_d, \mu_s) = \sum_{i,j,k} c_{i,j,k}^{u,d,s} \left(\frac{\mu_u}{T}\right)^i \left(\frac{\mu_d}{T}\right)^j \left(\frac{\mu_s}{T}\right)^k$$

calculate expansion coefficients for fixed temperature

Extrapolation methods

• formulate all operators in term of space-time, color (and spin) traces:

$$\begin{split} \frac{\partial (\ln \det M)}{\partial \mu} &= \mathcal{D}_{1} = \operatorname{Tr} \left(M^{-1} \frac{\partial M}{\partial \mu} \right) \\ \frac{\partial^{2} (\ln \det M)}{\partial \mu^{2}} &= \mathcal{D}_{2} = \operatorname{Tr} \left(M^{-1} \frac{\partial^{2} M}{\partial \mu^{2}} \right) - \operatorname{Tr} \left(M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu} \right) \\ \frac{\partial^{3} (\ln \det M)}{\partial \mu^{3}} &= \mathcal{D}_{3} = \operatorname{Tr} \left(M^{-1} \frac{\partial^{3} M}{\partial \mu^{3}} \right) - 3 \operatorname{Tr} \left(M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial^{2} M}{\partial \mu^{2}} \right) \\ &+ 2 \operatorname{Tr} \left(M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu} \right) \\ \frac{\partial^{4} (\ln \det M)}{\partial \mu^{4}} &= \mathcal{D}_{4} = \operatorname{Tr} \left(M^{-1} \frac{\partial^{4} M}{\partial \mu^{4}} \right) - 4 \operatorname{Tr} \left(M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial^{3} M}{\partial \mu^{3}} \right) \\ &- 3 \operatorname{Tr} \left(M^{-1} \frac{\partial^{2} M}{\partial \mu^{2}} M^{-1} \frac{\partial^{2} M}{\partial \mu^{2}} \right) + 12 \operatorname{Tr} \left(M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu} \right) \\ &- 6 \operatorname{Tr} \left(M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu} \right) \end{split}$$

• evaluate all traces by noisy estimators:

$$\operatorname{Tr}\left(\frac{\partial^{n_1}M}{\partial\mu^{n_1}}M^{-1}\frac{\partial^{n_2}M}{\partial\mu^{n_2}}\cdots M^{-1}\right) = \lim_{N\to\infty}\frac{1}{N}\sum_{k=1}^N \eta_k^{\dagger}\frac{\partial^{n_1}M}{\partial\mu^{n_1}}M^{-1}\frac{\partial^{n_2}M}{\partial\mu^{n_2}}\cdots M^{-1}\eta_k$$
with N random vectors, satisfying $\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N \eta_{n,i}^*\eta_{n,j} = \delta_{i,j}$

• construct expansion coefficients from $\mathcal{D}_n^u, \mathcal{D}_n^d, \mathcal{D}_n^s$, with unbiased estimators $c_{2,0,0}^{u,d,s} = \frac{1}{2} \frac{N_{\tau}}{N_{\tau}^3} \left(\langle \mathcal{D}_2^u \rangle + \left\langle \left(\mathcal{D}_1^u \right)^2 \right\rangle \right)$

• Taylor expansion coefficients are the moments of hadronic fluctuations

Main ingredients:

- fast solver for the linear equation Ax = b, with A being a large and sparse matrix
 - iterative Krylov Subspace Methods are well suited for parallelization
 - relatively large systems can be handled on massive parallel machines
- ullet stochastic estimator of ${
 m Tr}A$

• use noise reduction techniques expansion coefficients with respect to μ_X are connected to the moments of the n_X -distribution

• higher order moments are getting more and more sensitive to the tail of the distribution

• fluctuations in equivalent ensembles

introduce a chemical potential for each conserved charge ${\cal Q}$

 $\longrightarrow \text{ in QCD: } SU(N_f) \text{ vector symmetry, introduce } \mu_f \ (f = u, d, s, \dots) \\ \text{ through } \qquad J = \sum_f \mu_f \hat{N}_f = \mu^T \hat{N}$

 \hat{N}_f : number operator for quark with flavor f

charges more convenient for experiment: B,Q,I_{3},Y

$$J = \mu^{\mathrm{T}} M^{-1} M \hat{N} = (\mu')^{\mathrm{T}} \hat{N}'$$

example: B, Q, S-ensembles

$$egin{aligned} B &= rac{1}{3}(N_u + N_d + N_s) \ Q &= rac{1}{3}(2N_u - N_d - N_s) \ S &= -N_s \end{aligned}$$

$$egin{aligned} \mu_B &= \mu_u + 2\mu_d \ \mu_Q &= \mu_u - \mu_d \ \mu_S &= \mu_d - \mu_s \end{aligned}$$

defines transformation $\,M\,$

• fluctuations in equivalent ensembles

introduce a chemical potential for each conserved charge ${\cal Q}$

 $\longrightarrow \text{ in QCD: } SU(N_f) \text{ vector symmetry, introduce } \mu_f \ (f = u, d, s, \dots) \\ \text{ through } J = \sum_f \mu_f \hat{N}_f = \mu^T \hat{N}$

 \hat{N}_f : number operator for quark with flavor f

charges more convenient for experiment: B,Q,I_{3},Y

$$J = \mu^{\mathrm{T}} M^{-1} M \hat{N} = (\mu')^{\mathrm{T}} \hat{N}'$$

example: B, Q, S-ensembles

baryon number fluctuations:

$$\chi_{2}^{B} = \frac{1}{9} (\chi_{2}^{u} + \chi_{2}^{d} + \chi_{2}^{s} + 2\chi_{1,1}^{u,d} + 2\chi_{1,1}^{u,s} + 2\chi_{1,1}^{d,s}) = \frac{1}{9} (2\chi_{2}^{u} + \chi_{2}^{s} + 2\chi_{1,1}^{u,d} + 4\chi_{1,1}^{u,s})$$

choose u, d -quarks degenerate

• the building blocks:

p4-action, $N_{ au}=4,6$:

- \rightarrow Tc decreases with decreasing mass
- fluctuations increase with decreasing mass
- $\begin{array}{l} \rightarrow \\ \text{expect cutoff dependence,} \\ \text{goto HISQ, } N_{\tau} = 6, 8, 12 \\ \text{(to be coming soon)} \end{array}$

red: Cheng et al., PRD79 (2009) 074505. blue: Allton et al., PRD71 (2005) 054508. • understanding the structure:

Analyzing the critical behavior:

$$= \frac{1}{t_0} \left(\frac{1}{T_c} + \kappa \left(\frac{1}{T} \right) \right)$$

free energy: $f = A_{\pm} |t|^{2-lpha} + ext{regular}$

critical exponent: -0.15 < lpha < -0.11

$$\begin{split} \chi_2^B &\sim \mp 2A_{\pm}(2-\alpha)\kappa \left|t\right|^{1-\alpha} + \text{regular} \\ \chi_4^B &\sim -12A_{\pm}(2-\alpha)(1-\alpha)\kappa^2 \left|t\right|^{-\alpha} + \text{regular} \longrightarrow \text{kink (chiral limit)} \\ \chi_6^B &\sim \mp 120A_{\pm}(2-\alpha)(1-\alpha)(-\alpha)\kappa^3 \left|t\right|^{-1-\alpha} + \text{regular} \longrightarrow \begin{array}{c} \text{divergent} \\ \text{divergent} \\ \text{(chiral limit)} \\ \end{split}$$

• understanding the structure:

Analyzing the critical behavior:

 $f = A_{\pm} |t|^{2-\alpha} + \text{regular}$

critical exponent: -0.15 < lpha < -0.11

$$\begin{split} \chi_2^B &\sim \mp 2A_{\pm}(2-\alpha)\kappa \left|t\right|^{1-\alpha} + \text{regular} \\ \chi_4^B &\sim -12A_{\pm}(2-\alpha)(1-\alpha)\kappa^2 \left|t\right|^{-\alpha} + \text{regular} \longrightarrow \text{kink (chiral limit)} \\ \chi_6^B &\sim \mp 120A_{\pm}(2-\alpha)(1-\alpha)(-\alpha)\kappa^3 \left|t\right|^{-1-\alpha} + \text{regular} \longrightarrow \begin{array}{c} \text{divergent} \\ \text{divergent} \\ \text{(chiral limit)} \\ \end{split}$$

• putting things together:

pressure

$$rac{p}{T^4} = c_0 + c_2 \left(rac{\mu}{T}
ight)^2 + c_4 \left(rac{\mu}{T}
ight)^4 + c_6 \left(rac{\mu}{T}
ight)^6 + \cdots$$

density

$$rac{n}{T^3} = 2c_2\left(rac{\mu}{T}
ight) + 4c_4\left(rac{\mu}{T}
ight)^3 + 6c_6\left(rac{\mu}{T}
ight)^5 + \cdots$$

density fluctuations

$$rac{\chi}{T^2} = 2c_2 + 12c_4 \left(rac{\mu}{T}
ight)^2 + 30c_6 \left(rac{\mu}{T}
ight)^4 + \cdots$$

 \flat obtain all kinds of thermodynamic observables in terms of the coefficients $c_{i,j,k}^{u,d,s}$ at non zero density

• putting things together:

 \rightarrow obtain energy density from temperature derivative

→ important input for hydrodynamic models of heavy ion collisions: isentropic equation of state

Ejiri et al., PRD73 (2006) 054506; Miao, CS, PoS LATTICE2008 (2008) 172.

LO introduces a peak in the fluctuations/correlations, NLO shifts the peak towards smaller temperatures

truncation errors become large at $\,\mu_B/T\gtrsim 1.5$

• How to obtain the μ -dependence of the crossover temperature?

follow the peak position of a susceptibility (χ_2^B)

 $\longrightarrow \mu$ -dependence only introduce at the 6th order, noisy signal

better:

make use of the determination of the non universal parameters (T_c, t_0, h_0) from mapping QCD to the O(4)-chiral critical behavior

recall: (lecture by F. Karsch)

• How to obtain the μ -dependence of the crossover temperature?

follow the peak position of a susceptibility (χ_2^B)

 $ightarrow \mu$ -dependence only introduce at the 6th order, noisy signal

better:

make use of the determination of the non universal parameters (T_c, t_0, h_0) from mapping QCD to the O(4)-chiral critical behavior

recall: (lecture by F. Karsch)

• How to obtain the μ -dependence of the crossover temperature?

follow the peak position of a susceptibility (χ_2^B)

 $ightarrow \mu$ -dependence only introduce at the 6th order, noisy signal

better:

make use of the determination of the non universal parameters (T_c, t_0, h_0) from mapping QCD to the O(4)-chiral critical behavior

→ introduce chemical potential

$$\begin{split} t &= \frac{1}{t_0} \left(\left(\frac{T}{T_c} - 1 \right) + \kappa_q \left(\frac{\mu_q}{T} \right)^2 \right) = 0 \\ \Rightarrow & \frac{T_c(\mu_q)}{T_c} = 1 - \kappa_q \left(\frac{\mu_q}{T} \right)^2 \end{split}$$

⇒ scaling laws control curvature of the critical line

expected phase diagram T $m_u = m_d = 0$ $m_s > m_s^{tri}$ line of 2. order transitions O(4) Z(2)critical end-point μ

• How to obtain the μ -dependence of the crossover temperature?

the critical line provides an upper bound to the curvature of the crossover temperature

• determine κ_q by a scaling analysis of the mixed susceptibility

$$\chi_m = \frac{\partial^2 M}{(\partial \mu/T)^2} = \frac{2\kappa_q}{t_0 T_c} h^{(\beta-1)/\beta\delta} f'_G(z) \propto \chi_t$$

\Rightarrow one fit parameter: κ_q

- comparison with freeze-out line
 - Statistical models are very successful in describing particle abundances observed in heavy ion collision; use a parametrization of the freeze-out curve

statistical model: $\frac{T_c}{T} = 1 - 0.023 \left(\frac{\mu_B}{T}\right)^2 - d \left(\frac{\mu_B}{T}\right)^4$ Cleymans, et al., PRC 73 (2006) 034905 lattice: $\frac{T_c}{T} = 1 - 0.0066(7) \left(\frac{\mu_B}{T}\right)^2$

Kaczmarek et al, PRD 83 (2011) 014504.

 \Rightarrow curvature of the freeze-out curve seems to be larger

open issues: continuum limit, strangeness conservation, nonzero electric charge

hadron resonance gas

$$\begin{aligned} \ln Z(T,V,\mu_{B},\mu_{S},\mu_{Q}) &= \sum_{i\in hadrons} \ln Z_{m_{i}}(T,V,\mu_{B},\mu_{S},\mu_{Q}) \\ &\sum_{i\in mesons} \ln Z_{m_{i}}^{B}(T,V,\mu_{S},\mu_{Q}) + \sum_{i\in baryons} \ln Z_{m_{i}}^{F}(T,V,\mu_{B},\mu_{S},\mu_{Q}) \end{aligned}$$
mesons:

$$\frac{p_{i}}{T^{4}} &= \frac{d_{i}}{\pi^{2}} \left(\frac{m_{i}}{T}\right)^{2} \sum_{l=1}^{\infty} (+1)^{l+1} l^{-2} K_{2}(lm_{i}/T) \cosh(lS_{i}\mu_{S}/T + lQ_{i}\mu_{Q}/T) \end{aligned}$$
baryons:

$$\frac{p_{i}}{T^{4}} &= \frac{d_{i}}{\pi^{2}} \left(\frac{m_{i}}{T}\right)^{2} \sum_{l=1}^{\infty} (-1)^{l+1} l^{-2} K_{2}(lm_{i}/T) \cosh(lB_{i}\mu_{B}/T + lS_{i}\mu_{S}/T + lQ_{i}\mu_{Q}/T) \end{aligned}$$

Boltzmann
approximation
ratios are
independent of
spectrum and
volume

$$\rightarrow$$
 possibly large
parts of cut-off
effects cancel
Boltzmann
3 ratios:
 $\frac{\chi_4^B}{\chi_2^B} = \kappa \sigma^2 = \frac{B^4}{B^2} = 1$
 $\frac{\chi_3^B}{\chi_2^B} = S\sigma = \frac{B^3}{B^2} \tanh(\mu_B/T)$
 $\frac{\chi_2^B}{\chi_1^B} = \sigma^2/N_B = \frac{B^2}{B^1} \coth(\mu_B/T)$

sixth order fluctuations

[Cleymans et al., Phys. Rev. C 63 (2006) 034905]

[HRG: Karsch, Redlich, PLB 695 (2011)]

[STAR data: Aggarwal et al, PRL (2010) 022302]

 net-proton number fluctuations can be described by the HRG solid lines: $\mu_Q
eq 0, \mu_S
eq 0$ dashed lines: $\mu_Q = 0, \mu_S = 0$

- •fluctuations increase for small \sqrt{s}
- sensitive to truncation of the series due to close radius of convergence

[HRG: Karsch, Redlich, PLB 695 (2011)]

[STAR data: Aggarwal et al, PRL (2010) 022302]

• net-proton number fluctuations can be described by the HRG solid lines: $\mu_Q \neq 0, \mu_S \neq 0$ dashed lines: $\mu_Q = 0, \mu_S = 0$

- •fluctuations increase for small \sqrt{s}
- sensitive to truncation of the series due to close radius of convergence

[HRG: Karsch, Redlich, PLB 695 (2011)]

[STAR data: Aggarwal et al, PRL (2010) 022302]

• net-proton number fluctuations can be described by the HRG solid lines: $\mu_Q \neq 0, \mu_S \neq 0$ dashed lines: $\mu_Q = 0, \mu_S = 0$

- •fluctuations increase for small \sqrt{s}
- sensitive to truncation of the series due to close radius of convergence

The critical endpoint

method for locating of the CEP:

- determine largest temperature where all coefficients are positive $\rightarrow T^{CEP}$
- determine the radius of convergence at this temperature $\rightarrow \mu^{CEP}$

second non-trivial estimate of $T^{\rm CEP}$ by c_{10}

 $p = c_0 + c_2 \left(\mu_B / T \right)^2 + c_4 \left(\mu_B / T \right)^4 + \cdots$

 $\chi_B = 2c_2 + 12c_4 \left(\mu_B/T\right)^2 + 30c_6 \left(\mu_B/T\right)^4 + \cdots$

$$ho_n(p)=\sqrt{c_n/c_{n+2}}$$

$$\rho = \lim_{n \to \infty} \rho_n$$

The critical endpoint

1.2

method for locating of the CEP:

- determine largest temperature where all coefficients are positive $\rightarrow T^{CEP}$
- determine the radius of convergence at this temperature $\rightarrow \mu^{CEP}$

 $p = c_0 + c_2 (\mu_B/T)^2 + c_4 (\mu_B/T)^4 + \cdots$

 $\chi_B = 2c_2 + 12c_4 \left(\mu_B/T\right)^2 + 30c_6 \left(\mu_B/T\right)^4 + \cdots$

The critical endpoint

method for locating of the CEP:

- determine largest temperature where all coefficients are positive $\rightarrow T^{CEP}$
- determine the radius of convergence at this temperature $\rightarrow \mu^{CEP}$

first non-trivial estimate of $T^{
m CEP}$ by c_8 second non-trivial estimate of $T^{
m CEP}$ by c_{10}

$$p = c_0 + c_2 \left(\mu_B/T\right)^2 + c_4 \left(\mu_B/T\right)^4 + \cdots$$

 $\chi_B = 2c_2 + 12c_4 \left(\mu_B/T\right)^2 + 30c_6 \left(\mu_B/T\right)^4 + \cdots$

 radius of convergence is consistent with critical line in the chiral limit
 O. Kaczmarek, et al., PRD 83 (2011) 014504

Part II:

- <u>Taylor expansion coefficients</u> of the pressure up to the 6th order have been calculated at zero chemical potential, can be used to obtain bulk thermodynamics and fluctuations at nonzero density (p4-action, Nt=4,6). New results from HISQ-action for Nt=6,8,12 are underway.
- The <u>curvature of the critical line</u> in the chiral limit was obtained from an analysis of the O(4) ciritcal behavior.
- Ratios of *moments of the baryon number fluctuations* have been computed and compared to the experiment.
- estimates of the <u>radius of convergence</u> can possibly be used to estimate a critical end-point at non zero chemical potential

Other directions

• QCD like theories without sign problem:

SU(2)

non compleat list:

- Hands, Montvay, Scorzato, Skullerud, EPJC 22 (2001) 451
- Kogut, Toublan, Sinclair, PRD 68 (2003) 054507
- Hands, Kim, Skullerud, PRD 81 (2010) 091502
- Hands, Kenny, Kim, Skullerud, EPJA 47 (2011) 60

iso-spin chemical potential non compleat list:

• Kogut, Sinclair, PRD 66 (2002) 034505

- Integrate over gauge links first —> no sign problem, feasible at strong couplings Fromm, de Forcrand PRL 104 (2010) 112005; de Forcrand, Unger, arXiv: 1107.1557
- Complexify fields and use complex Langevin algorithm, correct convergence not guaranteed Aarts et al., JEHP 0509 (2009) 052; PLB 687 (2010) 154; PRD 81 (2010) 054508; JHEP 1008 (2010) 017; JHEP 1008 (2010) 020
- Design a model of QCD, calculate parameter to produce all know constrains from lattice QCD and experiment

 \rightarrow see lecture by D. Blaschke