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• What are the phases of strongly 
interacting matter and what role 
do they play in the cosmos ?

• What does QCD predict for the 
properties of strongly interacting 
matter ?

• What governs the transition from 
Quark and Gluons into Hadrons ?
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QCD

0

• In the early universe
• In the laboratory: RHIC, LHC, FAIR
• In the cores of neutron stars ?

~0.2 FAIR@GSI

Big bang

The QCD phase diagram 4

• What are the phases of strongly 
interacting matter and what role 
do they play in the cosmos ?

• What does QCD predict for the 
properties of strongly interacting 
matter ?

• What governs the transition from 
Quark and Gluons into Hadrons ?

hadron gas

quark-gluon-plasma
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 Critical Opalescence

→determined by the Equation of State

→exciting: critical Phenomena
e.g. critical 

opalescence:
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 Critical Opalescence

→determined by the Equation of State

→exciting: critical Phenomena
e.g. critical 

opalescence:

The phase diagram 6

(regular part)
−

1
V

ln Z = fs(t, h) + fr(T, V, H)
(singular part)

free energy density:

 is a generalized homogenous functionfs

fs(t, h) = b−dfs(bytt, byhh)

scaling hypothesis: 

(Ising model)



QCD on the lattice 7

Uµ(x) = P exp




ig

x+µ̂a∫

x

dxµAµ(x)




ψ(x), ψ̄(x)

{lattice spacing a

perform lattice QCD:
non perturbativ, ab inito

quarks gluons
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Uµ(x) = P exp




ig

x+µ̂a∫

x

dxµAµ(x)




ψ(x), ψ̄(x)

{lattice spacing a

quarks gluons

at nonzero chemical 
potential    :µ

A0 → A0 − iµ

or equivalently:

U0(x) → eaµU0(x)
U†

0(x) → e−aµU†
0(x)

eaµ

eaµ

eaµ

eaµe−aµ

Hasenfratz, Karsch, PLB 125 (1983) 308.

Lattice QCD (at                 )T, µ > 0

perform lattice QCD:
non perturbativ, ab inito



Lattice QCD (at                 ) 9

• the QCD partition function: 

• geometry of space time: N3
s × Nt

}a

1/T

= Nta

V 1/3 = Nsa

note:
• only closed loops participate to the partition function
• only loops that wind around the torus in time 

direction     -times pick up a    -dependence: 

(4d - torus)

alternatively (gauge-transformation):→
• choose a fixed time-slice on which all 

temporal links get a factor 

SE = ψ̄xMx,yψy + SG

Mx,y = am δx,y +
1
2

3∑

µ=1

γµ

{
Uµ(x) δx+aµ̂,y − U†

µ(y) δx−aµ̂,y

}

+
1
2

γ4

{
eaµ̄ U4(x) δx+a4̂,y − e−aµ̄ U†

4(y) δx−a4̂,y

}

Z(V, T, µ̄) =
∫

DA Dψ̄ Dψ exp{−SE}

µW
exp{Wµ/T}

exp{±µ/T}

T, µ > 0



• integration over fermion fields

Z(V, T, µ) =
∫

DADψDψ̄ exp{SF (A, ψ, ψ̄) − βSG(A)}

=
∫

DA det[M ](A, µ) exp{−βSG(A)}

propabilistic interpretation 
necessary for Monte Carlo!complex for µ > 0

The sign problem 10

we find: [detM(µ)]∗ = detM(−µ∗)

→ determinant is real only for 

µ = 0 µ = iµIor



(    - Hermiticity)  

µ = 0 µ > 0

γ5

M†(0) = γ5M(0)γ5 M†(µ) = γ5M(−µ)γ5

• properties of the fermion matrix and eigen-spectrum

free naive fermions

λp = m ± i

√√√√
3∑

k=1

sin2(pk) + sin2(p4 + iµ)
-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-0.04 -0.02  0  0.02  0.04

!R-m

!I

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-0.04 -0.02  0  0.02  0.04

!R-m

!I µ/T=1
µ/T=2

• positive definite
• block diagonal in parity (even-odd) 

space, use even-odd preconditioning
• regulated by the mass:

M†M           is

λmin = m2

• not block diagonal in parity (even-odd) 
space

• not regulated, zero-modes possible for 
sufficiently large 

M†M           is

11The sign problem

µ

free case free case
43 × 64 43 × 64



12The sign problem

• complex measure (     ) needed to obtain correct physics dω

example Polyakov Loop (L):

demand different free energy for quark and anti-quark:

Fq != Fq̄ ⇒ Im(dω) != 0

〈Tr(L∗)〉 = exp{−
1
T

Fq̄} =
∫

Re(Tr(L)) Re(dω) + Im(Tr(L)) Im(dω)

〈Tr(L)〉 = exp{−
1
T

Fq} =
∫

Re(Tr(L)) Re(dω) − Im(Tr(L)) Im(dω)



13The sign problem

Z(λ) =
∫

dx exp{−λx2 + iλx}

• How to sample an oscillating partition function? 

toy model:

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

-3 -2 -1  0  1  2  3

!=0
20

→ cancelations between configurations 
with ‘positive’ and ‘negative’ weight are 
exponentially large: 

which are the dominant configurations in the path integral?

Z(λ)/Z(0) = exp{−λ2/4}

→ constraining the integration interval to 

x ∈ [−λ, λ]

will give                    errorO(100%)

→ all configurations are important 



14Reweighing and the sign problem

• How to sample an oscillating partition function? 

toy model:                                   ,  with                     , Zf ≡
∫

dx f(x)

introduce auxiliary partition function:

f(x) ≥/ 0f(x) ∈ R

Zg ≡
∫

dx g(x) g(x) ≥ 0g(x) ∈ R                                                  ,  with                     , 

calculate observable by reweighting:

〈O〉f ≡
1

Zf

∫
dx O(x)f(x) =

∫
dx O(x)f(x)

g(x)
g(x)

∫
dx f(x)

g(x)
g(x)

=

〈
O f

g

〉

g〈
f
g

〉

g

f/g ≡ R is the “reweighting factor”

〈R〉g = Zf/Zg = exp{−
V

T
∆f̃(µ, T )︸ ︷︷ ︸}

difference of the 
free energy density

→ reweighting factor is exponentially small for large   , small   ,  large
→

∆f̃V T
overlap problem, i.e. the signal gets lost quickly!



15Reweighing and the sign problem

• How to sample an oscillating partition function? 

toy model:                                   ,  with                     , Zf ≡
∫

dx f(x)

introduce auxiliary partition function:

f(x) ≥/ 0f(x) ∈ R

Zg ≡
∫

dx g(x) g(x) ≥ 0g(x) ∈ R                                                  ,  with                     , 

calculate observable by reweighting:

〈O〉f ≡
1

Zf

∫
dx O(x)f(x) =

∫
dx O(x)f(x)

g(x)
g(x)

∫
dx f(x)

g(x)
g(x)

=

〈
O f

g

〉

g〈
f
g

〉

g

∝ 1/V

O

p(O)T,0 p(O)T ′,µ overlap problem 
(schematic picture)

→ exponentially large statistics required



16Reweighing and the sign problem

• How to sample an oscillating partition function? 

toy model:                                   ,  with                     , Zf ≡
∫

dx f(x)

introduce auxiliary partition function:

f(x) ≥/ 0f(x) ∈ R

Zg ≡
∫

dx g(x) g(x) ≥ 0g(x) ∈ R                                                  ,  with                     , 

calculate observable by reweighting:

〈O〉f ≡
1

Zf

∫
dx O(x)f(x) =

∫
dx O(x)f(x)

g(x)
g(x)

∫
dx f(x)

g(x)
g(x)

=

〈
O f

g

〉

g〈
f
g

〉

g

How to chose         ?g(x)

→ minimize Var(f/g)

→ solution:                              and g(x) = |f(x)| R ≡ f/g = sign(f)
de Frocrand, Kim, Takaishi, hep-lat 0209126



17Reweighting strategies in QCD 

• QCD partition function (for staggered fermions): 

factorize determinant into modulus and phase

→ optimal choice: 

Z(µ, β) =
∫

DU |detM(U, µ)|Nf /4 eiθe−βS̃G

︸ ︷︷ ︸
f

Z(µ, β) =
∫

DU (detM(U, µ))Nf /4 e−βS̃G

Zg(µ′, β′) =
∫

DU |detM(U, µ′)|Nf /4 |cos(θ)|e−β′S̃G

→ other choice: 

prohibitively inefficient, since    has to be evaluated in each MC step! θ

Zg(µ′, β′) =
∫

DU |detM(U, µ′)|Nf /4
e−β′S̃G

“phase quenched” theory, for       even equivalent with non zero iso-spin 
chemical potential:

|detM(µ)|Nf = detM(+µ)Nf /2 × detM(−µ)Nf /2

Nf



18Reweighting strategies in QCD 

• QCD partition function (for staggered fermions): 

factorize determinant into modulus and phase

→ standard reweighting approach: 

Z(µ, β) =
∫

DU |detM(U, µ)|Nf /4 eiθe−βS̃G

︸ ︷︷ ︸
f

Z(µ, β) =
∫

DU (detM(U, µ))Nf /4 e−βS̃G

Zg = Z(0, β′) f/g =
∣∣∣∣
detM(µ)
detM(0)

∣∣∣∣
Nf /4

eiθ e−(β−β′)S̃G⇒

T

µ

T

µ

Fodor, Katz, JHEP 0404 (2004) 050;
Fodor, Katz, JHEP 0203 (2002) 014 ;
Fodor, Katz, PLB 534 (2002) 87. 

Glasgow-method: fixed
Barbour, et al., NPB (Proc. 
Suppl.) 60A (1998) 220.

→ overlap 
problem

β



19Reweighting strategies in QCD 

• standard reweighting approach: 

Zg = Z(0, β′) f/g =
∣∣∣∣
detM(µ)
detM(0)

∣∣∣∣
Nf /4

eiθ e−(β−β′)S̃G⇒

→

exact calculation of fermion determinant, respectively all eigenvalues is required

transform    -dependence into 2 time-slices by similarity transformations µ

→ factorize the    -dependence of the determinantµ

detM(µ) = e−3N3
σNτ µdet(P − eNτ µ)

“reduced fermion matrix”
P ∈ C2NcN3

s ×2NcN3
s

→ calculate all eigenvalues of the reduced fermion matrix 
(            operations,  hard to parallelize efficiently )O(N9

σ)

detM(µ) = e−3N3
σNτ µ

6N3
σ∏

i=0

(eNτ µ − λi)

method by Fodor and Katz:

Fodor, Katz, PLB 534 (2002) 87. 



method by Fodor and Katz:

20Reweighting strategies in QCD 

• standard reweighting approach: 

Zg = Z(0, β′) f/g =
∣∣∣∣
detM(µ)
detM(0)

∣∣∣∣
Nf /4

eiθ e−(β−β′)S̃G⇒

Fodor, Katz, JHEP 0404 (2004) 050

important result (            , physical quark masses ) by monitoring the 
first Lee-Yang zero:

Nτ = 4
(µCEP

q , TCEP) = (120(13), 162(2)) MeV

exact calculation of fermion determinant, respectively all eigenvalues is required

→

Investigation of the Phase Diagram
— The critical endpoint

−→ the analysis of the Lee-Yang zeros

inspect the µ dependence of Im(β0) 1
st order transition: V·Im(β0) is V independent

inspect the V → ∞ limit of Im(β0)

small µ: Im(β∞
0 ) inconsistent with 0⇒ crossover

increasing µ: Im(β∞
0 ) decreases⇒ transition becomes consistent with a 1st order PT

endpoint chemical potential: µend = 0.183(8)
Fodor, Katz, hep-lat/0402006

(staggered, reweighting, physical masses, largest lattice 123 × 4)
Lattice simulations with chemical potential, Helsinki, 16.-19. June 2004 – p. 24/27



Lee-Yang zeros:

21Reweighting strategies in QCD 

• standard reweighting approach: 

Zg = Z(0, β′) f/g =
∣∣∣∣
detM(µ)
detM(0)

∣∣∣∣
Nf /4

eiθ e−(β−β′)S̃G⇒

exact calculation of fermion determinant, respectively all eigenvalues is required

B4 !
!!!!!!!!!
x=!

p R
dP!P4e"x!P2

#
!!!!!!!!!
x=!

p R
dP!P2e"x!P2$2

%
" !!!!

x
!

r
d2

!!!!!!!!!
!=x

p

dx2

#$"
"

!!!!
x
!

r
d

!!!!!!!!!
!=x

p

dx

#
2
% 3: (9)

In a region where a first order phase transition changes to a
crossover, the Binder cumulant changes rapidly from one
to three. We expect to find such a region for full QCD at
high temperature and density. The value of the Binder
cumulant at the endpoint of the first order transition line,
which is of second order, is determined by the universality
class. Hence, the plaquette distribution function plays an
important role for both methods to identify the order of a
phase transition.

B. Numerical results

We calculate the normalized partition function for SU(3)
pure gauge theory to find Lee-Yang zeros in the complex "
plane, using data for plaquettes obtained by QCDPAX in
Ref. [23]. There are five data sets measured at the transition
point for N# % 4 and 6. The spatial lattice sizes are 242 &
36& 4, 122 & 24& 4, 362 & 48& 6, 243 & 6, and 203 &
6. O#106$ configurations are available for the analysis of
each data set. The reweighting technique is also used for
the real " direction to analyze the Lee-Yang zeros in the
complex " plane for a data set obtained at only one " point
#"Re;"Im$ % #"0; 0$: The normalized partition function is
given by

Z norm#"Re;"Im$ %
%%%%%%%%
he6i"ImNsite!Pe6"ReNsite!Pi#"0;0$

he6"ReNsite!Pi#"0;0$

%%%%%%%%:

(10)

Figure 1 shows the contour plot of Znorm for the 242 &
36& 4 lattice. The simulation point is "0 % 3:6492. In this
definition, Znorm is normalized to be one on the real " axis.
Circles at #"0

Re;"
0
Im$ ! #5:6925; 0:0021$ and

#5:6931; 0:0056$ are Lee-Yang zeros. Since the SU(3)
pure gauge theory has a first order phase transition, Lee-
Yang zeros appear periodically. For this data, two clear
peaks are visible in the plaquette histogram [23]. The
distance between these two peaks is 2A ! 0:003. The
positions of the Lee-Yang zeros are consistent with "0

Im '
!=#12NsiteA$ ! 0:002 and 3!=#12NsiteA$ ! 0:006, as
given in Eq. (5).

The above property is not seen so clearly for lattices
having small N$ and large N#. The position of the next-to-
leading zero points of Znorm appear at random for the other
data sets relative to the nearest zero point. The positions of
Lee-Yang zeros are shown in Table I. We could not obtain
clearly isolated Lee-Yang zeros for the lattices 243 & 6 and
203 & 6. The second nearest Lee-Yang zero to the real axis
could be measured only for the 242 & 36& 4 lattice. The
result on the 362 & 48& 6 lattice #"0 % 5:8936$ is also
shown in Fig. 2. Only the nearest Lee-Yang zero is obtained

clearly. The Lee-Yang zero becomes less clear as N#
increases and N$ decreases, hence simulations on lattices
having large N$=N# seem to be necessary for the study of
Lee-Yang zeros.

The values for "0
ImV on 242 & 36& 4 and 122 & 24& 4

lattices are 43:9#5$ and 42:0#6$, respectively. These are
roughly constant and suggest the scaling behavior of
"0

Im ' 1=V for a first order phase transition. Also, in the
previous study for lattices with N# % 2 [21], the 1=V
scaling behavior has been confirmed for N$ % 6, 8, 10,
and 12. However, for a more precise quantitative investi-
gation that takes into account the errors, the spatial lattice
size 122 & 24 may not be large enough to check the 1=V
scaling for N# % 4, since the difference of "0

ImV is larger
than the statistical error. We should fit the data obtained on
more than two lattices by a curved function of 1=V, to
confirm through a 1=V scaling analysis that the phase
transition of the SU(3) pure gauge theory is first order.
E.g. for the study of the SU(2) gauge-Higgs model [24], the
following fitting functions have been used, Im%0#V$ %
%c
0 ( CV"& and Im%0#V$ % %c

0 ( CV"1 (DV"2 for a

5.688 5.69 5.692 5.694 5.696

βRe

0

0.002

0.004

0.006

0.008

0.01

β Im

24
2
x36x4 lattice 

0.1

0.5

0.05

0.01

FIG. 1. Contour plot of the normalized partition function
Znorm in the #"Re;"Im$ plane measured on the 242 & 36& 4
lattice. Values in the right edge are Znorm . The simulation point
is "0 % 5:6925.

TABLE I. Positions of Lee-Yang zeros for the SU(3) pure
gauge theory.

Lattice size "Re "Im

122 & 24& 4 1st zero 5.691 78(23) 0.012 16(17)
242 & 36& 4 1st zero 5.692 52(5) 0.002 12(2)
242 & 36& 4 2nd zero 5.693 09(7) 0.005 56(7)
362 & 48& 6 1st zero 5.894 11(10) 0.004 34(8)

SHINJI EJIRI PHYSICAL REVIEW D 73, 054502 (2006)

054502-4

Ejiri, PRD 73 (2006) 054502.

•zeros of the partition function in the 
complex   -plane

•move onto the real axis in the thermo-
dynamic limit 

→

β

detect a 1st order transition on 
a finite volume by studying the 
pattern of the Lee-Yang zeros 

βI ∼ C(2n + 1)



22Reweighting strategies in QCD 

• break down of the reweighting: 

standard jack-knife errors do not reflect the break down of the method!

→ study the phase factor directly
analytic results, valid in the microscopic 
limit of QCD:(                 ,                 )m2

π !
1

√
V

µ2 !
1

√
V

→
e2iθ =

(
1 −

4µ2

m2
π

)Nf+1

µ < mπ/2
the sign problem is not severe 
for                

Splittorff,  Verbaarschot, PRL98 (2007) 031601. 

→ large difference in the fee 
energy densities of phase 
quenched and full theory               

|detM(µ)|Nf = detM(+µ)Nf /2

×detM(−µ)Nf /2

non zero iso-spin chemical potential           

Lattice Data:  Allton et al., PRD71 (2005) 054508. 



23Reweighting strategies in QCD 

• break down of the reweighting: 

standard jack-knife errors do not reflect the break down of the method!

→ study the phase factor directly
analytic results, valid in the microscopic 
limit of QCD:(                 ,                 )m2

π !
1

√
V

µ2 !
1

√
V

→
e2iθ =

(
1 −

4µ2

m2
π

)Nf+1

µ < mπ/2
the sign problem is not severe 
for                

→ large difference in the fee 
energy densities of phase 
quenched and full theory               

|detM(µ)|Nf = detM(+µ)Nf /2

×detM(−µ)Nf /2

non zero iso-spin chemical potential           

T

µI
mN

3
mπ

2

〈
π+

〉
!= 0

severe sign 
problem             



24Reweighting strategies in QCD 

• break down of the reweighting: 

standard jack-knife errors do not reflect the break down of the method!

→ estimate the overlap measure       :2α

1 − α
α    is the fraction of the configurations that contributes the fraction
           to the weight; optimal is α = 50%

Csikor, et al., JEHP 0405 (2004) 046.

2α

contour lines of 2α



improve accuracy of the tail by
simulating at a fixed value of    .
In practice: replace delta function 
by a strongly peaked gaussian.

 90

 100

 110

 120

 130

 140

 150

 160

 170

 0  50  100  150  200  250  300  350  400

µq [MeV]

Τ [MeV] multiparameter reweighting
DOS method, am=0.05
DOS method, am=0.03

Fodor, Katz, CS, JHEP 0703:121,2007.

64, 63 × 8
amq = 0.05, 0.03

Nf = 4

Reweighting strategies in QCD 

• “density of state” modification of the reweighting 

Zg,O(µ′, β′, x) =
∫

DU |detM(U, µ′)|Nf /4
e−β′S̃Gδ(x − O)

O
→

x

p(O)T,0 p(O)T ′,µ

O

enlargement of the parameter 
space, sample many    -values

→
O

25



from           to 

Reweighting strategies in QCD 

• canonical ensemble approach 

δ(N̂ − Q) =
∫

dµ̄ eiµ̄(N̂−Q)→ fix quark number by introducing: 

→ recognize    as imaginary chemical potential:µ̄ iµ̄ = iµI/T

→ exploit            symmetry of the GC partition function in iµI/T2π/3

Q = 3B

ZC(T, Q) =
3
2π

π/3∫

−π/3

d
(

µI

T

)
e−iQµI/T ZGC(T, µI)

1
2π

π∫

−π

d
(

µI

T

)
e−i3BµI/T ZGC(T, µI)=

canonical partition function: 

→ are the coefficients in the Fourier expansion in  iµI

→ vanish for non integer baryon number B = Q/3

ZGC ZC

ZC(Q)

ZC(Q)
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from         to 

Reweighting strategies in QCD 

• canonical ensemble approach 

→ fugacity expansion (Laplace transformation)

ZGCZC

ZGC(T, µ)
V → ∞
=

∞∫

−∞

dρ e3V ρµ/T ZC(T, ρ)

=
∞∫

−∞

dρ e−V (f(T,ρ)−3ρµ)/T

with baryon density ρ = B/V

and Helmholtz fee enery f(T, ρ) = −
T

V
log ZC(T, ρ)

→ relation between    and     :ρ µ

fugacity expansion: 〈ρ〉 (µ) =
1

ZGC(T, µ)

∞∫

−∞

dρ ρe3V ρµ/T ZC(T, ρ)

saddle point approxn. : µ(ρ) =
1
3

∂f(T, ρ)
∂ρ
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sampling strategy:

Reweighting strategies in QCD 

• canonical ensemble approach 

→ sample at fixed value of         iµI0

→ calculate ratio of partition functions as

ZC(β, B)
ZGC(β, µ)

=

〈
ẐC(β, B)

detM(iµI0)

〉

β,iµI0

ẐC      Fourier coefficients of the determinant, calculated 
by matching term by term in 

→ calculate all eigenvalues of the reduced fermion matrix (cost           ) ∼ N9
σ

=
3N3

σ∑

Q=−3N3
σ

ẐCe−QµaNτdetM(µ) = e−3N3
σµaNτ

6N3
σ∏

i=0

(eµaNτ − λi)

(many ensembles can be combined by multi histogram reweighting)      

de Forcrand, Kratochvila 

→ overlap problem 
for large B

→ Fourier transformation of                 log detM
→ reduced matrix also for Wilson quarks

K.F.  Liu et al., Gattringer 

progress:

Wenger, Gattringer, Nakamura 
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results:

Reweighting strategies in QCD 

• canonical ensemble approach 

→ consider         F (B) ≡ −T log
(

ZC(B)
ZC(0)

)

fugacity expansion: 

saddle point approxn. :

4

account. The solid line in Fig.2(bottom) is ob-
tained by fitting the linear and cubic terms in
this expression. Instead of the free value 1, the
fitted coefficients are 0.82(2) and 1.94(6) respec-
tively. Thus, the equation of state for the quarks
in the plasma phase differs little from the Stefan-
Boltzmann law. This has been observed also in
[13] and [14]. Such a result is surprising, given
the experimental evidence for a strongly interact-
ing plasma. Perhaps it simply reflects the lack of
sensitivity of the quark equation of state to the
coupling strength. Note in particular the striking
independence of ρ

T 3 ( µ
T

) on temperature, as long
as one is in the plasma phase.

For a given temperature T , we identify the
boundaries ρ1 and ρ2 of the co-existence region
and the critical chemical potential µc as follows.
Equality of the free energy densities in the two
phases, f(ρ1) − 3µcρ1 = f(ρ2) − 3µcρ2, implies

∫ ρ2

ρ1

dρ(f ′(ρ) − 3µc) = 0 . (8)

Since f ′(ρ) is the quantity measured in Fig.2,
we determine ρ1, ρ2 and µc by a “Maxwell con-
struction” illustrated in Fig.3 (top) for the tem-
perature T

Tc
= 0.92. The value of µ

T
defining

the horizontal line is adjusted to make the areas
of the two “bumps” in the S-shape equal. The
two outermost crossing points define ρ1 and ρ2,
the boundaries of the co-existence region. Here,
µc

T
= 1.06(2) is the value of the critical chemical

potential.
We can cross-check this result by making use

of the fugacity expansion Eq.(5), see Fig.3 (bot-
tom). For a given chemical potential, we measure
the baryon number 〈B〉(µ). We see a rapid varia-
tion at the same value µc

T
≈ 1.06, but the round-

ing due to finite size effects is very strong. In
contrast, our criterion for criticality (equality of
the free energies) gives a clear first-order signal.
In the thermodynamic limit, both approaches will
indicate the same jump at µc.

Thus, the S-shape we observe is a finite-size ef-
fect. Its origin is clarified in Fig.4. In a system
of spatial size L, it takes a free energy 2L2σ/T to
create two planar, static interfaces separating the
two phases, where σ is the interface tension. Once
these two non-interacting interfaces are present,
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Figure 3. (top) The Maxwell construction allows
to extract the critical chemical potential and the
boundaries of the co-existence region. (bottom)
Comparing the saddle point approximation (red)
with the fugacity expansion (blue). Strong finite-
size effects in the latter obscure the first-order
transition.

the baryon density can be varied at constant free
energy by changing their separation. Thus, the
free energy required for the creation of these inter-
faces is equal to the shaded area in Fig.4. A crude
trapezoidal integration gives a reasonable value
for the reduced interface tension

√

σ/T ∼ 35−45
MeV. The contribution of these interfaces to the
free energy density goes as 1/L, and vanishes in
the thermodynamic limit.

In Fig.5 we present the phase diagrams in the
T -µ as well as in the T -ρ plane. The top figure
summarizes results from various methods, all for

µ(B) ≈ F (B) − F (B − 1) = log
(

ZC(B)
ZC(B − 1)

)

ρ(µ) ≡
〈B(µ)〉

V
=

1
V

∑V
B=−V BZC(B)eB3µ/T

∑V
B=−V ZC(B)eB3µ/T

de Forcrand, Kratochvila 

63 × 4
Nf = 4
mπ ≈ 300 MeV

→
find multi-valued density:

1st order transition

29

staggered        



Intro Setup Symm.+Eff.models Finite T simulations Finite µ Phase diag. Sign pb Reweighting Taylor+imag.µ Other

µ versus density PdF & Kratochvila

Flip coordinates: µ versus !
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Hadron Resonance Gas

• Good accuracy up to
µ

T ∼ 2, 30 baryons

• Increased fluctuations in transition region physical

Ph. de Forcrand STRONGnet 2010, Cyprus Finite T,mu

results:

Reweighting strategies in QCD 

• canonical ensemble approach 

→ consider         F (B) ≡ −T log
(

ZC(B)
ZC(0)

)

de Forcrand, Kratochvila 

63 × 4
Nf = 4
mπ ≈ 300 MeV

good accuracy up 
to 30 baryons

→

30
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Intro Setup Symm.+Eff.models Finite T simulations Finite µ Phase diag. Sign pb Reweighting Taylor+imag.µ Other

Maxwell construction PdF & Kratochvila
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results:

Reweighting strategies in QCD 

• canonical ensemble approach 

→ consider         F (B) ≡ −T log
(

ZC(B)
ZC(0)

)

de Forcrand, Kratochvila 

63 × 4
Nf = 4
mπ ≈ 300 MeV

→ perform Maxwell construction:       
1
T

∫ ρ2

ρ1

dρ (f ′(ρ) − µ) = 0 ⇒ f(ρ1) − ρ1µ = f(ρ2) − ρ2µ
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Intro Setup Symm.+Eff.models Finite T simulations Finite µ Phase diag. Sign pb Reweighting Taylor+imag.µ Other

Maxwell construction PdF & Kratochvila
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1
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d!(f ′(!)−µ) = 0 → f (!1)−µ!1 = f (!2)−µ!2

ie. 1rst-order phase transition
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results:

Reweighting strategies in QCD 

• canonical ensemble approach 

→ consider         F (B) ≡ −T log
(

ZC(B)
ZC(0)

)

de Forcrand, Kratochvila 

63 × 4
Nf = 4
mπ ≈ 300 MeV

→ perform Maxwell construction:       
1
T

∫ ρ2

ρ1

dρ (f ′(ρ) − µ) = 0 ⇒ f(ρ1) − ρ1µ = f(ρ2) − ρ2µ
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results:

Reweighting strategies in QCD 

• canonical ensemble approach 

→ consider         F (B) ≡ −T log
(

ZC(B)
ZC(0)

)

→ perform Maxwell construction    

33

→ obtain the phase diagram

Intro Setup Symm.+Eff.models Finite T simulations Finite µ Phase diag. Sign pb Reweighting Taylor+imag.µ Other

(!,T ) phase diagram PdF & Kratochvila
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3

confined

QGP

co-existence

• Great pedagogical tool: 63 ×4, Nf = 4 staggered, m" ∼ 300 MeV

• Can volume be increased enough for meaningful physics?

- work # N9
s

- estimate O (10) baryons max. still holds

- 63 ×4, m" ∼ 700 MeV with Wilson fermions → Nf = 2,3,4 K.-F. Liu

Ph. de Forcrand STRONGnet 2010, Cyprus Finite T,mu

de Forcrand, Kratochvila 

63 × 4
Nf = 4
mπ ≈ 300 MeV
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results:

Reweighting strategies in QCD 

• canonical ensemble approach 

→ consider         F (B) ≡ −T log
(

ZC(B)
ZC(0)

)

→ perform Maxwell construction    

34

→ obtain the phase diagram

Li, Alexandru, Liu,  arXiv: 1103.3045
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FIG. 6. Phase boundaries in the canonical ensemble.

density. We use an even polynomial since ZC is an even
function of k. The phase boundaries and their extrap-
olations are plotted in Fig. 6. We find the intersection
point at TE(nE

B)/Tc = 0.927(5) and nE
B = 5.7(3).

Using the coexistence chemical potential, one can map
out the phase diagram in the grand canonical ensemble
as shown in Fig. 7. Note that, the region of coexistence
phase becomes a curved transition line separating two the
phases as we expected. In this way, we locate the critical
point in the grand canonical ensemble at critical temper-
ature TE/Tc = 0.927(5) and baryon chemical potential
µE
B/Tc = 2.60(8). Using the lattice spacing a ≈ 0.3 fm in

our simulation, we convert its location in physical units
to be TE ≈ 157MeV and µE

B ≈ 441MeV.
In conclusion, we have applied a canonical ensem-

ble algorithm previously tested on the Nf = 4 to the
more relevant Nf = 3 case and located the first order
phase transition as signaled by the S-shape structure
in the µ − nB plane for several temperatures below Tc.
The Maxwell construction was employed to identify the
boundaries of the coexistence phase and we extrapolated
them to locate the critical point at TE = 0.925(5) Tc and
µE
B = 2.60(8) Tc. We should point out that the present

work is carried out on a relatively small volume with spa-
tial extent of ∼ 1.8 fm and with three degenerate quark
flavors with their masses similar to that of the strange
quark. Quark mass for this system acts like the magnetic
field for spin systems which weakens the phase transition.
Since the µ = 0 finite temperature transition is first or-
der for massless quarks [13] and the present critical point
is at a relatively large µE

B for quark masses around the
strange, we expect that the critical point for the more
realistic 2 + 1 flavor case with light u/d quarks to be
somewhere in between. The results of this work strongly
suggest the existence a first order phase transition which
ends at a critical point below Tc at finite µ. To firmly
establish the presence of the transition, we need to take
the continuum and infinite volume limit.

This work is partially supported by DOE grants
DE-FG05-84ER40154, DE-FG02-05ER41368 and DE-
FG02-95ER-40907. We wish to thank P. de Forcrand,
A. Kennedy and S. Chandrasekharan for useful discus-
sions.
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density. We use an even polynomial since ZC is an even
function of k. The phase boundaries and their extrap-
olations are plotted in Fig. 6. We find the intersection
point at TE(nE

B)/Tc = 0.927(5) and nE
B = 5.7(3).

Using the coexistence chemical potential, one can map
out the phase diagram in the grand canonical ensemble
as shown in Fig. 7. Note that, the region of coexistence
phase becomes a curved transition line separating two the
phases as we expected. In this way, we locate the critical
point in the grand canonical ensemble at critical temper-
ature TE/Tc = 0.927(5) and baryon chemical potential
µE
B/Tc = 2.60(8). Using the lattice spacing a ≈ 0.3 fm in

our simulation, we convert its location in physical units
to be TE ≈ 157MeV and µE

B ≈ 441MeV.
In conclusion, we have applied a canonical ensem-

ble algorithm previously tested on the Nf = 4 to the
more relevant Nf = 3 case and located the first order
phase transition as signaled by the S-shape structure
in the µ − nB plane for several temperatures below Tc.
The Maxwell construction was employed to identify the
boundaries of the coexistence phase and we extrapolated
them to locate the critical point at TE = 0.925(5) Tc and
µE
B = 2.60(8) Tc. We should point out that the present

work is carried out on a relatively small volume with spa-
tial extent of ∼ 1.8 fm and with three degenerate quark
flavors with their masses similar to that of the strange
quark. Quark mass for this system acts like the magnetic
field for spin systems which weakens the phase transition.
Since the µ = 0 finite temperature transition is first or-
der for massless quarks [13] and the present critical point
is at a relatively large µE

B for quark masses around the
strange, we expect that the critical point for the more
realistic 2 + 1 flavor case with light u/d quarks to be
somewhere in between. The results of this work strongly
suggest the existence a first order phase transition which
ends at a critical point below Tc at finite µ. To firmly
establish the presence of the transition, we need to take
the continuum and infinite volume limit.

This work is partially supported by DOE grants
DE-FG05-84ER40154, DE-FG02-05ER41368 and DE-
FG02-95ER-40907. We wish to thank P. de Forcrand,
A. Kennedy and S. Chandrasekharan for useful discus-
sions.

!
!

!
""

3.0 3.5 4.0
0.80

0.85

0.90

0.95

ΜB !T
T
!T c

TE !Tc"0.927"5#
Μ
B

E !Tc"2.60"8#

FIG. 7. Phase transition line in the T , µ plane.

∗ anyili@phy.duke.edu
† aalexan@gwu.edu
‡ liu@pa.uky.edu

[1] Y. Aoki et al., JHEP 06, 088 (2009), arXiv:0903.4155
[hep-lat]; F. Karsch (RBC), J. Phys. G35, 104096
(2008), arXiv:0804.4148 [hep-lat].

[2] Z. Fodor and S. Katz, JHEP 0404, 050 (2004),
arXiv:hep-lat/0402006 [hep-lat].

[3] C. Allton et al., Phys.Rev. D71, 054508 (2005),
arXiv:hep-lat/0501030 [hep-lat]; R. Gavai and S. Gupta,
ibid. D78, 114503 (2008), arXiv:0806.2233 [hep-lat].

[4] P. de Forcrand and O. Philipsen, JHEP 11, 012 (2008),
arXiv:0808.1096 [hep-lat].

[5] K.-F. Liu, Edinburgh 2003, QCD and numerical analysis
III (Springer-Verlag), 101(2005), arXiv:hep-lat/0312027;
A. Alexandru, M. Faber, I. Horvath, and K.-F. Liu,
Phys. Rev. D72, 114513 (2005), arXiv:hep-lat/0507020;
A. Alexandru, A. Li, and K.-F. Liu, PoS LAT2007, 167
(2007), arXiv:0711.2678 [hep-lat].

[6] J. Engels et al., Nucl. Phys.B558, 307 (1999), arXiv:hep-
lat/9903030; K. F. Liu, Chin. J. Phys. 38, 605
(2000); K.-F. Liu, Int. J. Mod. Phys. B16, 2017 (2002),
arXiv:hep-lat/0202026; V. Azcoiti et al., JHEP 12,
010 (2004), arXiv:hep-lat/0409157; P. de Forcrand and
S. Kratochvila, Nucl. Phys. Proc. Suppl. 153, 62 (2006),
arXiv:hep-lat/0602024.

[7] A. Li, A. Alexandru, K.-F. Liu, and X. Meng, Phys. Rev.
D82, 054502 (2010), arXiv:1005.4158 [hep-lat].

[8] A. Li, A. Alexandru, X. Meng, and K.-F. Liu (chi QCD),
Nucl. Phys. A830, 633c (2009), arXiv:0908.1155 [hep-
lat].

[9] A. Li, PoS LAT2009, 011 (2009), arXiv:1002.4459 [hep-
lat].

[10] A. Alexandru and U. Wenger, Phys. Rev. D83, 034502
(2011), arXiv:1009.2197 [hep-lat].

[11] K. Nagata and A. Nakamura, Phys. Rev. D82, 094027
(2010), arXiv:1009.2149 [hep-lat]; C. Gattringer and
L. Liptak, Phys. Lett. B697, 85 (2011), arXiv:0906.1088
[hep-lat].

[12] S. Ejiri, Phys. Rev. D78, 074507 (2008), arXiv:0804.3227
[hep-lat].

[13] R. D. Pisarski and F. Wilczek, Phys. Rev. D29, 338
(1984).

63 × 4 Nf = 3 mπ ≈ (700 − 800) MeV            ,              ,                                        
Wilson-clover       



Extrapolation methods 

• change of strategy: 

35

→ Reweighting is expensive and has a conceptional problem in the 
thermodynamic limit, but is “exact” at small volumes. Its reliabiliy is, 
however, hard to access.     

→ consider approximation methods,  that have no problems in the 
thermodynamic limit:    

→ imaginary chemical potential + fit + analytic continuations   

→ confidence?  

→ systematic expansion around   µ = 0



36Extrapolation methods 

• imaginary chemical potential: 

•perform HMC for 

•extrapolate to             by fitting data to 
an a appropriate Ansatz and perform 
analytic continuation

•note: fitting range is limited by the 
periodicity of the partition function

µ2 < 0

µ2 > 0

Philipsen, Forcrand, JHEP 0811 (2008) 012;
Philipsen, Forcrand, JHEP 0701 (2007) 077;
Philipsen, Forcrand, NPB 673 (2003) 170;

D‘Elia et al., PRD 76 (2007) 114509;
D‘Elia et al., PRD 70 (2004) 074509 ;
D‘Elia et al., PRD 67(2003)014505 . 

some lattice studies:

Papa et al., PoS Lat2006 (2006) 143

two color QCD

the method:

µI/T < 2π/3

•complex phase structure in the complex 
plane: Roberge, Weiss, NPB 275 (1986) 734

•Roberge-Weiss transition may also govern 
QCD thermodynamics at                   
Philipsen, de Forcand, PRL 105 (2011) 152001.

Re(µ) > 0



37Extrapolation methods 

• imaginary chemical potential: 

results:

→ consider the Binder cumulant:   

B4 =

〈(
δψ̄ψ

)4〉

〈(
δψ̄ψ

)2〉2

∣∣∣∣∣∣∣
T=Tc,m=mc

=






3
1.604
1

crossover  
2nd order  Z(2)  
1st order  

→ universal, volume independent value at the critical point

Ansatz:

B4(m, µ) = 1.604 + BN1/ν
σ ((m − mc) + Aµ2)

→ obtain the curvature of the critical surface as

dmc

dµ2
= −

∂B4

∂µ2

(
∂B4

∂m

)−1



38Extrapolation methods 

• imaginary chemical potential: 

results:

mc(µ)
mc(0)

= 1−3.3(3)
(

µ

πT

)2

−47(20)
(

µ

πT

)4

+ O(µ6)

* QCD critical point
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X

Heavy quarks

mu,d
ms

µ
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Figure 2: The chiral critical surface in the case of positive and negative curvature. If

the physical point is in the crossover region for µ = 0, a finite µ phase transition will
only arise in the scenario with positive curvature.

In this work we present a comprehensive numerical study mapping out the chiral

critical line in simulations of the standard staggered action on several lattices with
Nt = 4. Upon repeating the computation for the Nf = 3 chiral critical point with

the rational hybrid Monte Carlo (RHMC) algorithm [11], which is free of finite step
size errors, we find that the bare quark mass amc

0 is reduced by 25%, and the physical
pion mass by 10%, compared to the accepted values determined previously using the

R-algorithm. We then extend our simulations to cover a wide range of quark masses,
mapping out the critical line up to the neighbourhood of the physical point. In agree-

ment with expectations, the physical point is found to be on the crossover side of the
boundary. Assuming O(4) behaviour for the Nf = 2 chiral limit, the fit to our criti-

cal line can be extrapolated to the mu,d = 0 axis consistently with the required O(4)
scaling behaviour, putting the tri-critical point in that scenario (see Fig. 1) around
mtric

s /T ∼ 2.8. However, non-O(4) behaviour is not excluded by our data. Our results

should also provide a testing ground and input for analytic attempts to determine the
critical line from effective theories based on universality arguments [12] (for a review,

see [13]).
In a second set of simulations, we repeat the analysis for an imaginary baryon chem-

ical potential µB/(iT ) = 2.4 and determine the corresponding shift of the critical line,

following the strategy already used in [9]. Together with additional imaginary µ simula-
tions for the Nf = 3 case, this allows for a determination of the curvature of the critical

surface at µB = 0, which can be readily continued to real values of µB. We find this
curvature to be negative, as illustrated in Fig. 2 (right). In the (T − µ) phase diagram

this implies that the critical endpoint moves to smaller µ with growing quark mass,
until it disappears entirely for physical quark masses. This is contrary to customary
expectations, and in contradiction with the results of [14], obtained at the same lattice

spacing and with the same action, but using the R-algorithm and a different numerical
approach. Clearly, a careful study of systematic errors, due in particular to the very

coarse lattice spacing, is needed. Still, if the physical point of QCD is indeed in the

3
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→ favored phase diagram:
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Figure 9: Left: The chiral critical line in the bare quark mass plane at µB = 0. The
heavy line indicates the Nf = 3 diagonal. Also shown is the physical point according

to [14], and a fit to extrapolate the line to a possible tricritical point on the ms-axis.
The arrows mark the points where T = 0 simulations were performed to set the scale,

Sec. 5.2. Right: Comparison of the critical line at µB = 0 and µB/(iT ) = 2.4.

even in the immediate neighbourhood of Nf = 3.

Another interesting question is how the critical line continues to even smaller light
quark masses. If the chiral limit of the Nf = 2 theory exhibits O(4) universality,

then the critical line hits the axis mu,d = 0 in a tricritical point at some finite strange
quark mass value mtric

s [2]. Whether this scenario is realized or not is an issue not yet
settled (cf. the discussion and references in [15]). Among the most recent publications

using staggered fermions, one favors a first order scenario for the chiral limit [30] while
the other supports the O(4) scenario [31]. With our current data, we are unable to

decide this question, but we can check for consistency with the O(4) scenario, which
implies mean-field exponents near the tricritical point (mu,d = 0, ms = mtric

s ). Indeed
our data support a fit to the ∼ m2/5

u,d approach to the chiral limit, as shown in Fig. 9,

left, predicting the tricritical point to be at amtric
s ∼ 0.7 or mtric

s /T ∼ 2.8. Note
however that (i) our Nt = 4 lattice is very coarse (a ∼ 0.3 fm), and (ii) our spatial

volume becomes rather small as mu,d is reduced: for the uppermost point in Fig. 9,
left, corresponding to the physical strange quark mass, mπL ∼ 1.7 only. Thus, our

systematic error might be rather large. Nevertheless, we have strong indications that
mtric

s is significantly larger than the physical strange quark mass.
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Summary 39

Part I:

•complex fermion determinant as origin of sign problem

•possible strategy is reweighting (includes canonical ensemble approach): 
shortcomings are the overlap problem, bad control over the break down of 
the method, problems with the thermodynamic limit and rather large costs

•simulations at pure imaginary chemical potential are feasible and can be 
analytically continued to real chemical potential

•discussed results: detection of a critical point for Nf=2+1 from standard 
reweighting and for Nf=3 for from the canonical approach, absence of 
critical point from imaginary chemical potential (for small values of the 
chemical potential)



• start from Taylor expansion of the pressure, 
p

T 4
=

1
V T 3

lnZ(V, T, µu, µd, µs) =
∑

i,j,k

cu,d,s
i,j,k

(µu

T

)i (µd

T

)j (µs

T

)k

few times nuclear
matter density

∼

T

∼ 190MeV

µB

quark-gluon 
plasma

deconfined,
       symmetric

hadron gas
confined,

      broken color-
superconductor

χ-

χ-

method works 
for small µ/T

the convergence region
remains to be determined 

non-perturbatively

• no sign problem: 
all simulations are done at µ = 0
cu,d,s

i,j,k ≡
1

i!j!k!
1

V T 3

·
∂i∂j∂k ln Z

∂(µu

T
)i∂(µd

T
)j∂(µs

T
)k

∣∣∣∣∣
µu,d,s=0

• method is straight forward: 
all terms can be generated automatically

Allton et al., PRD66:074507,2002;
Allton et al., PRD68:014507,2003;
Allton et al., PRD71:054508,2005.

(see also publications by 
MILC and Gavai, Gupta)

• calculate expansion coefficients for fixed temperature 

• Taylor expansion: 

Extrapolation methods 40



• evaluate all traces by noisy estimators:

∂(ln det M)
∂µ

= D1 = Tr
(

M−1 ∂M

∂µ

)

∂2(ln det M)
∂µ2

= D2 = Tr
(

M−1 ∂2M

∂µ2

)
− Tr

(
M−1 ∂M

∂µ
M−1 ∂M

∂µ

)

∂3(ln det M)
∂µ3

= D3 = Tr
(

M−1 ∂3M

∂µ3

)
− 3Tr

(
M−1 ∂M

∂µ
M−1 ∂2M

∂µ2

)

+2Tr
(

M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂M

∂µ

)

∂4(ln det M)
∂µ4

= D4 = Tr
(

M−1 ∂4M

∂µ4

)
− 4Tr

(
M−1 ∂M

∂µ
M−1 ∂3M

∂µ3

)

−3Tr
(

M−1 ∂2M

∂µ2
M−1 ∂2M

∂µ2

)
+ 12Tr

(
M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂2M

∂µ2

)

−6Tr
(

M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂M

∂µ

)

Tr
(

∂n1M

∂µn1
M−1 ∂n2M

∂µn2
· · · M−1

)
= lim

N→∞

1
N

N∑

k=1

η†
k

∂n1M

∂µn1
M−1 ∂n2M

∂µn2
· · · M−1ηk

lim
N→∞

1
N

N∑

n=1

η∗
n,iηn,j = δi,jwith     random vectors, satisfying N

• construct expansion coefficients from                        with unbiased estimators Du
n, Dd

n, Ds
n,

• formulate all operators in term of space-time, color (and spin) traces: 

cu,d,s
2,0,0 =

1
2

Nτ

N3
σ

(〈
Du

2

〉
+

〈(
Du

1

)2〉)

Extrapolation methods 41



Main ingredients:
• fast solver for the linear equation               , 

with      being a large and sparse matrix
• iterative Krylov Subspace Methods are well

suited for parallelization

• stochastic estimator of 
• use noise reduction techniques 

expansion coefficients with respect to        are 
connected to the moments of the       -distribution 

• higher order moments are getting more and 
more sensitive to the tail of the distribution

Ax = b
A

relatively large systems can be 
handled on massive parallel machines 

TrA

µX

nX

high statistics required

2cX
2 =

1
V T 3

〈
N2

X

〉
24cX

4 =
1

V T 3

(〈
N4

X

〉
− 3

〈
N2

X

〉2
)

mn =
∫

dx xnp(x)
-moment:nth

x2x4

p(NX)

NX

Hadronic fluctuations 

• Taylor expansion coefficients are the moments of hadronic fluctuations 

X = B, Q, S, I, . . .

42



defines transformation  

Hadronic fluctuations 43

• fluctuations in equivalent ensembles 
introduce a chemical potential for each conserved charge

in QCD:                vector symmetry, introduce                                 
through 

SU(Nf) µf (f = u, d, s, . . . )→

: number operator for quark with flavor

J =
∑

f

µfN̂f = µTN̂

N̂f f

charges more convenient for experiment: B, Q, I3, Y

Q

→ perform a coordinate change in Gibbs space

J = µTM−1MN̂ = (µ′)TN̂ ′

example:              -ensembles   B, Q, S

B =
1
3
(Nu + Nd + Ns)

Q =
1
3
(2Nu − Nd − Ns)

S = −Ns

M

→
invert M

µB = µu + 2µd

µQ = µu − µd

µS = µd − µs
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• fluctuations in equivalent ensembles 
introduce a chemical potential for each conserved charge

in QCD:                vector symmetry, introduce                                 
through 

SU(Nf) µf (f = u, d, s, . . . )→

: number operator for quark with flavor

J =
∑

f

µfN̂f = µTN̂

N̂f f

charges more convenient for experiment: B, Q, I3, Y

Q

→ perform a coordinate change in Gibbs space

J = µTM−1MN̂ = (µ′)TN̂ ′

example:              -ensembles   B, Q, S

χB
2 =

1
9
(χu

2 + χd
2 + χs

2 + 2χu,d
1,1 + 2χu,s

1,1 + 2χd,s
1,1) =

1
9
(2χu

2 + χs
2 + 2χu,d

1,1 + 4χu,s
1,1)

baryon number fluctuations:   

choose       -quarks degenerate u, d
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• the building blocks: 

p4-action,                     : Nτ = 4, 6

expect cutoff dependence, 
goto HISQ,  → Nτ = 6, 8, 12

Cheng et al., PRD79 (2009) 074505.
Allton et al., PRD71 (2005) 054508.



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 120  140  160  180  200  220  240

T [MeV]

!2
B/T2

fK scale

SB

N"=12
8
6

HRG

T [MeV ]

T [MeV ]

T [MeV ]
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 150  200  250  300  350  400  450

SB

filled: nt=4
open: nt=6

nf=2+1, m!=220 MeV
nf=2, m!=770 MeVcu

4

cu
6 Tc decreases with decreasing mass →

fluctuations increase with decreasing 
mass

→

red: 
blue: -0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 150  200  250  300  350  400  450

SB

nf=2+1, m!=220 MeV
nf=2, m!=770 MeV

Hadronic fluctuations 46

• the building blocks: 

p4-action,                     : Nτ = 4, 6

expect cutoff dependence, 
goto HISQ, 

(to be coming soon) 

→
Nτ = 6, 8, 12

Cheng et al., PRD79 (2009) 074505.
Allton et al., PRD71 (2005) 054508.

χB
2 /T 2
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 1
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T/Tc

!B
2

!B
4

!B
6

scaling field (chiral limit):

free energy:
f = A±|t|2−α + regular

t =
1
t0

(
T − Tc

Tc
+ κ

(
µB

T

)2
)

χB
2 ∼ ∓2A±(2 − α)κ |t|1−α + regular

χB
4 ∼ −12A±(2 − α)(1 − α)κ2 |t|−α + regular kink (chiral limit)

χB
6 ∼ ∓120A±(2 − α)(1 − α)(−α)κ3 |t|−1−α + regular divergent

 (chiral limit)

−0.15 < α < −0.11
critical exponent:

163 × 4, mq = ms/10 Analyzing the critical behavior:
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• understanding the structure:



scaling field (chiral limit):

free energy:
f = A±|t|2−α + regular

t =
1
t0
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µB

T

)2
)
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critical exponent:
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• understanding the structure:
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• putting things together:

p

T 4
= c0 + c2

(
µ

T

)2

+ c4

(
µ

T

)4

+ c6

(
µ

T

)6

+ · · ·

n

T 3
= 2c2

(
µ

T

)
+ 4c4

(
µ

T

)3

+ 6c6

(
µ

T

)5

+ · · ·

χ

T 2
= 2c2 + 12c4

(
µ

T

)2

+ 30c6

(
µ

T

)4

+ · · ·

pressure

density

density fluctuations

→ obtain all kinds of thermodynamic observables  in terms 
of the coefficients            at non zero densitycu,d,s

i,j,k
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• putting things together:Thermodynamics and fluctuations at non-vanishing density Chuan Miao and Christian Schmidt
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Figure 4: Pressure !p/T 4 and light quark number density nq/T 3 at µs = 0 and µq/T = 0.2 , 0.4, 0.6 and
1.0. Small differences are observed between N" = 4 and 6, especially when µq/T is small. Light quark
number density seems to develop a peak around 200MeV when µq/T increases.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 150  200  250  300  350  400  450

0.4 0.5 0.6 0.7 0.8 0.9 1.0

T [MeV]

T r0
18/nf • c2

B

SB

nf=2+1

old Bielefeld, nf=2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 150  200  250  300  350  400  450

0.4 0.5 0.6 0.7 0.8 0.9 1.0

T [MeV]

T r0162/nf • c4
B

SB

nf=2+1

old Bielefeld, nf=2

Figure 5: Quadratic and quartic baryon number fluctuations at vanishing net density as function of temper-

ature. Preliminary data from (2+1)-flavor simulations with almost realistic quark masses are compared with

previous 2-flavor simulations [2]. Both results have been obtained on 163×4 lattices.

an expansion in µB,S,Q, defined as

p

T 4
= #

i, j,k

c
BSQ
i jk (T )

(µB
T

)i(µS
T

) j(µQ
T

)k
. (4.1)

E.g., the following two relations hold for c
BSQ
200 ≡ cB2 and c

BSQ
400 ≡ cB4

cB2 =
1

9

(
c
qs
20+ c

qs
11+ c

qs
02

)
, cB4 =

1

81

(
c
qs
40+ c

qs
31+ c

qs
22+ c

qs
13+ c

qs
04

)
. (4.2)

In Fig. 5 we show the first two diagonal expansion coefficients in µB/T as function of temper-

ature, which can also be interpreted as the quadratic and quartic baryon number fluctuations. We

compare our preliminary results for (2+1)-flavor and almost realistic quark masses to earlier results

with 2-flavor and a pion mass m$ ≈ 700MeV [2]. The normalization is such that in both cases the
same Stefan-Boltzmann value for large temperatures is reached, i.e. we have divided by the num-

ber of flavors. An obvious shift in the curves reflects the shift in the transition temperature from

6

pressure (   -dependent part) densityµ

→ nonzero density contribution 
is                       for                    ≤ (10 − 15)% µq/T ≤ 1

→ obtain energy density from temperature derivative                   

→ important input for hydrodynamic models of heavy ion collisions:
isentropic equation of state                  

Ejiri et al., PRD73 (2006) 054506; Miao, CS, PoS LATTICE2008 (2008) 172.
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curvature of  the phase boundary 52

• How to obtain the   -dependence of the crossover temperature? µ

→
follow the peak position of a susceptibility  (      )                χB

2

-dependence only introduce at the 6th order, noisy signalµ

better:
make use of the determination of the non universal parameters 
from mapping QCD to the         -chiral critical behavior 

(Tc, t0, h0)
O(4)

recall: (lecture by F. Karsch)

t =
1
t0

T − Tc

Tc

(reduced temperature)

h =
H

h0

(external field)

QCD:
H ∼ mq

(quark mass)

H = ml/ms

our choice:

(order parameter)

M0 = ms

〈
ψ̄ψ

〉
l
/T 4 = h1/δfG(z)

(scaling function)
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• How to obtain the   -dependence of the crossover temperature? µ

→
follow the peak position of a susceptibility  (      )                χB

2

-dependence only introduce at the 6th order, noisy signalµ

better:
make use of the determination of the non universal parameters 
from mapping QCD to the         -chiral critical behavior 

(Tc, t0, h0)
O(4)

recall: (lecture by F. Karsch)
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curvature of  the phase boundary



54

• How to obtain the   -dependence of the crossover temperature? µ

→
follow the peak position of a susceptibility  (      )                χB

2

-dependence only introduce at the 6th order, noisy signalµ

better:
make use of the determination of the non universal parameters 
from mapping QCD to the         -chiral critical behavior 

(Tc, t0, h0)
O(4)

t =
1
t0

((
T

Tc
− 1

)
+ κq

(
µq

T

)2
)

= 0

Tc(µq)
Tc

= 1 − κq

(
µq

T

)2

⇒

⇒ scaling laws control curvature of the 
critical line

→ introduce chemical potential                expected phase diagram

line of 2. order 
           transitions O(4)

Z(2)
critical

 end-point

T

µ

line of 1. order 
    transitions

mu = md = 0
ms > mtri

s

curvature of  the phase boundary
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• How to obtain the   -dependence of the crossover temperature? µ

• determine       by a scaling analysis of the mixed susceptibility κq

χm =
∂2M

(∂µ/T )2
=

2κq

t0Tc
h(β−1)/βδf ′

G(z) ∝ χt

⇒ one fit parameter: κq
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Kaczmarek et al, PRD 83 (2011) 014504.

zT/Tc − 1

⇒ obtain from  p4-action,                      : κq = 0.059(6)Nτ = 8, 4

curvature of  the phase boundary

the critical line provides an upper bound to the curvature of 
the crossover temperature               
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• Statistical models are very successful in describing particle 
abundances observed in heavy ion collision; use a parametrization 
of the freeze-out curve

statistical model:

lattice:

• open issues: continuum limit, strangeness conservation, nonzero 
electric charge

Cleymans, et al., PRC 73 (2006) 034905

Tc

T
= 1 − 0.0066(7)

(
µB

T

)2

Tc

T
= 1 − 0.023

(
µB

T

)2

− d

(
µB

T

)4

⇒ curvature of the freeze-out curve seems to be larger 

• comparison with freeze-out line 

Kaczmarek et al, PRD 83 (2011) 014504.



ln Z(T, V, µB, µS, µQ) =
∑

i∈hadrons

ln Zmi(T, V, µB, µS, µQ)

∑

i∈mesons

ln ZB
mi

(T, V, µS, µQ) +
∑

i∈baryons

ln ZF
mi

(T, V, µB, µS, µQ)

baryons:

pi

T 4
=

di

π2

(
mi

T

)2 ∞∑

l=1

(+1)l+1l−2K2(lmi/T ) cosh(lSiµS/T + lQiµQ/T )

pi

T 4
=

di

π2

(
mi

T

)2 ∞∑

l=1

(−1)l+1l−2K2(lmi/T ) cosh(lBiµB/T + lSiµS/T + lQiµQ/T )

mesons:

hadron resonance gas

Boltzmann 
approximation

ratios are 
independent of 
spectrum and 

volume

3 ratios:
χB

4

χB
2

= κσ2 =
B4

B2
= 1

χB
2

χB
1

= σ2/NB =
B2

B1
coth(µB/T )

χB
3

χB
2

= Sσ =
B3

B2
tanh(µB/T )

possibly large 
parts of cut-off 
effects cancel

→
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T (µB) = 0.166 GeV
−0.139 GeV−1µ2

B

−0.053 GeV−3µ4
B

µB(
√

s) =
1.308 GeV

1 + 0.273 GeV −1√
s

[Cleymans et al., Phys. Rev. C 63 (2006) 034905]

•sixth order fluctuations
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•sensitive to relevant quantum 
numbers in the medium

•divergent at the critical point 

Use 
parametrization 
of freeze-out 
curve to connect 
to STAR 
measurements of 
net-proton 
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[HRG: Karsch, Redlich, PLB 695 (2011)]

[STAR data:  Aggarwal et al, PRL (2010) 022302]

Lattice vs. Experiment:

•net-proton number fluctuations 
can be described by the HRG

•fluctuations increase for small 
√

s

•sensitive to truncation of the series 
due to close radius of convergence 

CS, Theor. Phys. Suppl.186, 563 (2010)

solid lines: 
dashed lines: 

µQ != 0, µS != 0
µQ = 0, µS = 0

59

Mukherjee, QM 2011

 1

 10  100

!2
B/!1

B

s1/2 [GeV]

[4,3]
[4,5]
HRG

Baryonic fluctuations 



•fluctuations increase for small 

•sensitive to truncation of the series 
due to close radius of convergence 

[HRG: Karsch, Redlich, PLB 695 (2011)]

[STAR data:  Aggarwal et al, PRL (2010) 022302]

Lattice vs. Experiment:

•net-proton number fluctuations 
can be described by the HRG
solid lines: 
dashed lines: 

µQ != 0, µS != 0
µQ = 0, µS = 0

Mukherjee, QM 2011
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•fluctuations increase for small 

•sensitive to truncation of the series 
due to close radius of convergence 

[HRG: Karsch, Redlich, PLB 695 (2011)]

[STAR data:  Aggarwal et al, PRL (2010) 022302]

Lattice vs. Experiment:

•net-proton number fluctuations 
can be described by the HRG
solid lines: 
dashed lines: 

µQ != 0, µS != 0
µQ = 0, µS = 0

Mukherjee, QM 2011
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The critical endpoint 
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critical line

•radius of convergence is consistent 
with critical line in the chiral limit 
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Summary 65

Part II:

•Taylor expansion coefficients of the pressure up to the 6th order have been 
calculated at zero chemical potential, can be used to obtain bulk thermo-
dynamics and fluctuations at nonzero density (p4-action, Nt=4,6). New 
results from HISQ-action for Nt=6,8,12 are underway. 

•The curvature of the critical line in the chiral limit was obtained from an 
analysis of the O(4) ciritcal behavior.

•Ratios of moments of the baryon number fluctuations have been computed 
and compared to the experiment.

•estimates of the radius of convergence can possibly be used to estimate a 
critical end-point at non zero chemical potential



Other directions 66

•QCD like theories without sign problem: 

•Integrate over gauge links first         no sign problem, feasible at strong 
couplings       

•Complexify fields and use complex Langevin algorithm, correct convergence 
not guaranteed 

•Design a model of QCD, calculate parameter to produce all know 
constrains from lattice QCD and experiment

→

non compleat list:
• Hands, Montvay, Scorzato, 

Skullerud, EPJC 22 (2001) 451
• Kogut, Toublan,Sinclair, 

PRD 68 (2003) 054507
• Hands, Kim, Skullerud, 

PRD 81 (2010) 091502
• Hands, Kenny, Kim, Skullerud, 

EPJA 47 (2011) 60

SU(2)
non compleat list:
• Kogut, Sinclair, PRD 66 (2002) 034505

iso-spin chemical potential

Fromm, de Forcrand PRL 104 (2010) 112005; de Forcrand, Unger, arXiv: 1107.1557

Aarts et al.,  JEHP 0509 (2009) 052; PLB 687 (2010) 154; PRD 81 (2010) 054508; 
JHEP 1008 (2010) 017;  JHEP 1008 (2010) 020

→ see lecture by D. Blaschke


