Dubna International Advanced School of Theoretical Physics, Helmholtz International School "Lattice QCD, Hadron Structure and Hadronic Matter"

September 5-I7, 201 I, JINR Dubna, Russia

Lattice methods for QCD at nonzero baryon number density

Christian Schmidt

FIAS Frankfurt Institute for Advanced Studies

Overview:

* Introduction and motivation
thermodynamics of quarks and gluons (also covert by D. Blaschke, P. Petreczky, F. Karsch...)
\star Lattice QCD at high T and nonzero density The sign problem, reweighting methods at small volume, extrapolation methods at large volumes
\star Recent Results from the Taylor expansion method: Hadronic fluctuations and heavy ion collisions, the critical point

Key questions

- What are the phases of strongly interacting matter and what role do they play in the cosmos ?
- What does QCD predict for the properties of strongly interacting matter?
- What governs the transition from Quark and Gluons into Hadrons ?

Key questions

- What are the phases of strongly interacting matter and what role do they play in the cosmos ?
- What does QCD predict for the properties of strongly interacting matter?
- What governs the transition from Quark and Gluons into Hadrons ?

Places to find QGP ?

- In the early universe
- In the laboratory: RHIC, LHC, FAIR
- In the cores of neutron stars ?

\longrightarrow determined by the Equation of State
\longrightarrow exciting: critical Phenomena

\longrightarrow determined by the Equation of State
\longrightarrow exciting: critical Phenomena

(Ising model)
free energy density:
$-\frac{1}{V} \ln Z=f_{s}(t, h)+\underset{\text { (singular part) }^{f_{r}(T, V, H)}}{f_{\text {(regular part) }}}$
scaling hypothesis:
f_{s} is a generalized homogenous function

$$
f_{s}(t, h)=b^{-d} f_{s}\left(b^{y_{t}} t, b^{y_{h}} h\right)
$$

lattice spacing a

perform lattice QCD:

 non perturbativ, ab initoat nonzero chemical potential μ :

$$
A_{0} \rightarrow A_{0}-i \mu
$$

or equivalently:

$$
\begin{aligned}
& U_{0}(x) \rightarrow e^{a \mu} U_{0}(x) \\
& U_{0}^{\dagger}(x) \rightarrow e^{-a \mu} U_{0}^{\dagger}(x)
\end{aligned}
$$

Hasenfratz, Karsch, PLB I25 (1983) 308.

- the QCD partition function:

$$
\begin{aligned}
Z(V, T, \bar{\mu})= & \int \mathcal{D} A \mathcal{D} \bar{\psi} \mathcal{D} \psi \exp \left\{-S_{E}\right\} \\
S_{E}= & \bar{\psi}_{x} M_{x, y} \psi_{y}+S_{G} \\
M_{x, y}= & a m \delta_{x, y}+\frac{1}{2} \sum_{\mu=1}^{3} \gamma_{\mu}\left\{U_{\mu}(x) \delta_{x+a \hat{\mu}, y}-U_{\mu}^{\dagger}(y) \delta_{x-a \hat{\mu}, y}\right\} \\
& +\frac{1}{2} \gamma_{4}\left\{e^{a \bar{\mu}} U_{4}(x) \delta_{x+a \hat{4}, y}-e^{-a \bar{\mu}} U_{4}^{\dagger}(y) \delta_{x-a \hat{4}, y}\right\}
\end{aligned}
$$

- geometry of space time: $N_{s}^{3} \times N_{t}$ (4d - torus)

note:
- only closed loops participate to the partition function
- only loops that wind around the torus in time direction \mathcal{W}-times pick up a $\boldsymbol{\mu}$-dependence:

```
                                    exp{\mathcal{W}\mu/T}
```

\longrightarrow alternatively (gauge-transformation): - choose a fixed time-slice on which all temporal links get a factor $\exp \{ \pm \mu / T\}$

- integration over fermion fields

$$
\begin{aligned}
Z(V, T, \mu) & =\int \mathcal{D} A \mathcal{D} \psi \mathcal{D} \bar{\psi} \exp \left\{S_{F}(A, \psi, \bar{\psi})-\beta S_{G}(A)\right\} \\
& =\int \mathcal{D} A \operatorname{det}[M](A, \mu) \exp \left\{-\beta S_{G}(A)\right\} \\
& \text { complex for } \mu>0 \quad \begin{array}{l}
\text { propabilistic interpretation } \\
\text { necessary for Monte Carlo! }
\end{array}
\end{aligned}
$$

we find: $[\operatorname{det} M(\mu)]^{*}=\operatorname{det} M\left(-\mu^{*}\right)$
\longrightarrow determinant is real only for

$$
\mu=0 \text { or } \mu=i \mu_{I}
$$

- properties of the fermion matrix and eigen-spectrum

$M^{\dagger} M$ is
- positive definite
- block diagonal in parity (even-odd) space, use even-odd preconditioning
- regulated by the mass: $\lambda_{\text {min }}=m^{2}$
$M^{\dagger} M$ is
- not block diagonal in parity (even-odd) space
- not regulated, zero-modes possible for sufficiently large μ
- complex measure ($\mathbf{d} \omega$) needed to obtain correct physics
example Polyakov Loop (L):

$\langle\operatorname{Tr}(L)\rangle=\exp \left\{-\frac{1}{T} F_{q}\right\}=\int \operatorname{Re}(\operatorname{Tr}(L)) \operatorname{Re}(\mathrm{d} \omega)-\operatorname{Im}(\operatorname{Tr}(L)) \operatorname{Im}(\mathrm{d} \omega)$
$\left\langle\operatorname{Tr}\left(L^{*}\right)\right\rangle=\exp \left\{-\frac{1}{\boldsymbol{T}} \boldsymbol{F}_{\bar{q}}\right\}=\int \operatorname{Re}(\operatorname{Tr}(L)) \operatorname{Re}(\mathrm{d} \omega)+\operatorname{Im}(\operatorname{Tr}(L)) \operatorname{Im}(\mathrm{d} \omega)$
demand different free energy for quark and anti-quark:

$$
F_{q} \neq F_{\bar{q}} \Rightarrow \operatorname{Im}(\mathrm{~d} \omega) \neq 0
$$

- How to sample an oscillating partition function? which are the dominant configurations in the path integral?

$$
\text { toy model: } Z(\lambda)=\int \mathrm{d} x \exp \left\{-\lambda x^{2}+i \lambda x\right\}
$$

\longrightarrow cancelations between configurations with 'positive' and 'negative' weight are exponentially large:

$$
Z(\lambda) / Z(0)=\exp \left\{-\lambda^{2} / 4\right\}
$$

\longrightarrow constraining the integration interval to

$$
\begin{gathered}
x \in[-\lambda, \lambda] \\
\text { will give } \mathcal{O}(\mathbf{1 0 0 \%}) \text { error } \\
\longrightarrow \text { all configurations are important }
\end{gathered}
$$

- How to sample an oscillating partition function?
toy model: $Z_{f} \equiv \int \mathrm{~d} x f(x)$, with $f(x) \in \mathbb{R}, f(x) \nsupseteq 0$ introduce auxiliary partition function:

$$
Z_{g} \equiv \int \mathrm{~d} x g(x), \text { with } g(x) \in \mathbb{R}, \quad g(x) \geq 0
$$

calculate observable by reweighting:

$$
\langle O\rangle_{f} \equiv \frac{1}{Z_{f}} \int \mathrm{~d} x O(x) f(x)=\frac{\int \mathrm{d} x O(x) \frac{f(x)}{g(x)} g(x)}{\int \mathrm{d} x \frac{f(x)}{g(x)} g(x)}=\frac{\left\langle O \frac{f}{g}\right\rangle_{g}}{\left\langle\frac{f}{g}\right\rangle_{g}}
$$

$f / g \equiv R$ is the "reweighting factor"

$$
\langle R\rangle_{g}=Z_{f} / Z_{g}=\exp \{-\frac{V}{T} \underbrace{\Delta \tilde{f}(\mu, T)}_{\begin{array}{c}
\text { difference of the } \\
\text { free energy density }
\end{array}}\}
$$

\longrightarrow reweighting factor is exponentially small for large V, small T, large $\Delta \tilde{f}$
\longrightarrow overlap problem, i.e. the signal gets lost quickly!

Reweighing and the sign problem

- How to sample an oscillating partition function?
toy model: $Z_{f} \equiv \int \mathrm{~d} x f(x)$, with $f(x) \in \mathbb{R}, f(x) \nsupseteq 0$ introduce auxiliary partition function:

$$
Z_{g} \equiv \int \mathrm{~d} x g(x), \text { with } g(x) \in \mathbb{R}, \quad g(x) \geq 0
$$

calculate observable by reweighting:

$$
\langle O\rangle_{f} \equiv \frac{1}{Z_{f}} \int \mathrm{~d} x O(x) f(x)=\frac{\int \mathrm{d} x O(x) \frac{f(x)}{g(x)} g(x)}{\int \mathrm{d} x \frac{f(x)}{g(x)} g(x)}=\frac{\left\langle O \frac{f}{g}\right\rangle_{g}}{\left\langle\frac{f}{g}\right\rangle_{g}}
$$

overlap problem
(schematic picture)
\longrightarrow exponentially large statistics required

- How to sample an oscillating partition function?
toy model: $Z_{f} \equiv \int \mathrm{~d} x f(x)$, with $f(x) \in \mathbb{R}, f(x) \nsupseteq 0$ introduce auxiliary partition function:

$$
Z_{g} \equiv \int \mathrm{~d} x g(x), \text { with } g(x) \in \mathbb{R}, \quad g(x) \geq 0
$$

calculate observable by reweighting:

$$
\langle O\rangle_{f} \equiv \frac{1}{Z_{f}} \int \mathrm{~d} x O(x) f(x)=\frac{\int \mathrm{d} x O(x) \frac{f(x)}{g(x)} g(x)}{\int \mathrm{d} x \frac{f(x)}{g(x)} g(x)}=\frac{\left\langle O \frac{f}{g}\right\rangle_{g}}{\left\langle\frac{f}{g}\right\rangle_{g}}
$$

How to chose $g(x)$?
\longrightarrow minimize $\operatorname{Var}(f / g)$
\longrightarrow solution: $g(x)=|f(x)|$ and $R \equiv f / g=\operatorname{sign}(f)$

- QCD partition function (for staggered fermions):

$$
Z(\mu, \beta)=\int \mathcal{D} U(\operatorname{det} M(U, \mu))^{N_{f} / 4} e^{-\beta \tilde{S}_{G}}
$$

factorize determinant into modulus and phase

$$
Z(\mu, \beta)=\int \mathcal{D} U \underbrace{|\operatorname{det} M(U, \mu)|^{N_{f} / 4} e^{i \theta} e^{-\beta \tilde{S}_{G}}}_{f}
$$

\longrightarrow optimal choice:

$$
Z_{g}\left(\mu^{\prime}, \beta^{\prime}\right)=\int \mathcal{D} U\left|\operatorname{det} M\left(U, \mu^{\prime}\right)\right|^{N_{f} / 4}|\cos (\theta)| e^{-\beta^{\prime} \tilde{S}_{G}}
$$ prohibitively inefficient, since $\boldsymbol{\theta}$ has to be evaluated in each MC step!

\longrightarrow other choice:

$$
Z_{g}\left(\mu^{\prime}, \beta^{\prime}\right)=\int \mathcal{D} U\left|\operatorname{det} M\left(U, \mu^{\prime}\right)\right|^{N_{f} / 4} e^{-\beta^{\prime} \tilde{S}_{G}}
$$

"phase quenched" theory, for N_{f} even equivalent with non zero iso-spin chemical potential:

$$
|\operatorname{det} M(\mu)|^{N_{f}}=\operatorname{det} M(+\mu)^{N_{f} / 2} \times \operatorname{det} M(-\mu)^{N_{f} / 2}
$$

- QCD partition function (for staggered fermions):

$$
Z(\mu, \beta)=\int \mathcal{D} U(\operatorname{det} M(U, \mu))^{N_{f} / 4} e^{-\beta \tilde{S}_{G}}
$$

factorize determinant into modulus and phase

$$
Z(\mu, \beta)=\int \mathcal{D} U \underbrace{|\operatorname{det} M(U, \mu)|^{N_{f} / 4} e^{i \theta} e^{-\beta \tilde{S}_{G}}}_{f}
$$

\longrightarrow standard reweighting approach:

$$
Z_{g}=Z\left(0, \beta^{\prime}\right) \quad \Rightarrow \quad f / g=\left|\frac{\operatorname{det} M(\mu)}{\operatorname{det} M(0)}\right|^{N_{f} / 4} e^{i \theta} e^{-\left(\beta-\beta^{\prime}\right) \tilde{S}_{G}}
$$

- standard reweighting approach:

$$
Z_{g}=Z\left(0, \beta^{\prime}\right) \quad \Rightarrow \quad f / g=\left|\frac{\operatorname{det} M(\mu)}{\operatorname{det} M(0)}\right|^{N_{f} / 4} e^{i \theta} e^{-\left(\beta-\beta^{\prime}\right) \tilde{S}_{G}}
$$

exact calculation of fermion determinant, respectively all eigenvalues is required method by Fodor and Katz:
\longrightarrow transform μ-dependence into 2 time-slices by similarity transformations
\longrightarrow factorize the μ-dependence of the determinant

$$
\begin{array}{r}
\operatorname{det} M(\mu)=e^{-3 N_{\sigma}^{3} N_{\tau} \mu} \operatorname{det}\left(P-e^{N_{\tau} \mu}\right) \\
P \in \mathbb{C}^{2 N_{c} N_{s}^{3} \times 2 N_{c} N_{s}^{3}} \\
\text { "reduced fermion matrix" }
\end{array}
$$

\longrightarrow calculate all eigenvalues of the reduced fermion matrix ($\mathcal{O}\left(N_{\sigma}^{9}\right)$ operations, hard to parallelize efficiently)

$$
\operatorname{det} M(\mu)=e^{-3 N_{\sigma}^{3} N_{\tau} \mu} \prod_{i=0}^{6 N_{\sigma}^{3}}\left(e^{N_{\tau} \mu}-\lambda_{i}\right)
$$

- standard reweighting approach:

$$
Z_{g}=Z\left(0, \beta^{\prime}\right) \quad \Rightarrow \quad f / g=\left|\frac{\operatorname{det} M(\mu)}{\operatorname{det} M(0)}\right|^{N_{f} / 4} e^{i \theta} e^{-\left(\beta-\beta^{\prime}\right) \tilde{S}_{G}}
$$

exact calculation of fermion determinant, respectively all eigenvalues is required method by Fodor and Katz:
\longrightarrow important result ($N_{\tau}=4$, physical quark masses) by monitoring the first Lee-Yang zero: $\left(\mu_{q}^{\text {CEP }}, T^{\text {CEP }}\right)=(120(13), 162(2)) \mathrm{MeV}$

Fodor, Katz, JHEP 0404 (2004) 050

- standard reweighting approach:

$$
Z_{g}=Z\left(0, \beta^{\prime}\right) \quad \Rightarrow \quad f / g=\left|\frac{\operatorname{det} M(\mu)}{\operatorname{det} M(0)}\right|^{N_{f} / 4} e^{i \theta} e^{-\left(\beta-\beta^{\prime}\right) \tilde{S}_{G}}
$$

exact calculation of fermion determinant, respectively all eigenvalues is required
Lee-Yang zeros:

- zeros of the partition function in the complex β-plane
- move onto the real axis in the thermodynamic limit
\longrightarrow detect a Ist order transition on a finite volume by studying the pattern of the Lee-Yang zeros

$$
\beta_{I} \sim C(2 n+1)
$$

- break down of the reweighting: standard jack-knife errors do not reflect the break down of the method!
\longrightarrow study the phase factor directly analytic results, valid in the microscopic limit of QCD: $\left(m_{\pi}^{2} \ll \frac{1}{\sqrt{V}}, \mu^{2} \ll \frac{1}{\sqrt{V}}\right)$

$$
e^{2 i \theta}=\left(1-\frac{4 \mu^{2}}{m_{\pi}^{2}}\right)^{N_{f}+1}
$$

\longrightarrow the sign problem is not severe for $\mu<m_{\pi} / \mathbf{2}$
\longrightarrow large difference in the fee energy densities of phase quenched and full theory

$$
\begin{aligned}
|\operatorname{det} M(\mu)|^{N_{f}}= & \operatorname{det} M(+\mu)^{N_{f} / 2} \\
& \times \operatorname{det} M(-\mu)^{N_{f} / 2}
\end{aligned}
$$

Splittorff, Verbaarschot, PRL98 (2007) 03160 I.
Lattice Data: Allton et al., PRD7I (2005) 054508.
non zero iso-spin chemical potential

- break down of the reweighting:
standard jack-knife errors do not reflect the break down of the method!
\longrightarrow study the phase factor directly analytic results, valid in the microscopic limit of QCD: $\left(m_{\pi}^{2} \ll \frac{1}{\sqrt{V}}, \mu^{2} \ll \frac{1}{\sqrt{V}}\right)$

$$
e^{2 i \theta}=\left(1-\frac{4 \mu^{2}}{m_{\pi}^{2}}\right)^{N_{f}+1}
$$

\longrightarrow the sign problem is not severe for $\mu<m_{\pi} / 2$
\longrightarrow large difference in the fee energy densities of phase quenched and full theory

$$
\begin{aligned}
|\operatorname{det} M(\mu)|^{N_{f}}= & \operatorname{det} M(+\mu)^{N_{f} / 2} \\
& \times \operatorname{det} M(-\mu)^{N_{f} / 2}
\end{aligned}
$$

non zero iso-spin chemical potential

- break down of the reweighting:
standard jack-knife errors do not reflect the break down of the method!
\longrightarrow estimate the overlap measure 2α :
α is the fraction of the configurations that contributes the fraction $1-\alpha$ to the weight; optimal is $\alpha=50 \%$

Csikor, et al., JEHP 0405 (2004) 046.

- "density of state" modification of the reweighting

$$
Z_{g, O}\left(\mu^{\prime}, \beta^{\prime}, x\right)=\int \mathcal{D} U\left|\operatorname{det} M\left(U, \mu^{\prime}\right)\right|^{N_{f} / 4} e^{-\beta^{\prime} \tilde{S}_{G}} \delta(x-O)
$$

\longrightarrow improve accuracy of the tail by simulating at a fixed value of O. In practice: replace delta function by a strongly peaked gaussian.
\longrightarrow enlargement of the parameter space, sample many \boldsymbol{O}-values

- canonical ensemble approach

from $Z_{G C}$ to Z_{C}

\longrightarrow fix quark number by introducing: $\delta(\hat{N}-Q)=\int \mathrm{d} \bar{\mu} e^{i \bar{\mu}(\hat{N}-Q)}$
\longrightarrow recognize $\bar{\mu}$ as imaginary chemical potential: $i \bar{\mu}=i \mu_{I} / T$
\longrightarrow exploit $2 \pi / 3$ symmetry of the GC partition function in $i \mu_{I} / T$ canonical partition function:

$$
\begin{array}{r}
Z_{\mathrm{C}}(T, Q)=\frac{3}{2 \pi} \int_{-\pi / 3}^{\pi / 3} \mathrm{~d}\left(\frac{\mu_{I}}{T}\right) e^{-i Q \mu_{I} / T} Z_{\mathrm{GC}}\left(T, \mu_{I}\right) \\
Q \equiv 3 B \frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathrm{d}\left(\frac{\mu_{I}}{T}\right) e^{-i 3 B \mu_{I} / T} Z_{\mathrm{GC}}\left(T, \mu_{I}\right)
\end{array}
$$

$\longrightarrow Z_{\mathrm{C}}(Q)$ are the coefficients in the Fourier expansion in $i \mu_{I}$
$\longrightarrow Z_{\mathrm{C}}(Q)$ vanish for non integer baryon number $B=Q / 3$

- canonical ensemble approach from Z_{C} to Z_{GC}
\longrightarrow fugacity expansion (Laplace transformation)

$$
\begin{aligned}
Z_{\mathrm{GC}}(T, \mu) & =\int_{V \rightarrow \infty}^{\infty} \mathrm{d} \rho e^{3 V \rho \mu / T} Z_{\mathrm{C}}(T, \rho) \\
& =\int_{-\infty}^{\infty} \mathrm{d} \rho e^{-V(f(T, \rho)-3 \rho \mu) / T}
\end{aligned}
$$

with baryon density $\rho=B / V$
and Helmholtz fee enery $f(T, \rho)=-\frac{T}{V} \log Z_{C}(T, \rho)$
\longrightarrow relation between ρ and μ :
fugacity expansion:

$$
\langle\rho\rangle(\mu)=\frac{1}{Z_{\mathrm{GC}}(T, \mu)} \int_{-\infty}^{\infty} \mathrm{d} \rho \rho e^{3 V \rho \mu / T} Z_{\mathrm{C}}(T, \rho)
$$

saddle point approxn.: $\quad \mu(\rho)=\frac{1}{3} \frac{\partial f(T, \rho)}{\partial \rho}$

- canonical ensemble approach

sampling strategy:

\longrightarrow sample at fixed value of $\boldsymbol{i} \boldsymbol{\mu}_{\boldsymbol{I}_{0}}$
(many ensembles can be combined by multi histogram reweighting)
\longrightarrow calculate all eigenvalues of the reduced fermion matrix (cost $\sim N_{\sigma}^{\mathbf{9}}$)
\longrightarrow calculate ratio of partition functions as

$$
\frac{Z_{\mathrm{C}}(\beta, B)}{Z_{\mathrm{GC}}(\beta, \mu)}=\left\langle\frac{\hat{Z}_{\mathrm{C}}(\beta, B)}{\operatorname{det} M\left(i \mu_{I_{0}}\right)}\right\rangle_{\beta, i \mu_{I_{0}}} \quad \longrightarrow \quad \begin{aligned}
& \text { overlap problem } \\
& \text { for large } B
\end{aligned}
$$

\hat{Z}_{C} Fourier coefficients of the determinant, calculated by matching term by term in

$$
\operatorname{det} M(\mu)=e^{-3 N_{\sigma}^{3} \mu a N_{\tau}} \prod_{i=0}^{6 N_{\sigma}^{3}}\left(e^{\mu a N_{\tau}}-\lambda_{i}\right)=\sum_{Q=-3 N_{\sigma}^{3}}^{3 N_{\sigma}^{3}} \hat{Z}_{\mathrm{C}} e^{-Q \mu a N_{\tau}}
$$

progress:

de Forcrand, Kratochvila
\longrightarrow Fourier transformation of $\log \operatorname{det} M$
\longrightarrow reduced matrix also for Wilson quarks
K.F. Liu et al., Gattringer

Wenger, Gattringer, Nakamura

- canonical ensemble approach

results:

\longrightarrow consider $F(B) \equiv-T \log \left(\frac{Z_{\mathrm{C}}(B)}{Z_{\mathrm{C}}(0)}\right)$

$$
\begin{array}{ll}
\text { fugacity expansion: } & \rho(\mu) \equiv \frac{\langle B(\mu)\rangle}{V}=\frac{1}{V} \frac{\sum_{B=-V}^{V} B Z_{\mathrm{C}}(B) e^{B 3 \mu / T}}{\sum_{B=-V}^{V} Z_{\mathrm{C}}(B) e^{B 3 \mu / T}} \\
\text { saddle point approxn.: } & \mu(B) \approx F(B)-F(B-1)=\log \left(\frac{Z_{\mathrm{C}}(B)}{Z_{\mathrm{C}}(B-1)}\right)
\end{array}
$$

$$
\mathrm{T} / \mathrm{T}_{\mathrm{c}}=0.92
$$

- canonical ensemble approach

results:

\longrightarrow consider $F(B) \equiv-T \log \left(\frac{Z_{\mathrm{C}}(B)}{Z_{\mathrm{C}}(0)}\right)$

de Forcrand, Kratochvila
$6^{3} \times 4$
$N_{f}=4$
$m_{\pi} \approx 300 \mathrm{MeV}$
staggered
\longrightarrow good accuracy up to 30 baryons

- canonical ensemble approach

results:

\longrightarrow consider $F(B) \equiv-T \log \left(\frac{Z_{\mathrm{C}}(B)}{Z_{\mathrm{C}}(0)}\right)$
\longrightarrow perform Maxwell construction:

$$
\frac{1}{T} \int_{\rho_{1}}^{\rho_{2}} \mathrm{~d} \rho\left(f^{\prime}(\rho)-\mu\right)=0 \Rightarrow f\left(\rho_{1}\right)-\rho_{1} \mu=f\left(\rho_{2}\right)-\rho_{2} \mu
$$

- canonical ensemble approach

results:

\longrightarrow consider $F(B) \equiv-T \log \left(\frac{Z_{\mathrm{C}}(B)}{Z_{\mathrm{C}}(0)}\right)$
\longrightarrow perform Maxwell construction:

$$
\frac{1}{T} \int_{\rho_{1}}^{\rho_{2}} \mathrm{~d} \rho\left(f^{\prime}(\rho)-\mu\right)=0 \Rightarrow f\left(\rho_{1}\right)-\rho_{1} \mu=f\left(\rho_{2}\right)-\rho_{2} \mu
$$

- canonical ensemble approach

results:

\longrightarrow consider $F(B) \equiv-T \log \left(\frac{Z_{\mathrm{C}}(B)}{Z_{\mathrm{C}}(0)}\right)$
\longrightarrow perform Maxwell construction
\longrightarrow obtain the phase diagram

- canonical ensemble approach

results:

\longrightarrow consider $F(B) \equiv-T \log \left(\frac{Z_{\mathrm{C}}(B)}{Z_{\mathrm{C}}(0)}\right)$
\longrightarrow perform Maxwell construction
\longrightarrow obtain the phase diagram

Li, Alexandru, Liu, arXiv: I I03.3045

$$
6^{3} \times 4, N_{f}=3, m_{\pi} \approx(700-800) \mathrm{MeV}
$$

Wilson-clover

- change of strategy:
\longrightarrow Reweighting is expensive and has a conceptional problem in the thermodynamic limit, but is "exact" at small volumes. Its reliabiliy is, however, hard to access.
\longrightarrow confidence?
\longrightarrow consider approximation methods, that have no problems in the thermodynamic limit:
\longrightarrow imaginary chemical potential + fit + analytic continuations
\longrightarrow systematic expansion around $\mu=0$
- imaginary chemical potential: the method:
- perform HMC for $\boldsymbol{\mu}^{2}<0$
- extrapolate to $\mu^{2}>0$ by fitting data to an a appropriate Ansatz and perform analytic continuation
- note: fitting range is limited by the periodicity of the partition function

$$
\mu_{I} / T<2 \pi / 3
$$

-complex phase structure in the complex plane: Roberge, Weiss, NPB 275 (1986) 734
-Roberge-Weiss transition may also govern QCD thermodynamics at $\operatorname{Re}(\mu)>0$ Philipsen, de Forcand, PRL 105 (201I) I52001.
two color QCD

Papa et al., PoS Lat2006 (2006) I43
some lattice studies:
Philipsen, Forcrand, JHEP 08II (2008) 012;
Philipsen, Forcrand, JHEP 0701 (2007) 077;
D‘Elia et al., PRD 76 (2007) II4509;
Philipsen, Forcrand, NPB 673 (2003) I70;
D‘Elia et al., PRD 70 (2004) 074509 ;
D‘Elia et al., PRD 67(2003)0I4505.

- imaginary chemical potential: results:
\longrightarrow consider the Binder cumulant:

$$
B_{4}=\left.\frac{\left\langle(\delta \bar{\psi} \psi)^{4}\right\rangle}{\left\langle(\delta \bar{\psi} \psi)^{2}\right\rangle^{2}}\right|_{T=T_{c}, m=m_{c}}= \begin{cases}3 & \text { crossover } \\ 1.604 & \text { 2nd order Z(2) } \\ 1 & \text { Ist order }\end{cases}
$$

\longrightarrow universal, volume independent value at the critical point Ansatz:

$$
B_{4}(m, \mu)=1.604+B N_{\sigma}^{1 / \nu}\left(\left(m-m_{c}\right)+A \mu^{2}\right)
$$

\longrightarrow obtain the curvature of the critical surface as

$$
\frac{\mathrm{d} m_{c}}{\mathrm{~d} \mu^{2}}=-\frac{\partial B_{4}}{\partial \mu^{2}}\left(\frac{\partial B_{4}}{\partial m}\right)^{-1}
$$

- imaginary chemical potential: results:

$$
\begin{array}{ll}
\frac{m_{c}(\mu)}{m_{c}(0)}=1-3.3(3)\left(\frac{\mu}{\pi T}\right)^{2}-47(20)\left(\frac{\mu}{\pi T}\right)^{4}+\mathcal{O}\left(\mu^{6}\right) & \left(N_{f}=3\right) \\
\frac{m_{c}^{u, d}(\mu)}{m_{c}^{u, d}(0)}=1-39(8)\left(\frac{\mu}{\pi T}\right)^{2}+\mathcal{O}\left(\mu^{4}\right) & \left(N_{f}=2+1\right)
\end{array}
$$

de Forcrand, Philipsen, JHEP 070I (2007) 77.

Part I:

- complex fermion determinant as origin of sign problem
- possible strategy is reweighting (includes canonical ensemble approach): shortcomings are the overlap problem, bad control over the break down of the method, problems with the thermodynamic limit and rather large costs
- simulations at pure imaginary chemical potential are feasible and can be analytically continued to real chemical potential
- discussed results: detection of a critical point for $\mathrm{Nf}=2+1$ from standard reweighting and for $\mathrm{Nf}=3$ for from the canonical approach, absence of critical point from imaginary chemical potential (for small values of the chemical potential)
- Taylor expansion:
- start from Taylor expansion of the pressure,

$$
\frac{p}{T^{4}}=\frac{1}{V T^{3}} \ln Z\left(V, T, \mu_{u}, \mu_{d}, \mu_{s}\right)=\sum_{i, j, k} c_{i, j, k}^{u, d, s}\left(\frac{\mu_{u}}{T}\right)^{i}\left(\frac{\mu_{d}}{T}\right)^{j}\left(\frac{\mu_{s}}{T}\right)^{k}
$$

- calculate expansion coefficients for fixed temperature
- no sign problem:
all simulations are done at $\boldsymbol{\mu}=\mathbf{0}$

$$
\begin{aligned}
c_{i, j, k}^{u, d, s} \equiv & \frac{1}{i!j!k!} \frac{1}{V T^{3}} \\
& \left.\cdot \frac{\partial^{i} \partial^{j} \partial^{k} \ln Z}{\partial\left(\frac{\mu_{u}}{T}\right)^{i} \partial\left(\frac{\mu_{d}}{T}\right)^{j} \partial\left(\frac{\mu_{s}}{T}\right)^{k}}\right|_{\mu_{u, d, s}=0}
\end{aligned}
$$

- method is straight forward:
all terms can be generated automatically
Allton et al., PRD66:074507,2002;
Allton et al., PRD68:014507,2003;
Allton et al., PRD71:054508,2005.
(see also publications by
MILC and Gavai, Gupta)
- formulate all operators in term of space-time, color (and spin) traces:

$$
\begin{aligned}
\frac{\partial(\ln \operatorname{det} M)}{\partial \mu}=\mathcal{D}_{1}= & \operatorname{Tr}\left(M^{-1} \frac{\partial M}{\partial \mu}\right) \\
\frac{\partial^{2}(\ln \operatorname{det} M)}{\partial \mu^{2}}=\mathcal{D}_{2}= & \operatorname{Tr}\left(M^{-1} \frac{\partial^{2} M}{\partial \mu^{2}}\right)-\operatorname{Tr}\left(M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu}\right) \\
\frac{\partial^{3}(\ln \operatorname{det} M)}{\partial \mu^{3}}=\mathcal{D}_{3}= & \operatorname{Tr}\left(M^{-1} \frac{\partial^{3} M}{\partial \mu^{3}}\right)-3 \operatorname{Tr}\left(M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial^{2} M}{\partial \mu^{2}}\right) \\
& +2 \operatorname{Tr}\left(M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu}\right) \\
\frac{\partial^{4}(\ln \operatorname{det} M)}{\partial \mu^{4}}=\mathcal{D}_{4}= & \operatorname{Tr}\left(M^{-1} \frac{\partial^{4} M}{\partial \mu^{4}}\right)-4 \operatorname{Tr}\left(M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial^{3} M}{\partial \mu^{3}}\right) \\
& -3 \operatorname{Tr}\left(M^{-1} \frac{\partial^{2} M}{\partial \mu^{2}} M^{-1} \frac{\partial^{2} M}{\partial \mu^{2}}\right)+12 \operatorname{Tr}\left(M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial^{2} M}{\partial \mu^{2}}\right) \\
& -6 \operatorname{Tr}\left(M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu}\right)
\end{aligned}
$$

- evaluate all traces by noisy estimators:

$$
\operatorname{Tr}\left(\frac{\partial^{n_{1}} M}{\partial \mu^{n_{1}}} M^{-1} \frac{\partial^{n_{2}} M}{\partial \mu^{n_{2}}} \cdots M^{-1}\right)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N} \eta_{k}^{\dagger} \frac{\partial^{n_{1}} M}{\partial \mu^{n_{1}}} M^{-1} \frac{\partial^{n_{2}} M}{\partial \mu^{n_{2}}} \cdots M^{-1} \eta_{k}
$$

with N random vectors, satisfying $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \eta_{n, i}^{*} \eta_{n, j}=\delta_{i, j}$

- construct expansion coefficients from $\mathcal{D}_{n}^{u}, \mathcal{D}_{n}^{d}, \mathcal{D}_{n}^{s}$, with unbiased estimators

$$
c_{2,0,0}^{u, d, s}=\frac{1}{2} \frac{N_{\tau}}{N_{\sigma}^{3}}\left(\left\langle\mathcal{D}_{2}^{u}\right\rangle+\left\langle\left(\mathcal{D}_{1}^{u}\right)^{2}\right\rangle\right)
$$

- Taylor expansion coefficients are the moments of hadronic fluctuations

$$
\begin{array}{r}
2 c_{2}^{X}=\frac{1}{V T^{3}}\left\langle N_{X}^{2}\right\rangle \quad 24 c_{4}^{X}=\frac{1}{V T^{3}}\left(\left\langle N_{X}^{4}\right\rangle-3\left\langle N_{X}^{2}\right\rangle^{2}\right) \\
X=B, Q, S, I, \ldots
\end{array}
$$

Main ingredients:

- fast solver for the linear equation $\boldsymbol{A x}=\boldsymbol{b}$, with \boldsymbol{A} being a large and sparse matrix
- iterative Krylov Subspace Methods are well suited for parallelization
\rightarrow relatively large systems can be handled on massive parallel machines
- stochastic estimator of $\operatorname{Tr} A$
- use noise reduction techniques
expansion coefficients with respect to $\boldsymbol{\mu}_{\boldsymbol{X}}$ are connected to the moments of the $\boldsymbol{n}_{\boldsymbol{X}}$-distribution
- higher order moments are getting more and more sensitive to the tail of the distribution

```
high statistics required
```


$$
\boldsymbol{n t h} \text {-moment: }
$$

$$
m_{n}=\int d x x^{n} p(x)
$$

- fluctuations in equivalent ensembles introduce a chemical potential for each conserved charge \mathcal{Q}
\longrightarrow in QCD: $S U\left(N_{f}\right)$ vector symmetry, introduce $\mu_{f}(f=u, d, s, \ldots)$ through

$$
J=\sum_{f} \mu_{f} \hat{N}_{f}=\mu^{\mathrm{T}} \hat{N}
$$

\hat{N}_{f} : number operator for quark with flavor f
charges more convenient for experiment: B, Q, I_{3}, Y
\longrightarrow perform a coordinate change in Gibbs space

$$
J=\mu^{\mathrm{T}} M^{-1} M \hat{N}=\left(\mu^{\prime}\right)^{\mathrm{T}} \hat{N}^{\prime}
$$

example: B, Q, S-ensembles

$$
\begin{aligned}
& B=\frac{1}{3}\left(N_{u}+N_{d}+N_{s}\right) \\
& Q=\frac{1}{3}\left(2 N_{u}-N_{d}-N_{s}\right) \\
& S=-N_{s}
\end{aligned}
$$

$$
\text { defines transformation } M
$$

- fluctuations in equivalent ensembles introduce a chemical potential for each conserved charge \mathcal{Q}
\longrightarrow in QCD: $S U\left(N_{f}\right)$ vector symmetry, introduce $\mu_{f}(f=u, d, s, \ldots)$ through

$$
J=\sum_{f} \mu_{f} \hat{N}_{f}=\mu^{\mathrm{T}} \hat{N}
$$

\hat{N}_{f} : number operator for quark with flavor f
charges more convenient for experiment: B, Q, I_{3}, Y
\longrightarrow perform a coordinate change in Gibbs space

$$
J=\mu^{\mathrm{T}} M^{-1} M \hat{N}=\left(\mu^{\prime}\right)^{\mathrm{T}} \hat{N}^{\prime}
$$

example: B, Q, S-ensembles
baryon number fluctuations:

$$
\begin{gathered}
\chi_{2}^{B}=\frac{1}{9}\left(\chi_{2}^{u}+\chi_{2}^{d}+\chi_{2}^{s}+2 \chi_{1,1}^{u, d}+2 \chi_{1,1}^{u, s}+2 \chi_{1,1}^{d, s}\right)=\frac{1}{9}\left(2 \chi_{2}^{u}+\chi_{2}^{s}+2 \chi_{1,1}^{u, d}+4 \chi_{1,1}^{u, s}\right) \\
\text { choose } u, d \text {-quarks degenerate }
\end{gathered}
$$

- the building blocks:

p4-action, $N_{\tau}=4,6$:
\longrightarrow Tc decreases with decreasing mass
\longrightarrow fluctuations increase with decreasing mass
\longrightarrow expect cutoff dependence,
goto $\mathrm{HISQ}, N_{\tau}=6,8,12$
red: Cheng et al., PRD79 (2009) 074505.
blue: Allton et al., PRD7I (2005) 054508.
- the building blocks:

p4-action, $N_{\tau}=4,6$:
\longrightarrow Tc decreases with decreasing mass
\longrightarrow fluctuations increase with decreasing mass
\longrightarrow expect cutoff dependence, goto $\mathrm{HISQ}, N_{\tau}=6,8,12$
(to be coming soon)
red: Cheng et al., PRD79 (2009) 074505.
blue: Allton et al., PRD7I (2005) 054508.
- understanding the structure:

Analyzing the critical behavior:
scaling field (chiral limit):

$$
t=\frac{1}{t_{0}}\left(\frac{T-T_{c}}{T_{c}}+\kappa\left(\frac{\mu_{B}}{T}\right)^{2}\right)
$$

free energy:
$f=A_{ \pm}|t|^{2-\alpha}+$ regular
critical exponent:
$-0.15<\alpha<-0.11$
$\chi_{2}^{B} \sim \mp 2 A_{ \pm}(2-\alpha) \kappa|t|^{1-\alpha}+$ regular
$\chi_{4}^{B} \sim-12 A_{ \pm}(2-\alpha)(1-\alpha) \kappa^{2}|t|^{-\alpha}+$ regular \longrightarrow kink (chiral limit)
$\chi_{6}^{B} \sim \mp 120 A_{ \pm}(2-\alpha)(1-\alpha)(-\alpha) \kappa^{3}|t|^{-1-\alpha}+$ regular \rightarrow

- understanding the structure:

Analyzing the critical behavior:
scaling field (chiral limit):

$$
t=\frac{1}{t_{0}}\left(\frac{T-T_{c}}{T_{c}}+\kappa\left(\frac{\mu_{B}}{T}\right)^{2}\right)
$$

free energy:
$f=A_{ \pm}|t|^{2-\alpha}+$ regular
critical exponent:
$-0.15<\alpha<-0.11$
$\chi_{2}^{B} \sim \mp 2 A_{ \pm}(2-\alpha) \kappa|t|^{1-\alpha}+$ regular
$\chi_{4}^{B} \sim-12 A_{ \pm}(2-\alpha)(1-\alpha) \kappa^{2}|t|^{-\alpha}+$ regular \longrightarrow kink (chiral limit)
$\chi_{6}^{B} \sim \mp 120 A_{ \pm}(2-\alpha)(1-\alpha)(-\alpha) \kappa^{3}|t|^{-1-\alpha}+$ regular \rightarrow

- putting things together:
pressure

$$
\frac{p}{T^{4}}=c_{0}+c_{2}\left(\frac{\mu}{T}\right)^{2}+c_{4}\left(\frac{\mu}{T}\right)^{4}+c_{6}\left(\frac{\mu}{T}\right)^{6}+\cdots
$$

density

$$
\frac{n}{T^{3}}=2 c_{2}\left(\frac{\mu}{T}\right)+4 c_{4}\left(\frac{\mu}{T}\right)^{3}+6 c_{6}\left(\frac{\mu}{T}\right)^{5}+\cdots
$$

density fluctuations

$$
\frac{\chi}{T^{2}}=2 c_{2}+12 c_{4}\left(\frac{\mu}{T}\right)^{2}+30 c_{6}\left(\frac{\mu}{T}\right)^{4}+\cdots
$$

\longrightarrow obtain all kinds of thermodynamic observables in terms of the coefficients $c_{i, j, k}^{u, d, s}$ at non zero density

- putting things together:

\longrightarrow nonzero density contribution is $\leq(10-15) \%$ for $\mu_{q} / T \leq 1$
\longrightarrow obtain energy density from temperature derivative
\longrightarrow important input for hydrodynamic models of heavy ion collisions: isentropic equation of state

Ejiri et al., PRD73 (2006) 054506; Miao, CS, PoS LATTICE2008 (2008) I72.

$$
\text { at } \mu_{B}>0\left(\mu_{S}=\mu_{Q}=0\right)
$$

baryon number fluctuations

$$
\chi_{B}=2 c_{2}^{B}+12 c_{4}^{B}\left(\frac{\mu_{B}}{T}\right)^{2}+\cdots
$$

baryon number -
strangeness correlations

strangeness

fluctuations

$$
\chi_{S}=2 c_{0,2}^{B, S}+2 c_{2,2}^{B, S}\left(\frac{\mu_{B}}{T}\right)^{2}+\ldots
$$

$$
C_{B S}=\frac{c_{1,1}^{B, S}+3 c_{3,1}^{B, S}\left(\frac{\mu_{B}}{T}\right)^{2}+\cdots}{\chi S\left(\frac{\mu_{B}}{T}\right)}
$$

LO introduces a peak in the fluctuations/correlations, NLO shifts the peak towards smaller temperatures

curvature of the phase boundary

- How to obtain the $\boldsymbol{\mu}$-dependence of the crossover temperature? follow the peak position of a susceptibility $\left(\chi_{2}^{B}\right)$
$\longrightarrow \mu$-dependence only introduce at the 6th order, noisy signal

better:

make use of the determination of the non universal parameters $\left(T_{c}, t_{0}, h_{0}\right)$ from mapping QCD to the $O(4)$-chiral critical behavior
recall: (lecture by F. Karsch)

$$
\begin{aligned}
& \quad t=\frac{1}{t_{0}} \frac{T-T_{c}}{T_{c}} \\
& \text { (reduced temperature) } \quad h=\frac{H}{h_{0}} \\
& M_{0}=m_{s}\langle\bar{\psi} \psi\rangle_{l} / T^{4}=h^{1 / \delta} f_{G}(z) \\
& \text { (external field) } \\
& \text { (order parameter) }
\end{aligned}
$$

QCD:

$$
H \sim m_{q}
$$

(quark mass)
our choice:

$$
H=m_{l} / m_{s}
$$

curvature of the phase boundary

- How to obtain the $\boldsymbol{\mu}$-dependence of the crossover temperature?
follow the peak position of a susceptibility $\left(\chi_{2}^{B}\right)$
$\longrightarrow \mu$-dependence only introduce at the 6th order, noisy signal

better:

make use of the determination of the non universal parameters $\left(T_{c}, t_{0}, h_{0}\right)$ from mapping QCD to the $O(4)$-chiral critical behavior
recall: (lecture by F. Karsch)

curvature of the phase boundary

- How to obtain the $\boldsymbol{\mu}$-dependence of the crossover temperature? follow the peak position of a susceptibility $\left(\chi_{2}^{B}\right)$
$\longrightarrow \mu$-dependence only introduce at the 6th order, noisy signal

better:

make use of the determination of the non universal parameters $\left(T_{c}, t_{0}, h_{0}\right)$ from mapping QCD to the $O(4)$-chiral critical behavior
\longrightarrow introduce chemical potential

$$
\begin{aligned}
& t=\frac{1}{t_{0}}\left(\left(\frac{\boldsymbol{T}}{T_{c}}-1\right)+\kappa_{q}\left(\frac{\mu_{q}}{T}\right)^{2}\right)=0 \\
& \Rightarrow \frac{\boldsymbol{T}_{c}\left(\mu_{\boldsymbol{q}}\right)}{\boldsymbol{T}_{\boldsymbol{c}}}=1-\kappa_{q}\left(\frac{\mu_{\boldsymbol{q}}}{\boldsymbol{T}}\right)^{2}
\end{aligned}
$$

\Rightarrow scaling laws control curvature of the critical line
expected phase diagram

curvature of the phase boundary

- How to obtain the $\boldsymbol{\mu}$-dependence of the crossover temperature?
the critical line provides an upper bound to the curvature of the crossover temperature
- determine κ_{q} by a scaling analysis of the mixed susceptibility

$$
\chi_{m}=\frac{\partial^{2} M}{(\partial \mu / T)^{2}}=\frac{2 \kappa_{q}}{t_{0} T_{c}} h^{(\beta-1) / \beta \delta} f_{G}^{\prime}(z) \propto \chi_{t}
$$

\Rightarrow one fit parameter: κ_{q}

\Rightarrow obtain from p4-action, $N_{\tau}=8,4: \kappa_{q}=0.059(6)$
Kaczmarek et al, PRD 83 (2011) 014504.

curvature of the phase boundary

- comparison with freeze-out line
- Statistical models are very successful in describing particle abundances observed in heavy ion collision; use a parametrization of the freeze-out curve

statistical model:
$\frac{T_{c}}{T}=1-0.023\left(\frac{\mu_{B}}{T}\right)^{2}-d\left(\frac{\mu_{B}}{T}\right)^{4}$
Cleymans, et al., PRC 73 (2006) 034905
lattice:
$\frac{\boldsymbol{T}_{c}}{T}=\mathbf{1}-\mathbf{0 . 0 0 6 6 (7)}\left(\frac{\boldsymbol{\mu}_{B}}{\boldsymbol{T}}\right)^{\mathbf{2}}$
Kaczmarek et al, PRD 83 (2011) 014504.
\Rightarrow curvature of the freeze-out curve seems to be larger
- open issues: continuum limit, strangeness conservation, nonzero electric charge

hadron resonance gas

$$
\begin{aligned}
\ln Z\left(T, V, \mu_{B}, \mu_{S}, \mu_{Q}\right)= & \sum_{i \in \text { hadrons }} \ln Z_{m_{i}}\left(T, V, \mu_{B}, \mu_{S}, \mu_{Q}\right) \\
& \sum_{i \in \text { mesons }} \ln Z_{m_{i}}^{B}\left(T, V, \mu_{S}, \mu_{Q}\right)+\sum_{i \in \text { baryons }} \ln Z_{m_{i}}^{F}\left(T, V, \mu_{B}, \mu_{S}, \mu_{Q}\right)
\end{aligned}
$$

mesons:

$$
\frac{p_{i}}{T^{4}}=\frac{d_{i}}{\pi^{2}}\left(\frac{m_{i}}{T}\right)^{2} \sum_{l=1}^{\infty}(+1)^{l+1} l^{-2} K_{2}\left(l m_{i} / T\right) \cosh \left(l S_{i} \mu_{S} / T+l Q_{i} \mu_{Q} / T\right)
$$

baryons:

$$
\frac{p_{i}}{T^{4}}=\frac{d_{i}}{\pi^{2}}\left(\frac{m_{i}}{T}\right)^{2} \sum_{l=1}^{\infty}(-1)^{l+1} l^{-2} K_{2}\left(l m_{i} / T\right) \cosh \left(l B_{i} \mu_{B} / T+l S_{i} \mu_{S} / T+l Q_{i} \mu_{Q} / T\right)
$$

Boltzmann approximation ratios are independent of spectrum and volume possibly large parts of cut-off effects cancel	3 ratios: $\begin{aligned} & \frac{\chi_{4}^{B}}{\chi_{2}^{B}}=\kappa \sigma^{2}=\frac{B^{4}}{B^{2}}=1 \\ & \frac{\chi_{3}^{B}}{\chi_{2}^{B}}=S \sigma=\frac{B^{3}}{B^{2}} \tanh \left(\mu_{B} / T\right) \\ & \frac{\chi_{2}^{B}}{\chi_{1}^{B}}=\sigma^{2} / N_{B}=\frac{B^{2}}{B^{1}} \operatorname{coth}\left(\mu_{B} / T\right) \end{aligned}$

- sixth order fluctuations

CS, Theor. Phys. Suppl. I86, 563 (2010)

- sensitive to relevant quantum numbers in the medium
- divergent at the critical point

$$
\begin{aligned}
& T\left(\mu_{B}\right)= 0.166 \mathrm{GeV} \\
&-0.139 \mathrm{GeV}^{-1} \mu_{B}^{2} \\
&-0.053 \mathrm{GeV}^{-3} \mu_{B}^{4} \\
& \mu_{B}(\sqrt{s})=\frac{1.308 \mathrm{GeV}}{1+0.273 \mathrm{GeV}^{-1} \sqrt{s}}
\end{aligned}
$$

Lattice vs. Experiment:

[HRG: Karsch, Redlich, PLB 695 (201 I)]
[STAR data: Aggarwal et al, PRL (2010) 022302]

- net-proton number fluctuations can be described by the HRG solid lines: $\mu_{Q} \neq 0, \mu_{S} \neq 0$ dashed lines: $\mu_{Q}=0, \mu_{S}=0$

- fluctuations increase for small \sqrt{s}
- sensitive to truncation of the series due to close radius of convergence

Lattice vs. Experiment:

[HRG: Karsch, Redlich, PLB 695 (201 I)]
[STAR data: Aggarwal et al, PRL (2010) 022302]

- net-proton number fluctuations can be described by the HRG solid lines: $\mu_{Q} \neq 0, \mu_{S} \neq 0$ dashed lines: $\mu_{Q}=0, \mu_{S}=0$

- fluctuations increase for small \sqrt{s}
- sensitive to truncation of the series due to close radius of convergence

Lattice vs. Experiment:

[HRG: Karsch, Redlich, PLB 695 (201 I)]
[STAR data: Aggarwal et al, PRL (2010) 022302]

- net-proton number fluctuations can be described by the HRG solid lines: $\mu_{Q} \neq 0, \mu_{S} \neq 0$ dashed lines: $\mu_{Q}=0, \mu_{S}=0$

- fluctuations increase for small \sqrt{s}
- sensitive to truncation of the series due to close radius of convergence

method for locating of the CEP:

- determine largest temperature where all coefficients are positive $\rightarrow T^{\text {CEP }}$
- determine the radius of convergence at this temperature $\quad \rightarrow \mu^{\mathrm{CEP}}$

first non-trivial estimate of $T^{\text {CEP }}$ by c_{8} second non-trivial estimate of T^{CEP} by c_{10}

$$
\begin{gathered}
p=c_{0}+c_{2}\left(\mu_{B} / T\right)^{2}+c_{4}\left(\mu_{B} / T\right)^{4}+\cdots \\
\chi_{B}=2 c_{2}+12 c_{4}\left(\mu_{B} / T\right)^{2}+30 c_{6}\left(\mu_{B} / T\right)^{4}+\cdots \\
8 \\
8
\end{gathered}
$$

method for locating of the CEP:

- determine largest temperature where all coefficients are positive $\rightarrow T^{\text {CEP }}$
- determine the radius of convergence at this temperature
$\rightarrow \mu^{\mathrm{CEP}}$

first non-trivial estimate of $T^{\text {CEP }}$ by c_{8} second non-trivial estimate of $T^{\text {CEP }}$ by c_{10}

$$
p=c_{0}+c_{2}\left(\mu_{B} / T\right)^{2}+c_{4}\left(\mu_{B} / T\right)^{4}+\cdots
$$

$$
\chi_{B}=2 c_{2}+12 c_{4}\left(\mu_{B} / T\right)^{2}+30 c_{6}\left(\mu_{B} / T\right)^{4}+\cdots
$$

$$
\begin{array}{r}
1.2 \\
1.15 \\
\hline \mathrm{~T} / \mathrm{T}
\end{array}
$$

freeze-out

$$
\begin{aligned}
\rho_{n}(p) & =\sqrt{c_{n} / c_{n+2}} \\
\rho & =\lim _{n \rightarrow \infty} \rho_{n}
\end{aligned}
$$

method for locating of the CEP:

- determine largest temperature where all coefficients are positive $\rightarrow T^{\text {CEP }}$
- determine the radius of convergence at this temperature $\quad \rightarrow \mu^{\mathrm{CEP}}$

first non-trivial estimate of $T^{\text {CEP }}$ by c_{8} second non-trivial estimate of $T^{\text {CEP }}$ by c_{10}

- radius of convergence is consistent with critical line in the chiral limit
O. Kaczmarek, et al., PRD 83 (201I) 014504

Part II:

- Taylor expansion coefficients of the pressure up to the 6th order have been calculated at zero chemical potential, can be used to obtain bulk thermodynamics and fluctuations at nonzero density (p4-action, $\mathrm{Nt}=4,6$). New results from HISQ-action for $\mathrm{Nt}=6,8$, 12 are underway.
- The curvature of the critical line in the chiral limit was obtained from an analysis of the $\mathrm{O}(4)$ ciritcal behavior.
- Ratios of moments of the baryon number fluctuations have been computed and compared to the experiment.
- estimates of the radius of convergence can possibly be used to estimate a critical end-point at non zero chemical potential
- QCD like theories without sign problem:

```
        SU(2)
non compleat list:
-Hands, Montvay, Scorzato,
    Skullerud, EPJC 22 (200I) 45I
- Kogut,Toublan,Sinclair,
    PRD 68 (2003) }05450
-Hands, Kim, Skullerud,
    PRD 8I (20I0) 091502
- Hands, Kenny, Kim, Skullerud,
    EPJA 47 (20II) }6
```

- Integrate over gauge links first \longrightarrow no sign problem, feasible at strong couplings Fromm, de Forcrand PRL 104 (2010) II 2005; de Forcrand, Unger, arXiv: I I 07.1557
- Complexify fields and use complex Langevin algorithm, correct convergence not guaranteed Aarts et al., JEHP 0509 (2009) 052; PLB 687 (2010) I54; PRD 81 (2010) 054508; JHEP IO08 (2010) 017; JHEP 1008 (2010) 020
- Design a model of QCD, calculate parameter to produce all know constrains from lattice QCD and experiment
\longrightarrow see lecture by D. Blaschke

