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Overview:

% Lattice QCD at high T and nonzero density

The sign problem, reweighting methods at small volume,
extrapolation methods at large volumes

* Recent Results from the Taylor expansion method:
Hadronic fluctuations and heavy ion collisions, the critical point




The phase diagram

Key gquestions

* What are the phases of strongly
interacting matter and what role
do they play in the cosmos !

* What does QCD predict for the
properties of strongly interacting
matter ?

* What governs the transition from
Quark and Gluons into Hadrons ?

V7 Y4

. ® O
critical O ~_ o N\
end-point quark-gluon-plasma

—
>
()
O
e
~0.
)
|
>
)
(4]
o
()
(ol
=
O]
)

neutron stars

4
chemical potential U B




The QCD-phase diagram

Key gquestions

* What are the phases of strongly
interacting matter and what role
do they play in the cosmos !

* What does QCD predict for the

properties of strongly interacting
matter ?

* What governs the transition from
Quark and Gluons into Hadrons ?

Places to find QGP ?
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he laboratory: RHIC, LHC, FAIR

he cores of neutron stars !
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The phase diagram
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temperature [C]

— determined by the Equation of State
— exciting: critical Phenomena

e.g. critical
opalescence:




The phase diagram

critical
end-point

0 100 374 freelenergy density:
temperature [C] _V InZ = fo(t, h) + f.(T,V, H)
— determined by the Equation of State (singular part) (regular part)

— exciting: critical Phenomena scaling hypothesis:

e.g. critical fs is a generalized homogenous function
opalescence: fs(t, h) = b= f,(b¥*t, b¥"h)




QCD’on the lattice

lattice spacing a
—P—

_Jj J\j J\ perform lattice QCD:

non perturbativ, ab inito

—

T

quarks gluons z+fa

Y (x), QZ(:I:) U,(x) = P exp / de,A, ()

T




Lattice QCD (at T, u > 0)

lattice spacing a
—P—

_Jj J\j J\ perform lattice QCD:

non perturbativ, ab inito

at honzero chemical
potential w:

A0—>A0—’I:[JJ

or equivalently:

Ug(x) — e**Up(x)
Uj(z) — e~ Uj (x)
Hasenfratz, Karsch, PLB 125 (1983) 308.

P(x),P(x)  Uu(z) = P exp

quarks gluons z+fa

/ dr,Ay(x)

T




Lattice QCD (at T, u > 0)

* the QCD partition function:
Z(V,T./i) = | DA DY Dy exp{-S)

— ’(;szw,y/(py + SG
3

1
am 5w,y + 5 Z A)IIJ, {Up,(m) 5:13—|—aﬂ,y T Ul(y) 5m_aﬂay}

p=1

1 . =
‘|‘§74 {ea” Uy(x) 5:1:—|—a21,’y —e ™ Ui () 5a3—a41,y}

* geometry of space time:  IN? X IN; (4d - torus)

note:
* only closed loops participate to the partition

function

* only loops that wind around the torus in time

direction W-times pick up a pt-dependence:

e choose a fixed time-slice on whic

exp{Wn/T}
—> alternatively (gauge-transformation):

n all

temporal links get a factor exp{-

-p/T'}



Thessign problem

* integration over fermion fields

Z(V,T.1) = | DADYDY exp{Sr(A,v,%) - BSc(4)}

_ / DA det[M](A, 1) exp{—BSc(A)}

propabilistic interpretation
complex for u > 0 necessary for Monte Carlo!

we find: [detM (p)]” = det M (—p™)

—> determinant is real only for

=0 or pu=1uj




Thessign problem

* properties of the fermion matrix and eigen-spectrum

free case

free case

4% x 64 N':O u > 0

| MT(0) = v M (0)s | M (1) = vsM (—p)7s
(v5- Hermiticity)

05 |

0

free naive fermions

3
Ap =m =+ zJ Z sin®(pg) + sin’(ps + ip)
k=1

MM is MM s
* positive definite

* block diagonal in parity (even-odd)

space, use even-odd preconditioning
e regulated by the mass: A\,in = m?

* not block diagonal in parity (even-odd)
space

* not regulated, zero-modes possible for
sufficiently large pt




Thessign problem

e complex measure (dw) needed to obtain correct physics
P pny

example Polyakov Loop (L):

(Tr(L)) = exp{—%Fq} = /Re(Tr(L)) Re(dw) — Im(Tr(L)) Im(dw)

(Tr(L*)) = exp{—%Fq} — / Re(Tr(L)) Re(dw) + Im(Tr(L)) Im(dw)

demand different free energy for quark and anti-quark:




Thessign problem

* How to sample an oscillating partition function?

which are the dominant configurations in the path integral?

toy model: Z(\) = /da: exp{—Az? + iAzx}

1

0.8
0.6
0.4
0.2

0

0.2}
0.4 |
0.6 |

=0 —

20 — 1

—>

cancelations between configurations
with ‘positive’ and ‘negative’ weight are
exponentially large:

Z(X)/Z(0) = exp{—A?/4}

constraining the integration interval to
r € [—A, A
will give O(100%) error

all configurations are important




Reweighing and the sign problem

* How to sample an oscillating partition function?

toy model: Zy = /dm f(x), with f(x) ER, f(x) 20
introduce auxiliary partition function:
— /da: g(x), with g(x) €R, g(x) >0
calculate observable by reweighting:
[dz 0(2)!@g(z) (O
fae IBe@) (1)

©);= - [ 0@ =

f/g = R is the “reweighting factor”

(R)y = Zy¢/2g = eXp{—¥ Af(p,T)}

difference of the
free energy density

— reweighting factor is exponentially small for large V;small T, large A f
—> overlap problem,i.e. the signal gets lost quickly!




Reweighingand the sign problem

* How to sample an oscillating partition function?

toy model: Zy = /dm f(x), with f(x) ER, f(x) 20
introduce auxiliary partition function:
Zg = /da: g(x), with g(x) €R, g(x) >0

calculate observable by reweighting:

[dz 0(2)!@g(z) (O
[ dz L2 g(x)

0);= - [ de 0@)f (@) =

f

P(O)ro  P(O)r,u overlap problem
(schematic picture)

— exponentially large statistics required




Reweighingand the sign problem

* How to sample an oscillating partition function?

toy model: Zy = /dm f(x), with f(x) ER, f(x) 20
introduce auxiliary partition function:
— /da: g(x), with g(x) €R, g(x) >0
calculate observable by reweighting:
[dz 0(2)!@g(z) (O
fae IBe@) (1)

0);= - [ de 0@)f (@) =

f

How to chose g(x)?

—> minimize Var(f/g)

—> solution: g(x) = |f(xz)| and R = f/g = sign(f)
de Frocrand, Kim, Takaishi, hep-lat 0209126




Reweighting-strategies in QCD

* QCD partition function (for staggered fermions):

Z(IJ’v /3) = /DU (detM(U, N))Nf/4 e_ﬁgc;

factorize determinant into modulus and phase

—>

Z(“v 6) — /DU \detM(U, p,) ‘Nf/4 ewe—ﬁgc
—e—
f

optimal choice:
Zy(p',B") = /DU [det M (U, 1')|™N*/* |cos(8)|e# 5S¢
prohibitively inefficient, since 6 has to be evaluated in each MC step!

other choice:
Zy(w', ") = / DU |detM (U, p')|"/* e=#'Sc

“phase quenched” theory, for N ; even equivalent with non zero iso-spin
chemical potential:

detM ()|~ = detM (+p) N2 x detM (—p)™N/2




Reweighting-strategies in QCD

* QCD partition function (for staggered fermions):

Z(IJ’v /B) = /DU (detM(U, N))Nf/4 e_ﬁgc;

factorize determinant into modulus and phase

Z(“v /6) — /DU \detM(U, p,) ‘Nf/4 ewe—ﬁgc
-
f

—> standard reweighting approach:

det M (p) |N7/*

det M (0)

Zg:Z(O,,B,) — f/g:|

Fodor, Katz, JHEP 0404 (2004) 050; Glasgow-method: fixed 3
Fodor, Katz, JHEP 0203 (2002) 014 ; Barbour, et al., NPB (Proc.
Fodor, Katz, PLB 534 (2002) 87. I Suppl.) 60A (1998) 220.

\ overlap
é
problem
>
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Reweighting-strategies in QCD

* standard reweighting approach:

det M () Ny /4
det M (0)

Zg:Z(O,,B,) — f/g:|

exact calculation of fermion determinant, respectively all eigenvalues is required

method by Fodor and Katz:
—> transform pt-dependence into 2 time-slices by similarity transformations

—> factorize the 1 -dependence of the determinant
detM () = e_SNgNT“’det(P — el
Pc C2NeNJX2N:N;

“reduced fermion matrix’’

—> calculate all eigenvalues of the reduced fermion matrix

(O(N?) operations, hard to parallelize efficiently )
6N3

detM (p) = e NoNr TT (eN# — Xy)
1=0

Fodor, Katz, PLB 534 (2002) 87.



Reweighting-strategies in QCD

* standard reweighting approach:

det M () Ny /4
det M (0)

ZZ?:::ZZ(O,[gf) — j%[g ::|

exact calculation of fermion determinant, respectively all eigenvalues is required

method by Fodor and Katz:

—> important result (V.. = 4, physical quark masses ) by monitoring the
first Lee-Yang zero:  (ug ™", TC"Y) = (120(13),162(2)) MeV

IIIIIIIITIIIIITIIITIIII

0.003
0.002 E ZEE%%%%%

2 0.001
=

quark—-gluon plasma

L
»
H
B
R
W
N

H
N

|.L(I_|III|I

., crossover
,1‘ ¢
x,
x,
P . e~ .. x'l
7 hadronic phase z,xendpomt

Bl

Illllllllll

IlIIIIIIIIIlIIIIlIIIIlI

Illlllllllllllllll

LI

lllllllllllllllllllll _I|III|III|III|III|III|I

100 200 300 400 0.1 0.12 0.14 0.16 0.18 0.2

g (MeV) M
Fodor, Katz, JHEP 0404 (2004) 050




Reweighting-strategies in QCD

* standard reweighting approach:

det M () Ny /4

det M (0)

Zg:Z(Oaﬂ,) = f/g=

exact calculation of fermion determinant, respectively all eigenvalues is required

Lee-Yang zeros:

0.01 =

24°x36x4 lattice

e zeros of the partition function in the
complex 3-plane

e move onto the real axis in the thermo-
dynamic limit

—> detect a Ist order transition on
a finite volume by studying the
pattern of the Lee-Yang zeros

Br~C(2n+1)

Ejiri, PRD 73 (2006) 054502.




Reweighting-strategies in QCD

* break down of the reweighting:

standard jack-knife errors do not reflect the break down of the method!

—> study the phase factor directly 000

analytic results, valid in the mlcroscoplc

limit of QCD:( m2 <<W , M <<—)

-
—~
+
—~
A
—
o)
T~
=~
~—
=
-
N
\"

——> the sign problem is not severe ._ | TT,=100 | | T'T, =111
forp < my/2 |

<exp(2i9)>, ,

—> large difference in the fee
energy densities of phase - . 9
quenched and full theory 2/, b 2p/m, 1
Splittorff, Verbaarschot, PRL98 (2007) 031601.
Lattice Data: Allton et al., PRD71 (2005) 054508.

det M ()™ = detM (+p)N*/?
xdet M (—p)Ns/2
non zero iso-spin chemical potential




Reweighting-strategies in QCD

* break down of the reweighting:

standard jack-knife errors do not reflect the break down of the method!

—> study the phase factor directly

analytic results, valid in the mlcroscoplc

limit of QCD:( m2 <<W , M <<—)

—> the sign problem is not severe
foru < my/2

—> large difference in the fee
energy densities of phase
quenched and full theory

det M ()™ = detM (+p)N*/?
xdet M (—p)Ns/2
non zero iso-spin chemical potential




Reweighting-strategies in QCD

* break down of the reweighting:

standard jack-knife errors do not reflect the break down of the method!

— estimate the overlap measure 2« :

« is the fraction of the configurations that contributes the fraction
1 — o to the weight; optimal is a = 50%

contour lines of 2

] ! 1 | I ] | 1 | I ] | ] | I

A A

1 | — L l 1 1 1 L l 1 1 1 1 l

0.1 0.2 0.3
pua

Csikor, et al., JEHP 0405 (2004) 046.

o




Reweighting-strategies in QCD

* “density of state” modification of the reweighting

Zgo('s B, @) = / DU |det M (U, u')|N*/* e=#'5¢ (2 — O)

—> improve accuracy of the tail by No — 4
simulating at a fixed value of O. 6 gg « 8
In practice: replace delta fL!nctlon am, = 0.05, 0.03
by a strongly peaked gaussian.

T [MeV] | multiparameter reweighting —=—

—> enlargement of the parameter 7 ® "= . DOS method, am=0.03 =

—~

space, sample many O-values ' ~ - _

A
p(O)T,O p(O)T’,p,

g [MeV]
90 1 1

0 50 100 150 200 250 300 350 400
Fodor, Katz, CS, JHEP 0703:121,2007.




Reweighting-strategies in QCD

* canonical ensemble approach

from Zgc to Zc

—> fix quark number by introducing: 5(N — Q) = /dﬁ ci(N—Q)
—> recognize [1 as imaginary chemical potential: ¢t = 2y /T

—> exploit 27t /3 symmetry of the GC partition function in ¢y /T

canonical partition function:
/3

3 .
Zc(T,Q) = — / d(ﬂ> e—zQuI/TZGC(TvlLI)

27
—m/3
iy

1 K1 —i3Bur/T
o=wam [ 4T ¢ Zac(ls i)

T

—TT

—> Zc(Q) are the coefficients in the Fourier expansion in 217
—> Zc(Q) vanish for non integer baryon number B = Q/3




Reweighting-strategies in QCD

* canonical ensemble approach

from Z¢c to Zac

—> fugacity expansion (Laplace transformation)
oo

Zac(T,p) = / dp 63VPM/TZC (T, p)

V — 0
— O
o0

— /dp e~V (F(T,p)=3pp)/T

— OO

with baryon density p = B/V -
and Helmholtz fee enery f(T,p) = % log Zc(T, p)
—> relation between p and u :

: : 1
fugacity expansion: (p) (n) = dp pe3VPr/'T Z(T, p)

saddle point approxn. :




Reweighting-strategies in QCD

* canonical ensemble approach
sampling strategy:

—> sample at fixed value of 717,
(many ensembles can be combined by multi histogram reweighting)

—> calculate all eigenvalues of the reduced fermion matrix (cost ~ N2 )

—> calculate ratio of partition functions as

_— overlap problem
det M (ipg,) i for large B
’ 0

ZC(ﬁaB) _ ZC(/39B)
ZGC(IB7 “)

Z ¢ Fourier coefficients of the determinant, calculated

by matching term by term in
6N3 3N,

3 - —
detM(p) = e 3NoralNr TT (e**™Nr —N)= Y Zge ral”-
1=0 Q=—-3N3
progress: de Forcrand, Kratochvila

—> Fourier transformation of log detM  KF Liu et al, Gattringer

—> reduced matrix also for Wilson quarks Wwenger, Gattringer, Nakamura



Reweighting-strategies in QCD

* canonical ensemble approach

results:

—> consider F'(B) = —T log (

ZC(B)>
Zc(0)

_ (B(n) _ 1Y p__y BZc(B)eP/T
V.V Yh v Zc(B)ePu/T

Zc(B) )
Zc(B —1)

fugacity expansion: p()

saddle point approxn.: wu(B) = F(B) — F(B — 1) = log (

T/T,=0.92
30

Saddle point approximation +——=— ] de Forcrand, Kratochvila
Fugacity expansion
3
6° X 4

Ny =4
5 m, =~ 300 MeV
staggered

25 r

20 r

Baryon number B

find multi-valued density:

I R T R T SR
O == DD W & 01 O N

— |st order transition

WT = (F(B)-F(B-1))/3T



Reweighting-strategies in QCD

* canonical ensemble approach

results:

—> consider F'(B) = —T log (

ZC(B)>
Zc(0)

de Forcrand, Kratochvila

6> X 4
Ny =4
m,. ~ 300 MeV

T/T.=0.89 staggered
T/T,=0.92
T/T,=0.95
T/T, =0.98 —> good accuracy up

Weakly interacting massless gas to 30 baryons

Hadronl Resonapce Gas .

10 15 20 25
Baryon number




Reweighting-strategies in QCD

* canonical ensemble approach

results:

—> consider F'(B) = —T log (

Zc (B)>
Zc(0)
—> perform Maxwell construction:

P2

1
= | dp (f'(p) =) =0 = f(p1) — pip = f(p2) — p2pr
P1i

0

de Forcrand, Kratochvila

6° x 4
1.2+ y Ny =4
m,. ~ 300 MeV

T ' staggered
0.8 | _

T/M,=0.92 ——
0.6 | wT=1.06(2) —— |
Weakly interacting massless gas

0 2 4 6 8 10 12 14 16
Baryon number

1.4 ¢




Reweighting-strategies in QCD

* canonical ensemble approach

results:

—> consider F'(B) = —T log (

Zc (B)>
Zc(0)
—> perform Maxwell construction:

P2

1
= | dp (f'(p) =) =0 = f(p1) — pip = f(p2) — p2pr
P1i

0

de Forcrand, Kratochvila

6° x 4
1.2+ y Ny =4
m,. ~ 300 MeV

T ' staggered
0.8 | _

T/M,=0.92 ——
0.6 | wT=1.06(2) —— |
Weakly interacting massless gas

0 2 4 6 8 10 12 14 16
Baryon number

1.4 ¢




Reweighting-strategies in QCD

* canonical ensemble approach

results:

—> consider F'(B) = —T log (

Zc(B) )
Zc(0)
—> perform Maxwell construction

—> obtain the phase diagram

1 -

de Forcrand, Kratochvila

6° X 4

Ny =4

my, ~ 300 MeV

., Co-existence | { stagge red

—%—

confined Hlﬁ
0.8 + l

0 0.5




Reweighting-strategies in QCD

* canonical ensemble approach

results:

—> consider F'(B) = —T log (

Zc(B) )
Zc(0)
—> perform Maxwell construction

—> obtain the phase diagram

Tg/T.=0.927(5) { 0.95} Tg/T.=0.927(5)
| s/ T.=2.60(8)

8 10 12 14 16
np
Li, Alexandru, Liu, arXiv: | 103.3045

6° X 4, Ny = 3, m, =~ (700 — 800) MeV
Wilson-clover




Extrapolation methods

* change of strategy:

—> Reweighting is expensive and has a conceptional problem in the
thermodynamic limit, but is “exact” at small volumes. Its reliabiliy is,
however, hard to access.

—> confidence!?

— consider approximation methods, that have no problems in the
thermodynamic limit:

—> imaginary chemical potential + fit + analytic continuations

—> systematic expansion around p = 0




Extrapolation methods

* imaginary chemical potential: two color QCD

th em eth Od . I A+B(au)2+C(au)4
—— [A+Baw1M1+C(aw)

eperform HMC for p? < 0

eextrapolate to u® > 0 by fitting data to
an a appropriate Ansatz and perform
analytic continuation

Q
—
@
]
c
Q
T
c
o}
(&)
©
=
L
o

*note: fitting range is limited by the
periodicity of the partition function
pr/T < 2w/3

e complex phase structure in the complex -
plane: Roberge, Weiss, NPB 275 (1986) 734 0.00 W

-04-0.2 00 02 04 06 08 10 12 14 16 18 20 2.
2
(aw

*Roberge-Weiss transition may also govern Papa et al, PoS Lat2006 (2006) 143

QCD thermodynamics at Re(u) > 0
Philipsen, de Forcand, PRL 105 (2011) 152001.

RW transition line

1 L 1, )
2 24

some lattice studies:

Philipsen, Forcrand, JHEP 0811 (2008) 012;  D‘Elia et al., PRD 76 (2007) |14509;
Philipsen, Forcrand, JHEP 0701 (2007) 077;  D°Elia et al., PRD 70 (2004) 074509 ;
Philipsen, Forcrand, NPB 673 (2003) 170; D‘Elia et al., PRD 67(2003)014505 .




Extrapolation methods

* imaginary chemical potential:

results:

——> consider the Binder cumulant;

Spp)* (3 crossover
By = <( ) > 1.604 2nd order Z(2)

<(51,Zv,b)2>2 1 |st order

T=T.,m=m,

—> universal, volume independent value at the critical point

Ansatz:

By(m,p) = 1.604 + BN ((m — m.) + Ap?)

——> obtain the curvature of the critical surface as

dp? o2

dm.,. OB, (334 ) —1

om




Extrapolation methods

* imaginary chemical potential:

results:

ZZ((IS)) = 1-3.3(3) <WiT>2 —47(20) (%)4 + o) (Ny=3)

(N =2+1)

Nf=2+1 ——+—
physical point X

tric 2/5 -
mg - C Myq —

QCD critical point DISAPPEARED

| | | EF
0 : 0.02 0.03 0.04
amu,d

de Forcrand, Philipsen, JHEP 0701 (2007) 77.




Summary

Part I

e complex fermion determinant as origin of sign problem

e possible strategy is reweighting (includes canonical ensemble approach):
shortcomings are the overlap problem, bad control over the break down of
the method, problems with the thermodynamic limit and rather large costs

*simulations at pure_imaginary chemical potential are feasible and can be
analytically continued to real chemical potential

e discussed results: detection of a critical point for Nf=2+1| from standard
reweighting and for Nf=3 for from the canonical approach, absence of
critical point from imaginary chemical potential (for small values of the
chemical potential)




Extrapolation methods

* Taylor expansion:

e start from Taylor expansion of the pressure,

D 1 u,d,s o, g
71 = s W2V T, phu, pas ps) = D (T) (
i?j7k

* calculate expansion coefficients for fixed temperature

. the convergence region
* no sign problem: T hod k remains to be determined
all simulations are doneatu = 0 MELNOd WORKS

1 1 for small gt /T non-perturbatively

u,d,s

g,k = il k! VT3 quark-gluon
9:09 9" In Z plasma

. . . deconfined,
O(5) 0(52)10( X-Ssymmetric

)k:
Hu,d,s=
hadron gas
* method is straight forward: confined,

all terms can be generated automatically X-broken color-

superconductor
Allton et al., PRD66:074507,2002;
Allton et al., PRD68:014507,2003;
Allton et al, PRD71:054508,2005.

(see also publications by
MILC and Gavai, Gupta)

~ few times nuclear 4 B
matter density




Extrapolation methods

 formulate all operators in term of space-time, color (and spin) traces:

d(Indet M) ( _18M>
= D7 = Tr({M " —
ou ou

&(Indet M) 82M) Tr( oM _18M>

M '— M ' —
o o2 ou ou

03 (In det M) L 0°M _,0M _ 9*M
= Ds Tr —3Tr M~ —M
o3 ou o
L OM aM)
ou o
0*(In det M) 0*M _,OM O’ M
= —ATr M~ ——M

D
ou? * ou? ou

Tr (M—l

M—l

—3Tyr <M‘1—M_1
ou?

ou? ou?

M 82M) _,0M 0°M

e (M_l BMM_l 8MM_1 oM
ou o

* evaluate all traces by noisy estimators:
M 8 M , _,0mM
Tr M M
aunl 8/1/’"/2 — 8'“712

N
. o . 1 .
with IN random vectors, satisfying Jim S0 Mg = i

n=1

...M_lnk

* construct expansion coefficients from D, Di, D; , with unbiased estimators




Hadronic-fluctuations

* Taylor expansion coefficients are the moments of hadronic fluctuations

1 1 2
2ef = o (N%) 24 = o ((N%) - 3(N})")
X =B,Q,5,1,...

Main ingredients:
e fast solver for the linear equation Ax = b,
with A being a large and sparse matrix
e iterative Krylov Subspace Methods are well
suited for parallelization

—> relatively large systems can be
handled on massive parallel machines

e stochastic estimator of Tr A
* use noise reduction techniques
expansion coefficients with respect to p x are
connected to the moments of the 1 x-distribution
* higher order moments are getting more and nth-moment:

more sensitive to the tail of the distribution n
m, = | dx " p(x)
—> high statistics required

Nx




Hadronic-fluctuations

* fluctuations in equivalent ensembles

introduce a chemical potential for each conserved charge O

—> in QCD: SU (IN¢) vector symmetry, introduce ps (f = u,d,s,...

through ~ ~
J = Z[Lfo — ,U,TN
f

Ny :number operator for quark with flavor f
charges more convenient for experiment: B, Q, I3, Y

—— perform a coordinate change in Gibbs space
J = MTM_lMN — ([,L,)TN,
example: B, Q, S-ensembles

1
5 (Nu+ Na+ N;) KB = Mty + 204

_— HQ = Hu — Bd
invert M Hs = g — Ms

1
§(2Nu — Ng — Ny)

— N,
defines transformation M




Hadronic-fluctuations

* fluctuations in equivalent ensembles
introduce a chemical potential for each conserved charge O
—> in QCD: SU (IN¢) vector symmetry, introduce ps (f = u,d,s,...
through 7 Z .U«fo _ TN
7
Ny :number operator for quark with flavor f
charges more convenient for experiment: B, Q, I3, Y

—— perform a coordinate change in Gibbs space
J = MTM_lMN — ([,L,)TN,

example: B, Q, S-ensembles

baryon number fluctuations:

1 d d d
Xz = gOG + X5+ X3 +2x30 + 207 +2x071) T 5 (2% + x5 + 2401 + 44y

choose u, d-quarks degenerate




e the build

0.6

0.5

0.4

0.3 r

Hadronic-fluctuations

U
Co

ing blocks:

n=2+1, m =220 MeV —m— A

n=2, m =770 MeV —m—
filled: ni=4
open: n=6

T[MeV] |

250 300 350 400

450

n=2+1, m =220 MeV —m— |

n=2, m =770 MeV —m—

n=2+1, m_=220 MeV —m—
n=2, m_=770 MeV —m— -
filled: n=4

open: ni=6 A

O |
150 200

p4-action, N = 4,6:
— T c decreases with decreasing mass

— fluctuations increase with decreasing
mass

expect cutoff dependence,

goto HISQ, N, = 6,8,12

red: Cheng et al, PRD79 (2009) 074505.
blue: Allton et al, PRD71 (2005) 054508.




Hadronic-fluctuations

* the building blocks:
035 —— 2+

T[MeV]

180 200 220 240

n=2, m =770 MeV —m—

n=2+1, m =220 MeV —m— |

n=2+1, m_=220 MeV —m—
n=2, m_=770 MeV —m— -
filled: n=4

open: ni=6 A

p4-action, N, = 4,6:

— Tc decreases with decreasing mass

— fluctuations increase with decreasing
mass

—> expect cutoff dependence,
goto HISQ, N, = 6,8,12
(to be coming soon)

red: Cheng et al, PRD79 (2009) 074505.
blue: Allton et al, PRD71 (2005) 054508.




Baryonic fluctuations

* understanding the structure:

Analyzing the critical behavior:

scaling field (chiral limit):
1 (T—Tc <u3>2)
t= — P
to 1. T
free energy:
f = AL|t|*”® 4+ regular

critical exponent:
—0.15 < a < —0.11

/T

C

08 085 09 09 1 105 11

F2A41(2 — &)k |t|" ™ + regular
—12A4(2 — a)(1 — a)k? |t|”® + regular > kink (chiral limit)

F12044(2 — a)(1 — a)(—a)k® |t| 7~ 4+ regular —  divergent
(chiral limit)




Baryonic fluctuations

* understanding the structure:

Analyzing the critical behavior:

scaling field (chiral limit):
1 (T—Tc <u3>2)
t= — P
to 1. T
free energy:
f = AL|t|*”® 4+ regular

critical exponent:
—0.15 < a < —0.11

T/T

C

08 085 09 09 1 1.05 1.1

F2A41(2 — &)k |t|" ™ + regular
—12A4(2 — a)(1 — a)k? |t|”® + regular > kink (chiral limit)

F12044(2 — a)(1 — a)(—a)k® |t| 7~ 4+ regular —  divergent
(chiral limit)




Hadronic fluctuations

* putting things together:

pressure

density fluctuations

X
— = 2c 12c¢ —
T2 2 + 4 T

—> obtain all kinds of thermodynamic observables in terms

of the coefficients c;‘jjd,;s at non zero density
%J 9




Hadronic fluctuations

* putting things together:

pressure ( [-dependent part)

density

Nt=4l%
Nt=6 —o—

T/MeV

350

450

—> nonzero density contribution
is < (10 —15)% for pe,/T <1

—> obtain energy density from temperature derivative

—> important input for hydrodynamic models of heavy ion collisions:
isentropic equation of state

Ejiri et al., PRD73 (2006) 054506; Miao, CS, PoS LATTICE2008 (2008) 172.




Hadronic fluctuations
at up > 0 (us = pg = 0)

baryon number baryon number - strangeness
fluctuations strangeness correlations fluctuations

2
1B
xS=2c3’25+20§’f<T) 4= oo

1.1
1.0 | %Xs
A _ ‘ | 09}
0.40 | LA : | 0.8 t

T : ' - 1 o7t

1 ’
\
1 | 7 ! N
e 0.6 |
030 | - , |
. A ,
1 /)
1 ’ !

! 05 |
020 I/ . i | 0.4 |

y ' 0.3 t
0.10 | ] | | 0.2 |

T [MeV] | T[MeV] 0.1 ¢ T [MeV]
1 1 1 05 1 1 1 1 1 1 1 OO 1 1 1 1 1 1 1
160 180 200 220 240 260 280 300 320 160 180 200 220 240 260 280 300 320

C]_,i _|_ 363,3_ (?) —I— e o o

xs ()

0.00

160 180 200 220 240 260 280 300 320

Cps =

— LO introduces a peak in the fluctuations/correlations,
NLO shifts the peak towards smaller temperatures

—> truncation errors become large at ug/T 2> 1.5




curvature of the phase boundary

* How to obtain the pi-dependence of the crossover temperature?

follow the peak position of a susceptibility (XzB)

—— p-dependence only introduce at the 6th order, noisy signal

better:
make use of the determination of the non universal parameters (T, tg, hg)
from mapping QCD to the O(4)-chiral critical behavior

recall: (lecture by F Karsch)

17T -1,

to 1.
(reduced temperature) (external field) (quark mass)

our choice:
H = m;/mg

t =

My = m, (), /T* = h'/° fa(z)

(order parameter) (scaling function)




curvature of the phase boundary

* How to obtain the pi-dependence of the crossover temperature?

follow the peak position of a susceptibility (XzB)

—— p-dependence only introduce at the 6th order, noisy signal

better:
make use of the determination of the non universal parameters (T, tg, hg)
from mapping QCD to the O(4)-chiral critical behavior

recall: (lecture by F Karsch)

|

1/8 :
16 Mo/h B.= 3.2965(6)
14 : h=0.0022(2)
' t,;=0.0038(1)
Z,=6.6(4)

1.2

1
0.8
0.6
04
0.2

0




curvature of the phase boundary

* How to obtain the pi-dependence of the crossover temperature?

follow the peak position of a susceptibility (XzB)

—— p-dependence only introduce at the 6th order, noisy signal

better:

make use of the determination of the non universal parameters (T, tg, hg)
from mapping QCD to the O(4)-chiral critical behavior

— introduce chemical potential expected phase diagram

line of 2. order
transitions O(4)

line of 1. order
critical transitions

end-point

—> scaling laws control curvature of the
critical line




curvature of the phase boundary

* How to obtain the pi-dependence of the crossover temperature?

the critical line provides an upper bound to the curvature of
the crossover temperature

* determine r by a scaling analysis of the mixed susceptibility

0*M 2K
— — (B—1)/Bd ¢/
= @u/T?  hon fa(z) o x

—> one fit parameter: «,

Xm

N,=8: m/mg= 1/20 —— ' . /-2qu1’(5/(223 —

=0. M/Mm.= ——

Ne=a: mymg= 110 == 1 06 1 Ni=: mym.= 1/10 '
1120 —a— [ 150 8

Il 1/40 —©— 05 | 1/40 —O— -

1/80 —F— | 3 T 1/80 ——

[l] )
0|3
b
t  T/T.-1

-0.04  -0.02 0 0.02 0.04 0.06 0.08 0.1

8
7k
6 F
5 F
Ak
3}
ok
1
0

2 1 0 1

—> obtain from p4-action, N, = 8,4: kg = 0.059(6)
Kaczmarek et al, PRD 83 (2011) 014504.




curvature of the phase boundary

* comparison with freeze-out line

e Statistical models are very successful in describing particle
abundances observed in heavy ion collision; use a parametrization
of the freeze-out curve

1.2

statistical model:

11| { T 2 4
“° —1-0.023 (M_B) —d ('U_B)
’ 1T T T

Cleymans, et al., PRC 73 (2006) 034905
0.9 |

lattice:

Tc KB 2
—~ =1 —0.0066(7) (—)
T T

Kaczmarek et al, PRD 83 (2011) 014504.

0.8 |

0.7

06 ] ] ] ] ] ] ]
0 0.5 1 1.5 2 2.5 3 3.5 4

—> curvature of the freeze-out curve seems to be larger

e open issues: continuum limit, strangeness conservation, nonzero
electric charge




Baryonic fluctuations

hadron resonance gas

InZ(T,V, NB?NS?/JJQ) — Z InZ,,,(T,V, //’JB?//’JS?NQ)

1€hadrons

> mZE (T,V,ps,pe)+ >, WZf (T,V,us,ps, 1)

1Emesons tEbaryons

Mesons:

2 oo

i dy i
54 = (n; ) Z(+1)l+1l_2Kz(lm,,;/T) cosh(IS;us/T +1Qipnq/T)
=1

baryons:

i d; i\ 2
- <"; ) Y (=D Ky (Im; /T) cosh(IBipg /T + 1Sips /T + 1Qipg /T)

=1

T4 T2

Boltzmann

approximation | 3 ratios:

ratios are
independent of
spectrum and
volume

possibly large

RN _ B
parts of cut-off = 02 /Np = B coth(upg/T)
effects cancel




Baryonic fluctuations

e sixth order fluctuations

Use

| parametrization
of freeze-out

1 curve to connect
to STAR

1 measurements of
net-proton
number

T/T_I-—>

C

0.8 085 09 095 1 1.05 1.1 1.15 [ ST

Vi (GeV)

T(ug) 0.166 GeV
—0.139 GeV ™~ 'u%

—0.053 GeV *uj

CS, Theor. Phys. Suppl.186, 563 (2010)

*sensitive to relevant quantum
numbers in the medium

e divergent at the critical point 15 (V/3) = 1.308 GeV
1+ 0.273 GeV~'y/s

[Cleymans et al., Phys. Rev. C 63 (2006) 034905]




Baryonic fluctuations

Lattice vs. Experiment:

@~ LQCD: BNL-Bi
~&— LQCD: Mumbai

512 (GeV) ~ "2 [GeV] |

5 10 20 100
Mukherjee, QM 201 | CS, Theor. Phys. Suppl. 186, 563 (2010)

[HRG: Karsch, Redlich, PLB 695 (201 1)]
[STAR data: Aggarwal et al, PRL (2010) 022302]

* net-proton number fluctuations e fluctuations increase for small v/s

can be described by the HRG . . .
* sensitive to truncation of the series

solid lines: pg 7 0, ps 7 0 due to close radius of convergence
dashed lines: ug =0, us = 0




Baryonic fluctuations

Lattice vs. Experiment:

@~ LQCD: BNL-Bi
~&— LQCD: Mumbai

s\ (GeV)

5 10 20
Mukherjee, QM 201 |

[HRG: Karsch, Redlich, PLB 695 (201 1)]
[STAR data: Aggarwal et al, PRL (2010) 022302]

* net-proton number fluctuations
can be described by the HRG

solid lines: g # 0, usg # 0
dashed lines: ug =0, us = 0

0.1 L— —
10 100
CS, Theor. Phys. Suppl. 186,563 (2010)

e fluctuations increase for small v/s

® sensitive to truncation of the series
due to close radius of convergence




Baryonic fluctuations

Lattice vs. Experiment:

@~ LQCD: BNL-Bi
~&— LQCD: Mumbai

s\ (GeV)

5 10 20
Mukherjee, QM 201 |

[HRG: Karsch, Redlich, PLB 695 (201 1)]
[STAR data: Aggarwal et al, PRL (2010) 022302]

* net-proton number fluctuations
can be described by the HRG

solid lines: g # 0, usg # 0
dashed lines: ug =0, us = 0

o ”I”ISW[GIeV]
10 100
CS, Theor. Phys. Suppl. 186,563 (2010)

e fluctuations increase for small v/s

® sensitive to truncation of the series
due to close radius of convergence




The critical endpoint

method for locating of the CEP:

* determine largest temperature where all p=-co+ce(us/T) +ca(pup/T)* +---

coefficients are positive = TCEP i )
XB = 2¢2 + 12¢4 (ug/T)" + 30ce (uB/T)" + - - -

* determine the radius of convergence at 8

this temperature - CEP

all coefficients
positive:
singularity
on the real

axis! //)/

11 I ! !
T CEP T RW 085 09 095 1 105 1.1

TCEP CS, Theor. Phys. Suppl. 186,563 (2010)

TSC;'EP
Pn (p) \/Cn/cn+2

_ o o o CEP .
first non tr!v!al est!mate of TCEP by cs 0 lim p,
second non-trivial estimate of T by ci10 n— 0o




The critical endpoint

method for locating of the CEP:

* determine largest temperature where all p=-co+ce(us/T) +ca(pup/T)* +---

coefficients are positive = TCEP i )
XB = 2¢2 + 12¢4 (ug/T)" + 30ce (uB/T)" + - - -

* determine the radius of convergence at -

this temperature - CEP

1.15

all coefficients
positive:
singularity
on the real

axis! //)/

Ll |
1 | 5
TCEPl TRW
ToEP CS, Theor. Phys. Suppl. 186, 563 (2010)

TSC’EP
pr(p) = \/en/cnra

_ o o o CEP .
first non tr!v!al est!mate of TCEP by cs 0 lim p,
second non-trivial estimate of T by ci10 n— 0o




The critical endpoint

method for locating of the CEP:

* determine largest temperature where all p=-co+ce(us/T) +ca(pup/T)* +---

coefficients are positive = TCEP i )
XB = 2¢2 + 12¢4 (ug/T)" + 30ce (uB/T)" + - --

* determine the radius of convergence at 10 | | ,

this temperature - CEP

1.15

1.1

all coefficients
positive:
singularity
on the real

axis! //)/

l | | 0.8
TCEPl T RW 0 1
o CS, Theor. Phys. Suppl. 186, 563 (2010)

CEP
TS

* radius of convergence is consistent
with critical line in the chiral limit

first non-trivial estimate of T7<EF by cg O. Kaczmarek, et al., PRD 83 (201 1) 014504
second non-trivial estimate of T<*F by c10




Summary

Part Il:

* Taylor expansion coefficients of the pressure up to the 6th order have been
calculated at zero chemical potential, can be used to obtain bulk thermo-
dynamics and fluctuations at nonzero density (p4-action, Nt=4,6). New
results from HISQ-action for Nt=6,8,12 are underway.

* The curvature of the critical line in the chiral limit was obtained from an
analysis of the O(4) ciritcal behavior.

* Ratios of moments of the baryon number fluctuations have been computed
and compared to the experiment.

* estimates of the radius of convergence can possibly be used to estimate a
critical end-point at non zero chemical potential




Otherdirections

* QCD like theories without sign problem:

SU(2) iso-spin chemical potential

non compleat list: non compleat list:
« Hands, Montvay, Scorzato, « Kogut, Sinclair, PRD 66 (2002) 034505

Skullerud, EPJC 22 (2001) 451
 Kogut, Toublan,Sinclair,

PRD 68 (2003) 054507
e Hands, Kim, Skullerud,

PRD 81 (2010) 091502

e Hands, Kenny, Kim, Skullerud,
EPJA 47 (201 1) 60

* Integrate over gauge links first — no sign problem, feasible at strong
couplings Fromm, de Forcrand PRL 104 (2010) I 12005; de Forcrand, Unger, arXiv: | [07.1557

* Complexify fields and use complex Langevin algorithm, correct convergence

not guaranteed Aarts etal, JEHP 0509 (2009) 052; PLB 687 (2010) 154; PRD 81 (2010) 054508;
JHEP 1008 (2010) 017; JHEP 1008 (2010) 020

* Design a model of QCD, calculate parameter to produce all know
constrains from lattice QCD and experiment

—> see lecture by D. Blaschke




